토사 악취 저감을 위한 바이오�ILTER 개발

이승주* 장동일**, 임승수 **, 장홍희***

충남대학교 농업생명과학대학, **경상대학교 농업생명과학연구원
(2005년 11월 28일 접수, 2005년 12월 21일 수리)

Development of Biofilter for Reducing Offensive Odor from Pig House
Seung-Joo Lee, Dong-II Chang*, Song-Soo Lim, and Hong-Hee Chang** (College of Agriculture and Life Science, Chungnam National University, Daejeon 305-764, Korea, **Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Korea)

ABSTRACT: This study was conducted to develop the biofilter for reducing ammonia (NH₃) and hydrogen sulfide (H₂S) gas emission from a pig house. A biofilter was designed and constructed by a type of squeeze air into the column type of air flow upward. Its column size was Ø260×360 mm. It was used pressure drop gauge, air temperature, velocity sensor and control program that was programmed by LabWindows CVI 5.5. Mixing materials were consisted with composted pine tree bark and perlite with 7:3 ratio (volume). The biofilter media inoculated with ammonia (Rhodococcus equi A3) and hydrogen sulfide (Alcaligenes sp. SS-5-2) oxidizing microorganisms was installed in a commercial pig house to analyzed the effectiveness of biogas removal for 10 days. Removal rates of ammonia and hydrogen sulfide gases were 90.8% and 81.5%, respectively. This result suggests that the pine compost-perlite mixture biofilter is effective and economic for reducing ammonia and hydrogen sulfide gases.

Key Words: biofilter, deodorization, bed material, microorganism, pig house

서 론

현재 우리나라의 축산물 소비증가에 따른 가축수축 두수 증가로 인하여 축산분뇨 및 악취 처리 문제와 심각하게 대두되고 있으며, 특히 악취발생 문제는 환경적 측면에서 최근 심각한 사회문제로 대두되고 있다. 악취방지법2과 대기환경

방정을2에서 축산시설, 악취방산시설로 분류되어 악취처리를 위한 환경기반 시설의 설치가 필요하게 되었으며, 이에 따라 정책적 조치와 유가증상에 맞는 악취제거시설의 기술개발을 위한 노력이 필요한 실정이다. 그러나 국내에서

언에 적절히 대처할 수 있는 기술적·경제적 여건이 아직 마련되지 못한 실정이다.

악취처리기술 중의 하나인 바이오�ILTER(biofilter)는 육연비가 적게 소요되고, 폐수에 발생되지 않으며, 처리효율이 높고, 기존의 악취처리방법과 달리 담배만을 교체해주기 때문에 폐기

물 발생량이 상대적으로 적은 장점들을 가지고 있다. 그러나 현재 바이오�ILTER 중간제(光助)는 다공성 세라믹과 같은 여러 종류가 개발되었지만 제작단가가 고가이며, 담배를 대량으로 사

용할 경우에는 경제성이 매우 떨어지게 된다. 이로 인해 축산

시설에서는 처리장비의 고장비와 변동비가 경제적으로 많은 부

담이 되여 실질적인 현장적용이 어렵다고 판단되어진다. 반면에

일반적인 친환경제로는 종류와 보급성이 좋아서 효율적이고, 제

작단가가 저가이기 때문에 대량 사용 시에도 경제성이 높지만

점프면데중에 의한 재질재료와 무기소화를 인하여 입밀이 전행되

고 수익성이 저하되는 단점이 있다. 이러한 점면 충전제의 단점

을 보완할 수 있는 혼합충전제를 선발하여 바이오�ILTER를 운영

한다면, 고장비와 변동비가 낮아져 경제성이 높아지게 된다.

악취제작으로 인한 피해를 최소화하고, 축산업의 국제경

쟁력 강화를 위해 경제성이 우수한 담배를 이용한 한국형 바

이오�ILTER 시스템의 개발이 요구되는 시점에 이르렀다.

