제약업종 부산물 및 화장품 제조업 폐수처리오너 처리토양에 대한
유기화합물 및 Bioassay 분석 평가

임동규*, 이상범**, 이상환, 남재작, 나영은, 권창식, 권순익, 소규호

농업과학기술원 환경생태과, ***천전환경농업과, **응용비생물과
(2004년 10월 19일 접수, 2004년 11월 23일 수리)

Assessment of Organic Compound and Bioassay in Soil Using Pharmaceutical Byproduct and Cosmetic Industry Wastewater Sludge as Raw Materials of Compost

Dong-Kyu Lim*, Sang-Beom Lee**, Seung-Hwan Lee, Jae-Jak Nam, Young-Eun Na, Jang-Sik Kwon** and Kuy-Ho So (Environmental and Ecology Division, ***Organic Farming Division, **Applied Microbiology Division, National Institute of Agricultural Science and Technology, Suwon 441-701, Korea)

ABSTRACT: This study was conducted to assess organic compound and bioassay (density of inhabited animal, fluctuation of predominant fungi, and survival ratio of earthworm) for finding damage on red pepper by heavily amount application of sludges in soil, which was treated with 3 pharmaceutical byproducts and a cosmetic industry wastewater sludge as raw materials of compost, and for establishing estimation method. HEM contents in the soil treated with pharmaceutical byproducts sludge2 (PS2) and cosmetic sludge (CS) were 0.51, 1.10 mg/kg respectively. PAHs content of PS2 treatment in the soil was 3-406.8 µg/kg on July 8. In abundance of soil faunas, the pharmaceutical byproducts sludge2 treatment was the most highest. The next was decreased in the order of pig manure (PM) and the cosmetic sludge treatment. However the other pharmaceutical sludge treatments were remarkably reduced populations of soil inhabited animals. In upland soil treated with organic sludges, the numbers of bacteria and fungi of the pharmaceutical sludge treatment were 736, 909 cfu/g and those of the cosmetic sludge treatment were 440, 236 cfu/g, respectively. The pharmaceutical sludge treatments and the cosmetic sludge treatment in identification of predominant bacteria were not any tendency to compare with non fertilizer and pig manure treatments, but they had diverse bacteria than NPK treatment. In microcosm tests, the survival of the tiger earthworm in five soil samples was hardly affected against the soil of PS1 (20%) after three months treated in the upland. But after six months, survival of PS1 was 80%. At present, raw material of compost was authorized by contents of organic matter, heavy metal (8 elements), and product processing according to “The specified gist on possible materials of using after analysis and investigation among raw materials of compost”, however, for preparing to change regulation of raw material of compost and for considering to possibility of application, this study was conducted to investigate toxic organic compound and bioassay methods using inhabited animal, fungi, and earthworm without current regulation.

Key words: Pharmaceutical byproducts, Cosmetic wastewater sludge, HEM, PAHs.

서 론

산업이 발달함에 따라서 다양한 폐기물이 다양으로 배출되고 있다. 폐기물의 처리는 주로 재활 및 해양투기에 의존하여 왔으나, 2005년부터 유기성 폐기물의 적폐화를 금지할 계획으로 있어서 여러 제조업에서 생산된 고품질 오미 및 헤어

처리오미의 처리는 점점 어려워지고 있는 실정이다. 이에 따라 산업체에서 대량으로 발생되고 있는 유기성 부산물 및 폐수처리 오미에 대한 폐기물 재활용에 대한 요구가 증대되고 있다. 이러한 유기성 오미의 뇌비료로의 활용 여부는 비료 관리법의 비료광장규격에서 유기물과 중금속 함량 기준을 정해두고 있지만 분석 침감한 후 결정하도록 규정하고 있다.

이와 같이 뇌비료로와 같은 환경에 대해서는 현재 단순히 유기물 및 중금속 함량을 분석하고 제조공정 등을 검토하여 자원화 가능성을 여부를 결정하고 있으나 앞으로는 유해유기화합물 함
양과 토양토양물들에 미치는 영향 등을 고려하여 퇴비원료로 적합성을 평가할 수 있는 분석방법의 확립이 요구되고 있다.
이에 유럽 등에서는 유기성 폐기물에 밀착된 무기와 유기화 합물의 잠재 유해성을 평가할 수 있는 새로운 평가방법을 시도하고 있다(7).

