Pt/AlGaN Schottky-Type UV Photodetector with 310 nm Cutoff Wavelength


Abstract

Pt/AlGaN Schottky-type UV photodetectors were designed and fabricated. A low-temperature AlGaN interlayer buffer was grown between the AlGaN and GaN film in the diode structure epitaxy to obtain crack-free AlGaN active layers. A comparison was then made of the structural, electrical, and optical characteristics of two different diodes: one with an AlGaN(0.5 μm)/n+-GaN(2 nm) structure (type 1) and the other with an AlGaN(0.5 μm)/AlGaN interlayer(150 Å)/n+-GaN(3 μm) structure (type 2). A crack-free AlGaN film was obtained by the insertion of a low-temperature AlGaN interlayer with an aluminum mole fraction of 26% into the AlₓGa₁₋ₓN layer. The fabricated Pt/Al₀.₃₅Ga₀.₆₇N photodetector had a leakage current of 1 nA for the type 1 diode and 0.1 μA for the type 2 diode at a reverse bias of -5 V. For the photoresponse measurement, the type 2 diode exhibited a cut-off wavelength of 300 nm, prominent responsivity of 0.15 A/W at 280 nm, and UV-visible extinction ratio of 1.5×10⁴. Accordingly, the Pt/Al₀.₃₅Ga₀.₆₇N Schottky-type ultraviolet photodetector with an AlGaN interlayer exhibited superior electrical and optical characteristics and improved UV detecting properties.

Key Words: AlGaN, UV photodetector, Schottky, crack-free, MOCVD

I. Introduction

Gallium nitride and its related compounds have been developed over the past ten years for various device applications due to their superior chemical and thermal properties. As such, nitride materials have already been applied to high temperature and/or high frequency electronic devices, UV opto-electronic devices, blue-green LEDs, and laser diodes.

In addition, nitrides have also been considered for application in UV-sensitive photodetectors based on their potential as solar-blind UV sensors, thereby including such applications as missile plume detection, flame detection, and ozone monitoring.¹ In particular, UV meters and fire alarms have worldwide application. Among nitride materials, the AlGaN ternary system has been used to adjust the sensing wavelength range relative to the bandgap energy from 3.4 eV to 6.2 eV based on the Al mole fraction.²,³ Therefore,
AlGaN materials have attracted much attention from researchers in the field of opto-electronics. However, there are significant lattice and thermal expansion mismatches between AlGaN and GaN or a sapphire substrate, which prevent the creation of high quality undoped AlGaN without cracks.

Accordingly, the current study fabricated Pt/AlGaN Schottky-type UV photodetectors using a low-temperature AlGaN interlayer buffer to create crack-free AlGaN active layers between the AlGaN film and the GaN film in the diode structure epitaxy. A comparison was then made of the structural, electrical, and optical characteristics of two different diodes: one with an AlGaN(0.5 μm)/n+-GaN(2 μm) structure (type 1) and the other with an AlGaN(0.5 μm)/AlGaN interlayer(150 Å)/n+-GaN(3 μm) structure (type 2). As a result, it was confirmed that the Pt/Al0.33Ga0.67N Schottky-type ultraviolet photodetector with an AlGaN interlayer exhibited superior electrical and optical characteristics and improved UV detecting properties.

II. Experiment

Figure 1 shows a schematic diagram of the proposed layer and photodetector device structure: a top-illuminated Schottky-type mesa structure photodiode. The AlGaN interlayer was designed to be 0.5 μm thick to reduce the background doping concentration and maximize the radiation absorbing area. The diodes had a circular AlGaN mesa structure with a 500 μm diameter. For the UV photodetector fabrication, two kinds of epitaxial structures were grown on the same GaN nucleation buffer with a 330 thickness on a 2" c-face sapphire sub-

![Schematic structure of the Schottky type AlGaN UV photodiode.](image)

(a) without AlGaN interlayer
(b) with AlGaN interlayer
(c) Cross-section view of the designed photodetector

A crack-free AlGaN film was obtained by the insertion of a low-temperature AlGaN interlayer with an aluminum mole fraction of 26 % into the AlxGaN1-xN layer. No cracks were observed in the surface morphology of the AlGaN interlayer, as shown in Figure 2. The AlGaN interlayer was designed to be 0.5 μm thick to reduce the background doping concentration and maximize the radiation absorbing area. Table 1 shows the electrical properties of the grown layers: type 1 and type 2.