이에 본 연구는 친환경제품을 이용한 한국형 바이오�ILTER 시

스템을 개발하고, 악취처리에서 미생물군을 접종한 혼합충

전제를 바이오�ILTER에서 충전하여 악취가 제거성을 구명하

기 위하여 수행하였다.
재료 및 방법

혼합충전재

바이오필터충전재는 휴지물력이 우수하고, 다공성을 가질야 하며, 미생물의 생육이 가능해야 하며, 산업화를 위하여 구입이 용이해야 하고, 가격이 저렴해야 한다. 따라서 충전재로는 일반수에 비해 악취가스 제거율이 높을 것으로 판단되는 직경 10 mm 내외의 부수수피와 비교적 높은 악취가스 제거성능과 천연재료의 자재분해로 인한 암밀을 방지할 수 있는 칼리트를 혼합한 혼합충전재를 사용하였다. Choi(2004)는 소나무수피와 칼리트를 각각 3종류의 크기로 섞은 후 혼합 비율 7:3(부피비)로 혼합하여 9개의 혼합충전재를 만들었다. 각각의 혼합충전재는 바이오필터에 충전 후 일정속도의 공기 (0.03~0.1 m·sec⁻¹)를 접하에 통과시켰을 때 충전재의 압력강하를 측정하여 부수수피(10.3 mm)와 칼리트(2.4~5.0 mm)의 크기를 선정하였다. 부수수피의 전처리 방법은 10.3 mm 내외의 가공 제품을 구입하여 약 60일간 삼켰는데에 상온의 대기 중에 노출시키며 전처리를 하였다. 칼리트의 경우 크기 5.0 mm이하의 가공 제품을 구입 후 표준망체 3.75 MESH(제논의 크기 5.00 mm)~8 MESH(제논의 크기 2.36 mm)을 이용하여 섞은, 약 60일간 대기 중 상온에서 방치하여 전처리를 하였다. 충전재의 충전은 충전작업 시 발생할 수 있는 충전재의 압력과 형상을변화를 최소화하기 위하여 절단을 분해한 후 절단을 이용하여 자유낙하시켜 충전하는 두진동 충전법을 이용하였다. Fig. 1은 부수수피, 칼리트, 혼합충전재에 대한 사진이며, 충전재들의 물성인 용적밀도(bulk density), 함수율(moisture contents), 공극도(porosity), 흡수량(water absorption capacity), 입자크기(pore size)는 Table 1과 같다. Han(2003)은 천연재료 중에 악취가스 제거성능이 우수한 소나무수피, 칼리트를 부피비 3:7, 5:5, 7:3으로 혼합하였다. 3개의 혼합충전재를 바이오필터에 충전 후 악취가스 를 케이블에 공급하여 악취가스 제거성능을 테이블 결과 소나무수피:칼리트=7:3(부피비)로 혼합한 충전재에서 악취가스 제거성능이 우수하게 나타났다. 따라서 본 연구에서 사용한 혼합충전재는 Fig. 1의 c에서처럼 부수수피의 약 25 mm 정도 두께로, 칼리트는 약 10 mm 정도 두께로 충전이 되었고, 각각 260 mm와 높이 360 mm로 충전하였다.

Table 1에서 보는 Han(2003)의 방법으로 다음과 같이 충전재의 물성을 측정하였다. 용적밀도의 경우, 비거적 검지용 레지스터(digital scale)를 이용하여 측정하였으며, 흡수율은 비거적 검지용 레지스터를 이용하여 조조온(dry oven)법을 이용하여 습량기계(wet weight base)로 나타내었다. 공극도는 메스실린 단단을 이용하여 3회 반복 측정하였으며, 폐수처리공장의 기공에 반영할 수 있는 폐수처리

<table>
<thead>
<tr>
<th>Item</th>
<th>Composted pine tree bark</th>
<th>Perlite</th>
<th>Mixture*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk density</td>
<td>0.36</td>
<td>0.25</td>
<td>0.32</td>
</tr>
<tr>
<td>Moisture contents (%)</td>
<td>61.6</td>
<td>16.3</td>
<td>57.2</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>57.3</td>
<td>66.5</td>
<td>63.5</td>
</tr>
<tr>
<td>Water absorption capacity (vol %)</td>
<td>13.8</td>
<td>11.2</td>
<td>28.6</td>
</tr>
<tr>
<td>Pore size (mm)</td>
<td>10.3</td>
<td>2.4~5.0</td>
<td></td>
</tr>
</tbody>
</table>

