A Humidity Sensor Using an Electrochemically Prepared Poly(1,5-Diaminonaphthalene) Film

Deong-Su Park and Yoon-Bo Shim

Abstract

An electrochemical humidity sensor was fabricated with poly(1,5-diaminonaphthalene) film coated on a gap of two splitted gold electrodes, which were made by vacuum deposition. Response currents according to humidity were measured by the potential sweep method and chronoamperometry. The stability of the polymer film was improved by double step chronoamperometry using the applied voltage of ± 0.5 Vdc. The response time determined by the pulse technique was about ~50 msec and the relative standard deviation of current response was within ±5.0 %. The response current of the film was intrinsically humidity dependent. The film exhibited a non-linear but reproducible response in ordinary range of relative humidity. The linear equations were \(I(nA) = 0.28 \times \%RH - 1.01 \) between 10 to 70 %RH and \(I(nA) = 6.05 \times \%RH - 403.21 \) between 70 to 90 %RH.

key words: humidity, 1,5-diaminonaphthalene, conducting polymers

1. Introduction

Much attentions have been received for the development of sensors using organic and inorganic materials, which of them were made by metal oxide semiconducting materials\(^{[1,2]}\). Although sensors made of metal oxides are cheap and straightforward in application, they suffer from certain shortcomings against their wider applications. Some gas sensors made from metal oxides have a lack of sensitivity and high operating temperature.

To overcome these disadvantages, one can use organic semiconducting gas-sensing materials. Of these, studying of conducting polymers have considerably increased both technological and scientific interest, especially for the gas sensors\(^{[3,5]}\).

Electrical properties including conductivity are regulated by chemical or electrochemical preparation with specific monomers. Furthermore, the conductivity of several doped polymers can be modified on treatment with strong acids and bases. These properties suggest that conducting polymers can be used as sensing materials for chemical sensors to detect humidity and other gases. Humidity sensors have been widely used in various electronics and process control systems. Of these, integrated polymer-humidity sensors\(^{[6-11]}\) have some advantages compared to the conventional ones, which are expensive and need the extra electronic circuits. They provide fast response time because of a thin moisture absorption
layer of only a few microns. In addition, they give enhanced sensor performance by the combination of sensor and signal processing circuitry on the same chip. The humidity sensors based on the change in electrical properties of materials due to the adsorption of water vapor are divided into an electrical resistance and a capacitance type sensors. Hydrophilic polymers are used for a resistance-type humidity sensor, while hydrophobic ones are preferable for a capacitance-type sensor. Since electrical conducting polymers are typically hydrophilic, they can be applied to a humidity sensor of a resistance type.

In the present study, the poly (1,5-diaminonaphthalene) (poly(1,5-DAN)) film was electrochemically coated on a gap between two separated gold electrodes and applied to an amperometric humidity sensor. In addition, the experimental parameters affecting the sensitivity of the humidity sensor were optimized.

2. Experimental

Reagents and apparatus. 1,5-Diaminonaphthalene (Aldrich Co.) was recrystallized twice in an aqueous ethanol solution under nitrogen atmosphere, then dried over P₂O₅ for 48 hours under vacuum at room temperature. Water purified by a Milli-Q system (Millipore Co.) was used to prepare all aqueous solutions. An EG & G 273A potentiostat/galvanostat was used for DC and pulse voltammetric measurements. The IR spectra were obtained with FTIR spectrophotometer of Mattson Co. (Model Polaris). The standard humidity measurements were carried out with a hygrometer (SATO Thermohygrometer Model R-704) in the room and in the chamber containing various saturated-salt solutions to regulate humidity. A saturated salt solution in a sealed chamber establishes a constant RH that has only ± 0.5 % variation at constant temperature. Relative humidity values in the chamber containing standard saturated solutions were as follows: 12% (LiCl·H₂O), 33% (MgCl₂·6H₂O), 55% (Mg(NO₃)₂·6H₂O), 76%(NaCl), 85%(KCl), 93%(KNO₃). Sensors were preconditioned by placing them in the chamber containing the saturated salt solutions. The measuring temperature for the standard salt solutions was 20 ± 0.1 °C.