유해 유기화합물들은 식물체를 통해 생물농축이 일어나는 주요 오염물질 중 하나로 알려져 있으며 HEM (Hexane extractable materials) 이용, 유기화합물의 총량적인 함량을 나타내며 건 재생각 식물자를 가지고 있어 특성상 수질 및 토양, 혹은 작물에 피해를 줄 수 있다(8). PAHs (Poly cyclic aromatic hydrocarbons)는 소수성 유기화합물로 탄소기기가 4개 미만인 저분자량인 경우 풍화에 이용하고, 그에 따라 화학적 작용 및 구성 정량은 일어나, 탄소기기가 4개 이상인 고분자량의 경우 더욱 잘 용해되지 않으며 입자에 대한 침착효과가 매우 높은 농축단위에 알맞아 이로 하여 토양 또는 화합물에 축적되어, 먹이사슬을 통해 생물농 짐이 되면서 생태계를 통해 인간의 건강과 생명을 위협하는 냉면해 물질로 알려져 있다(9).

토양 중에는 미생물, 원생동물, 미소동물 등 다양하고 수 많은 생물들이 서식하고 있어서 토양에 투입되는 유기물질의 막대한 양을 통해 또는 정화할 수 있는 능력을 가지고 있으 며, 이들 중에는 특유한 한 수준에서 생물생태계 내 물질순 환을 원활하게 하여 토양 건전성을 유지할 수 있게 작용, 생물생산성을 높여주는 중요한 기능을 하고 있다(10). 그러나 토양에 투입되는 유기화합물의 경합을 유기물이 오염원에 따라 토양생물학적 활성과 가능성이 높아져 토양 화합물에 대한 보호력을 향상시키는 데, 야생의 해를 더욱 강하게 해졌다.

제재 및 방법

시험재료 준비 및 시험방법

제재업종 부수물인 공정오너와 화장품 제조업 폐수처리로 나누어 처리한 후 각각 재료를 제조한 시험용 처리재료의 처리내용은 무기 (NF), 화학비료 (NPK), 가공재료 (PM), 제재업 종 오너 3종 (FSI, 3), 화장품 제조업 오너 1종 (CS)구로 총 7가지였다. 처리재료는 NPK구는 토양시험시험비료, 무기 및 오너 처리재료는 pot당 2 Mg (수분 50% 용량) 사용하였다. 무기 및 오너 처리구는 교수식 성인 17명 전원 4월 16일에, NPK구는 정식 1일 전인 5월 2일에 무지 pot (4 m², 2×2 m)에 각각 처리하고 전

미생물의 고추를 제외하였다. 시기별로 토양시료를 재배하여 유기화합물 분석, 미소동물 밀도조사, 미생물 조사, 퇴비를 이용한 생물학적 유해성 측정을 각각 실시하였다.

유기화합물 분석

HEM은 EPA방법 9071에 준하여 분석하였으며(36), automated Soxhlet 추출기 (Soxtherm, Gerhardt, Germany)를 사용하였다. 토양시료 20 g를 무수황산나트륨 20~50 g와 혼합한 뒤 수분이 제거된 상태에서 원통형기에 넣어 n-hexane 150 mL을 사용하여 180°C에서 90분간 추출한 후 용액을 증발시키고 방향적인 후 추출한 여려 항목을 측정하여 건조토양 기준으로 HEM 함량을 나타내었다.

동 PAHs 함량의 정량은 미국환경보호협의 우선검사물질 목록에 포함된 16가지 PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2-3-cd)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene)에 대하여 실시하였다. HEM은 EPA 3660C(37)에 준하여 silica gel column으로 정제하였다. PAHs는 EPA 8270C(38)에 따라 fused silica capillary column (DB-5ms, 30 m x 0.25 mm ID x 0.25 μm, J&W Sci., Inc., USA)에 정재된 CG-ITMS (PolarisQ, ThermoFinnnigan, USA)로 사용하여 분석하였다.

미소동물 밀도

토양의 미소동물의 밀도는 개방형 Tullgren방법으로 측정하였다. 미소동물을 분리하기 위한 도구로는 얽히며 조성 및 생태분류에 영향을 미치는 데, 맞게 되어 있는 것이 필요하며, 퇴비물 등에 따라 토양정화 요소의 활성과 기능이 높아지기 때문에 대용량 사용할 수 있다. 그러므로 도구를 정화한 로는 다양한 생태계에 따라 특성상 화학적 처리중 미생물, 간생물, 생물생산성, 생물생성성을 높여주는 중요한 기능을 하고 있으며, 그중에서도 시험재료의 반응이 있는 것이다.