* Mixture was made with mixing composted pine tree bark(7) and perlite(3).
미생물주

Choi(2003)가 분리, 정제, 배양 및 성찰한 암모니아 상환균 Rhodococcus equi A3와 한 상환균 Alcaligenes sp. S5-S-2을 바이오탱 접종을 이용한 미생물주로 선발하였다. 분리-성찰한 암모니아상환균을 바이오탱에 접종하기 위해서 균제의 배양액을 효율적으로 생성해야 하므로, 각 균주의 배양 및 배양액 성질을 조사하여 이를 근거로 발효조에서의 액체배양법을 적용하였다. 이러한 방법으로 배양된 미생물균주는 혼합증대에 접종하여 72시간 손치 후 바이오탱시스템을 운용하였 다. 공급받은 미생물주의 최적 약제계 조건은 소요시간 10조 이상, 향수율 60~80%로 하고 온도 10~34℃ 이다. 따라서 이들 최적 약제계 조건이 바이오탱에 의해 자동으로 제공되도록 하였다.

또한, 미생물주의 균주수 lấy는 혼합증대에 정착된 미생물균주는 화석형인 배양법으로 c.f.u./g(생생균수)를 측정하였다.

Pilot-scale 바이오탱 제작

Pilot-scale 바이오탱의 구조는 Fig. 2과 같다. Pilot-scale 바이오탱의 공급용고온은 원형기능의 향수율을 60~80% 범위로 유지하는데 유리한 암모니아 정제방식으로 설계하였다. 제조장치는 중간-중간정리, 암모니아정제장치, 공기 유량 및 중간측정장치를 사용하였고, 이들은 바이오탱 본체에 설치되었다. 또한 부수정비는 중간정리, 체크밸브, 상수장치 및 온도계를 사용하였다. 제조해관공급은 LabWindows/CVI 5.5를 이용하여 프로그래밍 하였다. 중간의 암모니아 cong용은 제조해관공급을 이용하여 중간측정장치에 공급되는 전원의 우수성을 조절하여 입자량을 제어함으로써 10조 이상으로 유지하도록 하였다. 전전체의 향수율은 전전체 하단부에 설치한 중간측정장치로 24시간마다 바이오탱 본체의 무게 변화를 측정한 후, 제조해관공급을 이용하여 규수량을 산출하여 물을 자동으로 규수함으로써 향수율을 60~80%로 유지하도록 하였다. 바이오탱으로 인가하는 공기의 운 도는 풍압과 가열에 설명한 관계로 설계되어 온도가 15~30℃ 범위에서 유지되어 가족에 자동 제어하지 않았다. 바이오탱 본체는 중전전에 발생하는 온습으로 인한 공기의 유출을 막기 위하여 고무 페인을 사용하였는데, 부여상 태에서 200 mmAg의 운동까지 헌대할 수 있도록 제작되었다.

조식황Pk 및 조사항법

실제동물이서서의 바이오탱 암모니아 처리기능성시험은 혼합증대에 미생물균주 접종한 후 72시간동안 상온에서 손치 후, 10일 동안씩 3번씩 도로 분리 동작장기의 공기를 흡입하여 중전전에 동시에 시행하였다.

중전전의 동적, 운동은 종동동물계(Model 6112, KANOMAX, 일본)의 Probe를 중전전 상-하부에 설치하여 24시간 간격으로 측정하였다. 중전전의 운동수는 중전전 상-하부에 장계(Magnehelic Differential Pressure Gages Series 2000, Dwyer, USA)를 설치하여 24시간 간격으로 측정하였다. 암모니아의 풍속은 방사방향에서 500 m/sec를 이용하여 24시간마다 시험하였다. 암모니아 가스와 화제수소의 농도는 포 정벽의 가스를 gas tight 주입지로 시험액을 제취하여 GC(GC 17A, SIMADZU, 일본)에 주입하여 측정하였다. 미생물 평균온도는 24시간마다 중전전 상-하부에서 일정량의 시료를 제취하여 분석하였다.