Sensor fabrication. The microelectrochemical sensor substrate was fabricated by vacuum deposition. Fig. 1 shows cross-sectional and top view of the micro electrochemical humidity sensor. A gap width between two splitted gold electrodes was ca. 20 μm. A gap between splitted gold electrodes was bridged with electrochemically prepared poly(1,5-DAN). A poly(1,5-diaminonaphthalene) film was grown on a gap between splitted gold electrodes by the potential cyclic in a 0.1 M HCl solution containing 0.01 M 1,5-DAN. Film-coated splitted electrodes were dried under vacuum at 100 °C for 6 hrs, then stored in nitrogen atmosphere. The thickness of the deposited film was about 60 μm when determined by SEM (not shown).

![Fig. 1. Cross-sectional and top view of the micro fabricated humidity sensor.](image-url)
3. Results and discussion

Fig. 2 shows cyclic voltammograms recorded during the growth of the poly(1,5-DAN) film on micro fabricated gold electrodes. The potential was cycled between +1.0 and -0.1 V vs. Ag/AgCl (sat'd KCl) at a the scan rate of 50 mV/sec. The first scan (from 0.0 V to +1.0 V) led to the oxidation of the monomer at +0.8 V. The oxidation peak current of the monomer decreases as the cycle number increases indicating the growth of the polymer film on the electrode surface. New redox peaks appeared at +0.25/+0.31 and +0.38/ +0.43 V, respectively. The peaks in the cyclic voltammogram recorded after the oxidation of monomer might correspond to the redox chemistry of diverse species generated by the oxidation of monomer, dimer, oligomer, and polymer including the generation of radical cations. Redox peaks of the polymer were well-defined and peak potentials were not changed during film growth. Two splitted gold electrodes were not bridged with poly (1,5-DAN) when growing time was below 30 min.

To confirm the structure of electrochemically synthesized poly(1,5-DAN), we obtained the FTIR spectrum of the polymer.

Table 1. Wavenumbers (cm⁻¹) of absorption bands in a FTIR spectrum of poly(1,5-DAN) grown in a 0.1 M HCl solution containing 10⁻³ M monomer for 30 min.

<table>
<thead>
<tr>
<th>Poly(1,5-DAN)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000–3100 cm⁻¹ (broad, strong)</td>
<td>N–H</td>
</tr>
<tr>
<td>3015 cm⁻¹ (very weak)</td>
<td>aromatic C–H</td>
</tr>
<tr>
<td>1646 cm⁻¹ (medium)</td>
<td>C=N</td>
</tr>
<tr>
<td>1632, 1624 cm⁻¹ (medium)</td>
<td>C=C</td>
</tr>
<tr>
<td>1574–1397 cm⁻¹ (medium)</td>
<td>ring vibration, N–H deformation</td>
</tr>
<tr>
<td>1339, 1285 cm⁻¹ (weak)</td>
<td>C N</td>
</tr>
<tr>
<td>1217, 113 cm⁻¹</td>
<td>aromatic C–H in plane</td>
</tr>
<tr>
<td>900–600 cm⁻¹ (very weak, weak)</td>
<td>aromatic C–H out-of plane bending</td>
</tr>
</tbody>
</table>

Fig. 3 shows an IR spectrum and Fig. 4. Tentative structure of electrochemically synthesized poly (1,5-DAN).
HCl solution containing 1×10^{-3} M monomer for 30 min. Although the band-broadening in IR spectra of polymer films makes it difficult to interpret the weak bands, the absorption peaks in the out-of-plane bending region (900–700 cm$^{-1}$) are very useful in diagnosing the assignment of substitution on the aromatic ring. This band can be assigned as C-H out-of-plane bending vibrations of three adjacent C-H groups as seen in the monomer spectrum. An absorption band at 811 cm$^{-1}$ can be assigned to YC-H vibrations of two adjacent C-H groups. These observations show that the polymer contains naphthalene rings with three adjacent C-H groups in the polymer backbone grown in early stage of the polymerization and with two adjacent C-H groups in the other polymer backbone. Therefore, it can be thought that the polymerization proceeds with coupling of the monomer to the 2- or 4- position of the naphthalene ring. From the assignment, the electrochemically synthesized polymer structure could be tentatively suggested as shown in Fig. 4.