따라서 본 연구는 퇴비의 원료로서 간식이 제재업종 부문(공정오너 및 화장품 제조업 폐수처리요)을 수용한 후 교육을 제외하였으며 시기별로 토양 증 유기화합물 함량과 미소동물과 미생물의 밀도를 측정하고 생물학적 유해성 측정을 실시하였다.

미생물학

미생물은 전반적으로 토양생물학적특성(79)에 준하여 평가한 결과, 이용기에는 수족별로 조사한 후 해당 선효배지에 시료용액을 분야화하여 조사하였다. 즉, 세균 및 방사균은 Egg-albumin

전체배치, 사상균은 Rose-bengal 전체배치를 이용하였고, 세균의 경우 28~32°C에서 5일, 방사균은 28~32°C에서 7일, 사상균은 25°C에서 5일 배양하여 얻은 colony를 계수하였다. 또 토양

에 투입된 재료의 증류병으로 미생물의 변동을 보이 위하여 우정배지 및 사상균의 분자로 조사하였다. 우정배지로 분류된

은 Egg-albumin 전체배치에서 얻은 결과를 평가 뿐만 아니라, 후 TSBA배치 (Trypticase soy broth 30 g, Agar 15 g)에 수족

생태계의 각각 구분의 DNA를 촉촉할 일상사건현상으로 동
생물학적 유해성 검정

생물학적 유해성 검정은 지렁이를 이용한 비노з 개체배양에 의한 평가방법으로 Microcosm test를 적용하였다. Microcosm test의 Microcosm박스 (14 cm length, 14 m width, and 7 m depth)는 올레테일로 구성되어 있으며 토양에 36구멍 (1 mm diameter)이 있는 것을 사용하였다. Microcosm test는 토양으로 300 g을 2 mm 크로 침 후 수분 보유율이 40%가 되도록 수분량을 조절한 후, Microcosm박스 위에 지렁이 10마리 넣고, 20°C 환온실에서 두고서 7일 마다 지렁이의 생존율 변화를 조사하였다.

결과 및 고찰

유기화합물

제약업종 부산물(공정오나) 및 화장품 제조업 폐수처리 오나를 사용한 토양에서 추출한 HEM 및 PAHs 함량은 Fig. 1과 2에 나타내었다. HEM 함량은 이들 부산물 및 폐수처리 오나를 토양에 사용한 후 83일째 (7일 8일째) 화장품 오나(CS) 및 제약업종 오나2,5 (PS) 처리가 각각 0.15과 1.10 mg/kg로써 가장 높았다. 일반적으로 노태하중에 추출되어 나타나는 물질은 비화학성의 탄화수소, 탄화수소유도체, 그레인, 유장물질 및 폐유류와 식물성 유지를, 동물성 자락, 비어, 그리고 약품 등을 포함하고 있기 때문[25] 미국의 EPA에서는 HEM을 BOD, TSS, pH, 화학적 대중물 등과 함께 일반 오염물질로 규정하고 있다[26]. 그러나 우리나라 토양기준에서는 HEM에 대한 항목이 없으나, 환경부의 페기물 관리법 시행규칙에 바알리짐 채 움수의 오염물질 배출허용기준에 노태액산추출물질 함유량에서 가용유는 1〜5 mg/kg, 동식물 유지류는 5〜30 mg/kg를 초과하지 않도록 규정하고 있어[27], 토양에도 HEM 함량에 대한 기준 마련 및 대책 수립이 시급한 실정이다.

PAHs 함량은 HEM 함량이 가장 높았던 시기 (처치 후 83일째) 제약업종 오나2,5(PS2)구에서 3.4068 mg/kg로서 가장 높아 제약업계의 제조과정 중 액체에 관련된 분전의 일부가 혼 입된 것으로 생각된다. 우리나라 토양기준의 평균 PAHs 함량은 2.36 mg/kg (2.3〜2.83 mg/kg)인데 것을 감안하면 제약업종 오나 중에 함유된 PAHs 물질이 토양에 훼손이 되었음을 알 수 있다.
Fig. 3. Influence of soil inhibited animals in upland soil treated with organic sludges.

