Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO$_2$

Sang-Do Han*, Dae Ung Hong*, Chi-Hwan Han, and Il-Soo Chun

Abstract

Planar type micro catalytic combustible gas sensor was developed by using nano crystalline SnO$_2$. Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases (CO, C$_2$H$_6$, CH$_4$) at low operating temperature (156 ℃). The sensor with nano crystalline SnO$_2$ showed higher sensitivity than that without nano crystalline SnO$_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline SnO$_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline SnO$_2$ is a good candidate for detection of hydrogen leaks.

Key Words : catalytic combustion sensor, nano crystalline SnO$_2$, micro gas sensor, H$_2$ sensitivity, H$_2$ selectivity

1. 서 론

수소는 연소속도가 3.46 m/sec로 아주 빠르며, 발화 에너지가 0.019 mJ로 극히 작아 쉽게 연소나 폭발할 수 있다. 하지만 적절한 조건으로 수소를 이용하면 일반 도시가스처럼 이용할 수 있는 무공해의 미래 청정 에너지원이다. 수소는 LEL (lower explosive limit)이 4%로 산소와의 급격한 반응에 의해 폭발할 수 있어 수소의 누출안전고 효발용 고객등, 조정 및 수소가스 센서가 요구된다[1,3].

수소, 메탄, 프로판 등의 가연성 가스 검출센서로는 섬전성 및 장기 안정성과 높은 섬전성이 좋은 접촉연소 센서가 매우 유용하다. 접촉연소 센서는 가속장치의 분산도, 비평면적 등이 성능에 영향을 준다. 하지만 상용화된 비드형이나 스크린 프린팅에 의한 접촉연소수소센서는 저온도 강지가 좋지 않고 작동온도가 높으므로, 반응속도가 느린 단점을 가진다[4,8]. 그러한 단점을 극복하기 위하여 최근에 비표면적이 큰 나노입자 나노와이어, 나노로드 등의 양자물질을 접촉 연소연 센서에 적용하는 연구가 진행되고 있으며, MEMS 및 NEMS 기술에 의해 센서를 가능한 초정형으로 하여, 광판형으로 검지체를 구성하여 허터에서 발생되는 열완성을 줄여 저전력 소모를 가진 센서에 대한 연구개발이 진행되고 있다[6,10].

본 논문에서는 나노 결정 SnO$_2$를 sol-gel 공정에 의해 합성하여 검지물질에 사용하고 저항가열 열증착 (thermal evaporation)을 이용하여 백막 히터를 갖는 평판형 접촉연소식 수소센서를 제조하였다. 센서의 수소 감지 성능은 저온도 및 고온도에서 측정하였으며, 타가세식 기술에 대한 실현학 실험을 하였다.

2. 실험 방법

평판형 접촉연소식 수소센서의 백막 박막히터를 제작하기 위해서 백막 와이어(OI.0 mm)를 shadow mask와 저항가열 열중착방법을 이용하여 증착하였다. 그림
예 본 연구에서 제작된 접촉연소식 수소센서 백 금 박
막히터의 단면 SEM 사진 및 백 금 히터(Pt heater)가
중착된 기판의 평면 사진을 나타내었다. 나노 결정
SnO₂는 전형적인 sol-gel 공정을 이용하여 얻어졌다. Aldrich사의 고농도 SnCl₄에 DI water를 소량 첨가 후
pH 7이 되도록 고농도의 NH₄OH 용액을 첨가하여 합
성하였다. 이때 sol 상태의 SnO₂ 합성물을 5일간 세척
후 6~7시간 하소시켜 gel 상태의 a-stanncic acid를 얻고
850°C에서 2시간 동안 소결하여 나노 결정 SnO₂를 얻
었다. 이 전 논문에 합성된 물질의 SEM과 EDAX를 통
해 입자크기 및 모양 분석 자료를 설계하였다. 이와 같이
조성된 물질을 γ-Al₂O₃(25 wt%), SnO₂(35 wt%), Pd/
Pt(30 wt%)의 비율로 무기/유기마이트러와 같이 한 시간
동안 ball-milling하여 감지물질 paste를 제조하였다.
감지소자는 가열된 기판 위에 제조된 감지물질을
syringe를 이용하여 drop coating하였다. 그리고
650°C에서 1시간 소결하였다. 보상소자는 측매를 제외
한 감지체를 형성하는 물질과 같은 방법으로 제조하였고

그림 2. 센서성능 측정 장치
Fig. 2. Schematic view of test chamber.

그림 3. 인가전압별 측정된 히터의 온도
Fig. 3. The measured temperature vs. heater voltage.

다. 평판형 마이크로 접촉연소식 센서의 감지소자 및
보상소자는 spot welder(TITH coporation, WMH-V1)
와 백 금 와이어(Ø50μm)를 이용하여 센서 몸체에 연
결하였다.