For the ohmic contact process, dry etching of the AlGaN layer was conducted down to the n+-GaN layer using the Inductively Coupled Plasma (ICP) etching system. An SiNx film was deposited between the ohmic and Schottky
contacts using PECVD to prevent any surface leakage current. For the top-illuminated Schottky, a thin (100 Å) Pt film was deposited for the Schottky contact, while a Ti/Al/Ni/Au ohmic contact was prepared by E-Beam evaporation of the metals.

The annealing of the devices was carried out at 500 °C in ambient N₂. The specific contact resistivity was 3.4×10⁻⁴ cm after the annealing. A 2000 Å-thick Au film was deposited by thermal evaporation to form the bonding pad, and lift-off processes were used for the ohmic and Schottky metalization.

III. Results and Discussion

Figure 3 shows the I-V characteristics of the two Schottky diodes. Under reverse biased conditions, the leakage current of the diode including an AlGaN interlayer (type 2) was much lower (about two orders of magnitude) and more stable than that of the diode without an interlayer (type 1).

Figure 4 shows the spectral responsivity of the Schottky-type photodetector fabricated with an AlGaN interlayer (type 1) under 300 ~ 480 nm photon irradiation using a Xenon lamp. The cutoff wavelength was 310 nm, the peak responsivity 0.15 A/W at 280 nm, and the UV/visible extinction ratio of the diode 1.5×10⁴.

![Graph](image1)

(a) without AlGaN interlayer

![Graph](image2)

(a) with AlGaN interlayer

![Graph](image3)

(b) without AlGaN interlayer

![Graph](image4)

(b) with AlGaN interlayer

**Fig. 2.** SEM photographs of the grown Al₀.₃₃Ga₀.₆₇N layers.

**Fig. 3.** I-V characteristics of Pt/Al₀.₃₃Ga₀.₆₇N Schottky diodes.
IV. Conclusion

Pt/AlGaN Schottky-type UV photodetectors were designed and fabricated. Crack-free AlGaN active layers were obtained by inserting a low-temperature AlGaN interlayer between the AlGaN film and the GaN film in the diode structure epitaxy. A comparison was then made of the electrical and optical characteristics of two different types of diode: one with an AlGaN(0.5 μm)/n+-GaN(2 μm) structure (type 1) and the other with an AlGaN(0.5 μm)/AlGaN interlayer(150 Å)/n+-GaN(3 μm) structure (type 2). The fabricated Pt/Al0.33Ga0.67N photodetector had a leakage current of 1 nA with the type 1 diode and 0.1 μA with the type 2 diode at a reverse bias of -5 V. For the photoresponse measurement, the type 2 diode exhibited a cut-off wavelength of 300 nm, prominent responsivity of 0.15 A/W at 280 nm and UV-visible extinction ratio of 1.5x10^4. Accordingly, it was confirmed that the Pt/Al0.33Ga0.67N Schottky-type ultraviolet photodetector with an AlGaN interlayer exhibited superior electrical and optical characteristics and improved UV detecting properties.

Table 1. Electrical properties of the grown AlGaN layers.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sample with interlayer</th>
<th>Sample without interlayer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer thickness [μm]</td>
<td>2.7</td>
<td>3.2</td>
</tr>
<tr>
<td>Mobility [cm²/Vs]</td>
<td>269</td>
<td>255</td>
</tr>
<tr>
<td>Bulk concentration [cm⁻³]</td>
<td>-2.061018</td>
<td>-2.121018</td>
</tr>
<tr>
<td>Sheet resistance [Ω]</td>
<td>45.5</td>
<td>45.4</td>
</tr>
</tbody>
</table>
V. Reference


VI. Acknowledgements

This work was supported by grant No. 2000-2-30700-005-3 from the Basic Research program of the Korea Science & Engineering Foundation.