The humidity measurement was performed using a flow system with a saturated salts chamber. The response time of the sensor to the humidity change was determined by rapidly transferring the sensor out of the hermetic chamber containing a saturated salt solution. In this procedure, the sensor was first brought to equilibrium with the humidity in the hermetic chamber regulated by a saturated salt solution. Then, the sensor was exposed to the humidity in the room by transferring it out of the hermetic chamber. During that time, pulse measurements were done at the voltage of ±5 Vdc. In the following step, the sensor was reinstated and allowed to equilibrate in the chamber, which maintained its specified humidity.

![Fig. 5. Cyclic voltammograms of poly(1,5-DAN) according to %RH.](image)

Fig. 5 shows cyclic voltammograms of poly(1,5-DAN) at various RHs. The response current range of the sensor was quite small because the active site volume of bridged polymer was ca. 1×10^{-3} cm3. The poly(1,5-DAN) film was stable when the potential was applied from +1.0 to -0.8 Vdc at the low humidity. The response current decreased when the applying voltage was above +1.2 Vdc. Poly(1,5-DAN) partially oxidized at 1.0 V and fully oxidized when the potential went over +1.2 Vdc. These results were consistent that the conductivity of fully oxidized polyaniline was lower than the partially oxidized polyaniline$^{(13)}$. The stability of poly(1,5-DAN) is declined on times going at the single step chronoamperometric humidity measurement, owing to the oxidation of poly(1,5-DAN) and the larger leakage current at a higher content of humidity than lower that of humidity. To avoid of the instability of the polymer film due to the oxidation of the film at high measuring potential, the applied potential reduced to +0.5 V for the single step chronoamperometric humidity deter-
mination. Even the potential of +0.5 V was applied, the current response of poly(1,5-DAN) was gradually decreased as time passed at a given RH. The resistance of oxidized polyaniline between two polyaniline-connected microelec-trodes was not changed as a function of RH as previously reported[14]. The oxidized polyaniline remains a good conductor with and without humidity. But, the resistance of partially oxidized poly(1,5-DAN) was changed as a function of RH in single step chronomperometry. Thus, double potential step chronomperometry was undertaken to minimize the unstability of the polymer film.

![Graph](image)

Fig. 6. The current response in double step chronomperometry according to %RH.

To overcome the low stability of the sensor in single step chronomperometry, we tested the double potential step method. The stability was improved by this method that applied voltage was \(\pm 0.5 \text{ Vdc}\). **Fig. 6.** shows the current response of the humidity sensor in double-step chronomperometry corresponding to the %RH. The poly(1,5- DAN) coated electrode was stabilized by the oxidation and reduction alternatively due to the alternative application of the cathodic and anodic potential. This procedure prohibits the over oxidation of the poly(1,5- DAN) of the sensor, and it provided reproducible results for humidity measurements.

![Graph](image)

Fig. 7. Response characteristics of a humidity sensor.

The response time of a sensor to sudden changes in humidity was determined by rapidly changing humidity of the hermetic chamber using chronomperometry. **Fig. 7** illustrates the response time of the poly(1,5-DAN) electrode grown in a 0.1 M HCl solution. In this procedure, the sensor was first brought to the equilibrium state in humidity in the hermetic chamber followed by the atmospheric humidity in room, during that time response measurements were done at the voltage of \(\pm 0.5 \text{ Vdc}\). Then, the sensor was rapidly exposed to the vacuum environment by opening T-valve. At this point, current measurements were taken until the current change became small within \(\pm 5\%\). The response time determined by pulse technique was about \(~50 \text{ msec}\). This response time was very fast compared with one of ceramic materials used as a humidity sensor. The reversibility was maintained with ex-
posure at every relative humidity value. The reversibility for this humidity sensor was examined by measuring the current with and without the humidified nitrogen gas. The hysteresis for a cycle $33 \rightarrow 93 \rightarrow 33$ % RH was less than $\pm 1\%$.