오늘, 대분과 화장품 오니 처리구에 비해 현저히 낮았다. 유기성 오니의 종류와 따라서 토양에 서식하는 미소동물의 개체밀도에 차이가 나는 것은 오니에 페를 있으면서 있는 성분의 종류와 함량 등이 크게 영향을 받고 있는 것으로 보였다.

Lee 등은 밸트암에 화학비료를 강간 연용하면 토양 미소동물들의 서식밀도가 감소하며, 또한 유기물을 함유한 오니를 강간 토업하면 토양생태계에 부유하게 오염되어 미소동물의 개체 서식밀도는 물론이고, 주요 기능인 품질 분해능도 저하한다고 하였는데 이것은 서식지의 감소하여 이로운 유해 유기화합물의 함량과 독성 및 오니의 품질과함께서 사용되는 응집체의 영향이 크다고 하였다. Bonkowski 등은 토양 미소동물들이 분비물질과 미생물들 섭취함으로서 작물의 귀신 미생물을 조절하여 건강적으로 작물생육에 영향을 미한다고 하였으며, Cortet 등은 금속류 (Ag, Cd, Co, Cr, Hg, Na, Pb 등)와 유해물질 (페놀화합물 및 PCBs 등)이 미소동물 (전층 간호생물, 품목군, 실린지아, 등과류 등)의 활성과 균열에 제한적으로 사용하기 때문에 토양 미소동물의 서식밀도를 측정함으로서 오염물 평가에 이들 생물학적 지표들을 사용할 수 있다고 주장하였다.

그러나 유기성 오니들 강간시 사용된 토양에 서식하는 토양 미소동물들의 종류와 개체의 서식밀도 변화에 따른 토양의 오염정화와 생물학적 지표를 조사하여 사용한 유기성 오니가 피크비료의 적합 가능성을 여부를 판단한다는 것은 유기성 오니의 특성 등에 따라 토양 미소동물의 밀도변이가 너무 크고 환경조건에 따라 미소동물의 서식이 크게 영향을 받으므로 앞으로 보다 많은 연구를 수행하여 보완하는 것이 바람직하다고 생각된다.

미생물성

시험제료 처리별 bacteria, actinomycetes 및 fungi 균수를 조사한 결과는 Table 1과 같이 세균의 균수는 가축분뇨 (PM), 재배업종 오니 2·3 (PS1, PS2, PS3), 화장품 오니 (CS) 등 유기물을 사용한 구에서 모두 현저히 증가하였으며 NPK < 무

Table 1. Fluctuation of soil microflora in upland soil treated with organic sludges

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacteria (10^9)</th>
<th>Actinomycetes (10^9)</th>
<th>Fungi (10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>45 ± 13.4</td>
<td>5 ± 2.1</td>
<td>100 ± 11.3</td>
</tr>
<tr>
<td>NPK</td>
<td>6 ± 2.8</td>
<td>0 ± 0.0</td>
<td>42 ± 6.7</td>
</tr>
<tr>
<td>PM</td>
<td>235 ± 66.6</td>
<td>9 ± 1.8</td>
<td>104 ± 12.7</td>
</tr>
<tr>
<td>PS1</td>
<td>76 ± 27.9</td>
<td>3 ± 1.1</td>
<td>67 ± 16.3</td>
</tr>
<tr>
<td>PS2</td>
<td>500 ± 101.5</td>
<td>1 ± 0.7</td>
<td>806 ± 73.2</td>
</tr>
<tr>
<td>PS3</td>
<td>64 ± 15.9</td>
<td>5 ± 0.7</td>
<td>118 ± 11.3</td>
</tr>
<tr>
<td>CS</td>
<td>340 ± 70.7</td>
<td>5 ± 2.8</td>
<td>158 ± 55.2</td>
</tr>
</tbody>
</table>

Table 2. Identification of predominant bacteria in upland soil treated with organic sludges