著者紹介

김 보 금(Bo-Kyun Kim)
2000년 2월 동의대학교 물리학과 졸업(이학사)
2002년 3월 ~ 현재 경북대학교 대학원 화학과정 센서공학과 석사과정
주관실험 분야 : UV Photodetector 제작

김 정 규(Jung-Kyun Kim)
2001년 2월 위덕대학교 반도체공학과 졸업(공학사)
2001년 9월 ~ 현재 경북대학교 대학원 전자공학과 석사과정
주관실험 분야 : Photodetector simulation

이 현 복(Heon-Bok Lee)
2000년 2월 경성대학교 물리학과 졸업(이학사)
2002년 3월 ~ 현재 경북대학교 대학원 전자공학과 석사과정
주관실험 분야 : 자외선 센서 응용

조 현 익(Hyun-Ick Cho)
2001년 2월 경북대학교 전자공학과 졸업(공학사)
2003년 2월 경북대학교 전자공학과 졸업(공학석사)
2003년 3월 ~ 현재 경북대학교 전자공학과 박사과정
주관실험 분야 : III-Nitride 화합물 반도체의 성 장과 제조

박 성 종(Sung-Jong Park)
2000년 2월 효성가톨릭대 자연과학과 졸업 (공학사)
2002년 3월 ~ 현재 경북대학교 전자공학과 석사과정
주관실험 분야 : 반도체 공정
이용현 (Young-Hyun Lee)
1975년 2월 경북대학교 전자공학과 졸업 (공학사)
1977년 2월 경북대학교 대학원 전자공학과 졸업 (공학석사)
1991년 2월 충남대학교 대학원 전자공학과 졸업 (공학박사)
1979년 4월 ~ 현재 경북대학교 전자전기공학부 정교수
주관심 분야: 반도체 재료 및 공정, GaN 결정 성장 및 소자, 적외선 검지기 및 공진기 등

한윤봉 (Yoon-Bong Hahn)
1978년 2월 한양대학교 화학공학과 졸업 (공학사)
1975년 2월 서울대학교 대학원 화학공학과 졸업 (공학석사)
1988년 6월 미국 유타대학교 금속과 졸업 (공학박사)
1991년 9월 ~ 현재 전북대학교 화학공학부 정교수
주관심 분야: 전자 재료 공정 공학

이경희 (Jung-Hee Lee)
1979년 경북대학교 전자공학과 졸업
1983년 경북대학교 대학원 전자공학과 졸업 (공학석사)
1986년 Florida Institute Technology, Electrical and Computer Eng. 졸업 (공학석사)
1990년 North Carolina State University, Electrical And Computer Eng. 졸업 (공학박사)
1990 ~ 1993 한국전자통신연구소 선임연구원
1993년 ~ 현재 경북대학교 전자공학과 정교수
주관심 분야: III-V 촉 화합물 반도체 소자, 마이크로 머신닝 기술

함성호 (Sung-Ho Hahn)
1985년 2월 경북대학교 전자공학과 졸업 (공학사)
1987년 2월 한국과학기술원 졸업 (공학석사)
1991년 8월 한국과학기술원 졸업 (공학박사)
1991년 9월 ~ 1992년 2월 한국과학기술원 위촉연구원
1992년 3월 ~ 1996년 3월 산업자원부 반도체 산업과 사무관
1996년 3월 ~ 현재 경북대학교 전자전기공학부 조교수
주관심 분야: III-V 촉 화합물 반도체 소자, 쇼트키 금속을 이용한 자외선 수광소자 제작