수소감지 성능 측정은 그림 2에서와 같이 항온항습
조 안에 설치된 캠비 내에 원하는 양의 수소와 공기로
MFe를 통하여 주입하여 측정하였고 제작된 센서소자
를 다른 두 개의 고정저항(1.5 kΩ)과 보상소자와 연결
하여 위스턴브릿지(Wheaton Bridge) 회로를 구성하
었다. 그리고 센서의 온도별 수소추입 전의 감지전압
(Vin)과 수소추입 후의 감지전압(Vout)의 차(V)를 기준
의 접촉연소식 센서의 감지물질인 γ-Al₂O₃(60 wt%),
Pd/Pt(30 wt%)과 비교하여 측정하였다.

3. 결과 및 고찰

제작되어진 백 금 박막히터의 두께는 그림 1에서와
같이 약 160 nm 이하로 나타났다. 저항은 약 70 Ω이었
으며 인가전압별 저항의 표면온도 및 소모 전력을 비
교하기 위하여 2~6 V까지 인가한 상태에서 적외선 카
메라(NEC TH9100MLN)를 이용하여 관찰하였다.

제작되어진 히터의 표면 온도는 그림 3에 나타낸 바
와 같이 인가전압 2, 3, 4 V에서 96, 151, 224°C 있고
이를 통해 알루미나 기판 위에 열층차에 의해 중착된
백금 히터는 기존의 백금 코일 히터와 온도 특성 면에
서 매우 유사한 성질을 가지는 것이 확인되었다. 접촉
연소식 센서의 최대 감지 성능은 여러 가지 변수에 의
해서 변하지만 감지온도는 일반적으로 200°C 이상의
고온에서 관측된다. 접촉 연소식 센서의 최대 감지 성능
에 영향을 주는 요소는 결정기기, 필름 두께, 지지체로
그림 4. 수소 1%에서 센서의 출력특성
Fig. 4. The voltage responses of sensors to 1% hydrogen.
(a) Al₂O₃-Pd-Pt, (b) Al₂O₃-SnO₂-Pd-Pt.

그림 6. 수소농도에 따른 센서의 출력특성
Fig. 6. The relationship between the sensitivity and hydrogen concentration at operating temperature.
(a) Al₂O₃-Pd-Pt, (b) Al₂O₃-SnO₂-Pd-Pt.

그림 5. 동작온도 151℃에서의 센서 감도와 반응속도 특성
Fig. 5. The relationship between the sensitivity and the response time at operating temperature (151℃).
(a) Al₂O₃-Pd-Pt, (b) Al₂O₃-SnO₂-Pd-Pt.

그림 7. 다양한 가연성 가스에 대한 센서의 선택성 특성
Fig. 7. Selectivity of the sensors against various gases.
(a) Al₂O₃-Pd-Pt, (b) Al₂O₃-SnO₂-Pd-Pt.
4. 결 론

열중합을 이용하여 백금 백금히터를 제작하여 낮은 최적 동작온도에서 수소를 감지할 수 있는 접촉연소식 마이크로 수소센서를 제작하였다. 그리고 나노 결정 SnO₂을 감지물질에 첨가하여 기존의 Al₂O₃ 접촉연소 식 센서보다 좋은 수소검지 성능을 확인하였고 낮은 소비전력과 우수한 선택성을 확인하였다. 본 연구에서 제작한 접촉연소식 센서는 장기안정성 및 외부 온/습도에 대한 수소 감지성능의 변화 연구를 통해 실제 적 용에 가능한 센서 개발이 가능할 것으로 판단된다.

감사의 글

이 연구(논문)은 과학기술부의 지원으로 수행하는 21세기 프로타이어연구개발사업(수소에너지사업단)의 일 원으로 수행되었습니다.

참고 문헌


한상도 (Sang-Do Han)
• 1994년 Univ. de Bordeaux I
  (프랑스, 이학박사)
• 1978년~1980년 LG 반도체 근무
• 1990년~전자기술
• 1980년~현재 한국에너지기술연구원
  책임연구원
• 현재 충남대학교 전자공학과 강임교수
• 현재 한국산업학회 회장

홍대웅 (Dae Ung Hong)
• 2005년 충남대학교 전자공학과(공학사)
• 2008년 연세대학교 전기전자공학과
  (박사석사)
• 현재 (주)하이닉스 반도체 근무

한치환 (Chi-Hwan Han)
• 센서학회지 제15권 제5호 p. 25 참조
• 현재 한국에너지기술연구원 광전기소재연구센터 선임연구원

전일수 (Il-Soo Chun)
• 1997년 배재대학교 무기재료공학과(공학석사)
• 현재 한국에너지기술연구원 광전기소재연구센터 선임기술원