<table>
<thead>
<tr>
<th>Genus</th>
<th>NF</th>
<th>NPK</th>
<th>PM</th>
<th>PS1</th>
<th>PS2</th>
<th>PS3</th>
<th>CS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adromobacter</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrococcus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcaligenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthrobacter</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Aerobacterium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus</td>
<td>9</td>
<td>22</td>
<td>6</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Bacteroides</td>
<td>4</td>
<td></td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Coccus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deinaxia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietzia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ennetzia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavobacterium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexibacter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friedmannella</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Jaribacter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kocuria</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leifsonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucoceutis</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysobacter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbacterium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Micrococcus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucobacterium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nocardioides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octobacterium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Oerskovia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediobacillus</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastronia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizobium</td>
<td>1</td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Sanguinibacter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaingobacterium</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaingomycetes</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaingophravaxis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterotrichomonas</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptomyces</td>
<td>2</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrabacter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variovecus</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthomonas</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Xylanomonosubtilis</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total | 25 | 28 | 19 | 28 | 25 | 30 | 27 | 182 |
처리 < PS3 < PS1 < PM < CS < PS2 순으로 군수가 많은 경향을 보였다. 유기물의 분해는 미생물의 활성과 밀접한 관계가 있는 것으로 알려져 있으며, 전반적으로 세균의 군수 가 증가하는 경향으로 보이며 세균이 의해 활발히 분해되고 있는 것으로 사료되었다. 사상균 수는 처리 및 반복 간에 다소간 차이를 보였으나 대체로 NPK를 제외한 가축분뇨 및 제조업 오나리를 투입한 시험구에서는 군수가 약간 증가하는 경향을 보였다. 특히 제조업용 오나리는 처리 간에 세균 및 사상균의 군수에 있어서 현저한 차이를 보였는데 제조업용 오나리규가 제조업용 오나리 및 제조업용 오나리에 비해 세균은 8~9배, 사상균은 7~12배 이상 많은 군수를 보여 제조업용 오나리 간에 8~9배의 차이가 있음을 알 수 있었다. 이는 이결과 실험자료에 사용된 가축분뇨와 제조업 오나리 시험용을 세균 및 사상균에 다른 조건과 가축분뇨와 제조업 오나리에 다른 조건과 투입 유기물의 사용효과를 검토한 여러 실험 결과와 비슷한 경향이다.

그러나 NPK군은 부처지구보다 세균, 방사균, 사상균에서 모두 낮은 군수를 보였다.

유기성 오나리를 투입한 후에 미생물 생태계에 어떠한 영향을 주는지 평가하기 위하여 토양 중 수가 가장 많은 세균을 대상으로 월균군을 동정하고 월균군의 종류를 조사한 결과는 Table 2와 같다. 재료 간에 길이와 부추가 다른 세균군 간에 다른 세균군과의 결합성을 보였으나, 전반적으로 사상균의 NPK군은 단순하였으나, 제조업용 및 화장품 오나리구리는 대학하게 결합되었다.

사상균의 변동을 알아보기 위하여 우점 사상균의 종류가 가능한 선택배지를 이용하여 원시의 형태적 특성, 플로코니의 세 등으로 같은 종이 다른 종인지를 분명한 결론은 Fig. 4와 같이 밝혀 제조업용 오나리에서 많았으나, 사상균의 종류는 처리 간에 큰 차이를 볼 수 없었다.

퇴비료로 저장된 유기성 오나리를 토양에 섞은 후 토양 미생물에 의한 오나리 중 유기물의 분해와 미생물의 활성 등을 평가하기 위해서 미생물의 종류에 따른 군수 등의 경험적 방법은 동일 오나리를 처리한 토양에서 미생물 군수의 변이가 너무 크므로, 실제로 미생물 검정으로 퇴비료의 적합성에 활용한다는 것은 상당히 어려울 것으로 판단되었다.

생물학적 유해성 검정

건전한 토양에 유기물이 많으면 끼리아가 많이 서식하는 것으로 일반적으로 알려져 있으며, 생물학적 유해성 검정시험은 포장의 무거 pot에 시험한 토양을 처리구별로 처리한 후 10일간이 지난 후 지렁이의 자식 세척물을 조사한 결과 농부구, 평균구 및 오나리구에서 채배기간이 오래되지 않은 양만지는 잘 알 수 없었으나 지렁이가 서식하지 않았다. 이런 현상은 실험자료에 사용한 독분의 독성 혹은 오나리에 감재하는 독성보다는 다른 요인에 존재하고 있는 것으로 생각되었다.