Fig. 8 shows a plot of the response current vs. %RH obtained with the poly(1,5-DAN) sensor. The non-linearity with two different slopes was observed over this measurement region. The linear equations in different slopes were $I(\text{nA}) = 0.28 \times \%RH - 1.01$ between 10 to 70 %RH and $I(\text{nA}) = 6.05 \times \%RH - 403.21$ between 70 to 90 %RH. As the percentage of relative humidity increased, more water was partitioned into the film due to the hydrophilicity of poly(1,5-DAN), which led to the polymer film in a increasing hydrated state. This results in swelling of the film and greater mobility of the proton, which increased the electrolysis currents due to increasing the film conductivity.

![Fig. 8. The current response according to %RH using a poly(1,5-DAN) humidity sensor.](image)

To test the stability of humidity sensor, the following experiment was carried out. Monitoring the output current fluctuation was undertaken according to the measuring times. The current response against %RH was measured during 2 weeks as shown **Fig. 9**, which shows the output current changes. Measurements were done in a hermetic chamber controlled 76 and 85 %RH at 20 °C. The sensor, when not in use, was stored in an opened bottle of the laboratory bench at ambient RH, which varied from 30 to 70 % during this period.

![Fig. 9. Stability curves of a poly(1,5-DAN) humidity sensor.](image)

4. Conclusion

In the present work, we studied the electrical behavior of the electrochemically prepared poly(1,5-DAN) according to ambient humidity. The poly(1,5-DAN) film was electrochemically coated on splitted gold electrodes to be bridged with polymer. A reproducible humidity-induced electrical behavior of polymer layers was characterized by a fast response after humidity changes. The conductivity of a thin film of poly(1,5-DAN) is humidity sensitive, so that it can be the basis for a relative humidity sensor. The response time, sensor size, sensor signal, and the RH range of the poly(1,5-DAN)
sensor were comparable to those of other polymer-based sensors that have been developed. An advantageous characteristic of the poly(1,5-DAN) coated sensor is the rapid reversible response to changes in RH at higher humidity. The stability was improved by a double pulse method that applied voltage is \pm 0.5 \text{ Vdc}. The response time determined by the pulse technique was about \pm 50 \text{ msec}. The non-linearity with two different slopes was observed, in which linear equations were \(I(\text{nA}) = 0.28 \times \%\text{RH} - 1.01 \) between 10 to 70 \%RH and \(I(\text{nA}) = 6.05 \times \%\text{RH} - 403.21 \) between 70 to 90 \%RH.

Acknowledgement

This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (02-PJ3-PG6-EV05-0001).

References

著者紹介

박덕수 (Deog-Su Park)
1980년 2월 : 부산대학교 이학사
1987년 2월 : 부산대학교 이학석사
1993년 2월 : 부산대학교 이학박사
1996년 2월 ~ 2002년 2월 : 부산대학교 기초과학연구소 전임연구원
1999년 2월 ~ 2001년 12월 : (주)코리아 센텍
2002년 ~ 현재 : 코센텍 주관심분야 : 화학 및 바이오센서, 전기화학 분석기, 전도성고분자

심윤보 (Yoon-Bo Shim)
1977년 2월 : 부산대학교 이학사
1979년 8월 : 부산대학교 이학석사
1985년 8월 : 부산대학교 이학박사
1987년 8월 ~ 1989년 8월 : 뉴멕시코 대학교 연구원
1993년 12월 ~ 1994년 12월 : 뉴멕시코 대학교 교환교수
1980년 2월 ~ 현재 : 부산대학교 화학과 교수
2002년 12월 ~ 현재 신개념 바이오·피지오 센서기술연구센터 센터소장
주관심분야 : DNA, 면역 및 단백질센서 시스템, 전도성 및 기능성고분자, 2차 전지, 환경분석 및 처리