결과 및 고찰

Biofilter 환경관리

중전전 내에서의 암모니아 처리시간은 중전전 상하부의 평 양임을 200 mmAg 이하로 유지하고 또한 중전전 내에서 운동을 0.03±0.01 m/sec으로 유지시키도록 미생물의 암모 니아 처리기능성시간인 10.0±0.3초로 유지되었다. 중전전의 함

Fig. 2. Appearance of the pilot-scale biofilter.

Fig. 3. Changes of moisture contents of column packing materials in the biofilter operated in the commercial pig house. (Note: The column material was the mixture of pine compost and perlite which inoculated by the selected bacterial strains.)
수율은 비오염물의 중량 변화를 이용하여 측정한 결과 Fig. 3과 같이 65.0±5.1% (w/w)로 유지되었다. 환경처리는 온도는 15~30°C의 공기와 덮기하였으며, 수위장치의 영향으로 인하여 27.2±3.1°C로 유지되었다. 또한 중건물의 눈이를 측정한 결과, 부식수의 부식으로 인한 중건물의 압력은 거의 진행되지 않았다. 따라서 미생물균주의 최적 약취가 조건이 실험기간동안 조건이 되었기 때문으로 판단된다.

미생물성장 변화
미생물 생균수의 변화는 Fig. 4와 같았다. 혼합중전체에 미생물을 접종한 후 72시간동안 속가하였을 때의 미생물 생균수가 24시간 간격으로 측정하였을 때의 미생물 생균수가 9,230±0.25×10^7 c.f.u.-g^-1으로 거의 같은 수준을 유지하였다. 그 이유는 중건물 내의 온도 0.03±0.01 %, 향설율 65.0±5.1 %, 온도 27.2±3.1°C이므로 실험기간동안 미생물의 생육조건이 조건이 되었기 때문이 것으로 판단된다.

약취가스 제거성능 평가
바이오파터의 입기구와 배기구에서의 암모니아와 환화수소의 농도와 제거율은 Table 2와 같았다. 암모니아 가스의 유입농도는 평균 22.8±5.2 mgL^-1이었고, 배출농도는 평균 2.1±0.3 mgL^-1이었다. 그리고 환화수소의 유입농도는 평균 2.7±1.2 mgL^-1이었고, 배출농도는 평균 0.5±0.2 mgL^-1이었다.

요약
국내에서 구입한 유용한 부식수와 피라임프로 접합대 7.6으로 혼합하여 혼합중전체에 암모니아 산화된 Rhodococcus equi A3와 환 산화된 Alcaligenes sp. SS-5.2를 접종한 후, 개발한 암모니아·荠티류 방식의 바이오파터림에 혼합중전체를 중전하여 본사에서 발생하는 암모니아 및 환화수소에 대한 약취가 제거성능을 심층화 실험하였다. 혼합중전체에 미생물 접종한 후 72시간동안 속가하였을 때의 미생물 생균수와 24시간 간격으로 측정하였을 때의 미생물 생균수가 거의 같은 것으로 나타났다. 이는 개발한 바이오파터림의 미생물의 생육조건을 유지하치려고 성공하였다고 판단된다. 또한 암모니아 가스의 유입농도는 평균 22.8±5.2 mgL^-1이었고, 배출농도는 평균 2.1±0.3 mgL^-1이었다. 그리고 환화수소의 유입농도는 평균 2.7±1.2 mgL^-1이었고, 배출농도는 평균 0.5±0.2 mgL^-1이었다. 이와 같이 부식수와 피라이프를 혼합하여 만든 혼합중전체는 중
전환 바이오필터가 적합한 수질ψ고 가격이 저렴한 것을 고려해 볼 때, 기존의 다른 충전재를 이용한 바이오필터보다 개발한 바이오필터가 양돈가에서 이용하는데 유리한 것으로 판단된다.

참고문헌