Microcosm test는 Burrows and Edwards(98)가 개발한 것으로 토양생태계에 오염물질(유기화합물, 무기화합물)의 임계 유해성을 예측하기 위하여 끼리아를 이용한 방법이다. 유기성 오나리 처리한 토양에서 끼리아를 인위적으로 투입한 후 지렁이의 비로봇 게재변동에 의한 끼리아의 생존율 변화를 Microcosm test를 통하여 토양의 건전성을 평가하였다. 포장에서 각 처리별로 토양을 각각 섞어 토양을 이용하여 생물학적유해성 검정을 실시한 결과는 Fig. 5와 같다. 고추의 생육 증가(6월 19일)에 섞은 토양에서 지렁이의 생존율은 처리 7일 이후 농부, 화장품, 평균, 제조업용 오나리2구에서는 판명이 없었으나, 제조업용 오나리, 제조업용 오나리, 평균, 화장품 오나리의 생장은 염정으로 나타났다. 제조업용 오나리와 화장

![Fig. 4. Fluctuation of predominant fungi in upland soil treated with organic sludges.](image-url)
본 연구는 퇴비원료로 지정된 재작업종 부산물(풍은오나) 및 화장품 제조업 폐수처리용 오나를 퇴비에서 활용 가능성을 판단하기 위하여 기존의 일반성이거나 중耕속 성분의 이 유기성, 화합물과 기타 여러 생물질방법 등을 활용하여 사 용한 오나에 의한 토양 내 비료의 저해를 밝히고 이들의 평가방법을 확립하기 가장의 토양시험을 수행하였다.

오나의 처리로 혼합 HEM의 함량은 재작업종 오나(T52) 와 화장품 오나(C52) 처리 각각 0.51, 1.10 mg/kg로 가장 높았고, PAHs의 함량은 재작업종 오나(T52) 처리에서 3.406 μg/kg로 가장 높았다. 퇴비는 사용하는 미생물의 화합품화 는 성유 증가(7월 23일) 및 수확기(10월 1일) 모두 재작업종 및 폐수 처리구에서 가장 높았으며, 기타 처리구는 차이가 있 이 아주 낮았다.

오나의 처리로 혼합 세균 및 사상균의 양은 재작업종 오나(T52) 처리에서 각각 736, 500 cfu/g으로 가장 많았고, 화장품 오나(T52) 처리는 각각 424, 236 cfu/g으로 다른 처리에 비해 많은 양을 보였다. 재작업종 화장품 오나 처리차 퇴비 처리의 1/2로, 퇴비 처리는 재작업종 오나(T52) 처리 차 1/2로, 화장품 오나 처리차 퇴비 처리의 1/3로 감소하였다.

저항성 토양의 처리에서 1주일 만에 생존율은 고주의 생육 증기가 1주일(6월 19일) 에 체취된 토양 및 지상의 생존율은 달리 재작업종 오나를 가진 약간 영향을 받은 것으로 보였으나 원래 처리구는 전혀 영 향을 받지 않았던 것으로 조사되었다. 이것은 식물성의 독 분군이나 재작업종 및 화장품 오나가 고주의 생육기간에 대부분 수위가 되어서 작용에 이용된 것으로 보이나 재작업 종 오나의 특정 및 성분 등으로 고주의 생육기간 중에 는 완전히 활용되지 못하고 일부 성분이 남아서 영향을 준 것으로 생각되었다.

Na+는 생물학적오나와 전기오나를 형성(50, 25, 12.5 ton/ha/yr)한 시장에서 4년차 도장은 저항이에 영향이 없었 으나, 8년 도장은 저항이 저항이 영향을 준 것으로 나타났 다고 하였다. 저항이 저항이 거의물의 유무 및 양과 유 기물의 부식물 때 발생하는 기초 적 균형과 매우 밀접하다고, 본 시험과 같이 생 오나는 저항이 저항이 영향을 산업기간이 경과한 토양에 저항이 생존율 시험을 수행하는 것이 필요할 때 이에 대한 연구는 거의 없는 실정이다. 따라서 시기별로 제취된 토양에 대해서 Microcosm test에 의한 저항이 비논술 개체변동에 의한 평가방법은 유기성 오나를 퇴비원료로 활용 가능성을 연구를 평가할 수 있는 하나의 방법으로 체계화하기 위해서는 앞으로 많은 연구를 통하여 보완할 경우에 상당히 좋은 방법으로 확립될 수 있을 것으로 판단된다.
Impact of sewage sludge application on soil biological characteristics, Agric. Ecosyst. Environ., 66, 241-249.
24. Environmental Protection Agency (EPA) (1994) Test methods for evaluating solid waste, physical/chemical methods (SW-846), Method 9071B.