Evaluation of Estrogenic Activity of Pumpkin Seed Extract using Recombinant Yeast Assay

Hongmin Tahk¹, Bog-Hieu Lee¹, Sooknyung Rho¹, Chun-Soo Kim², Ji-Youn Jung³, and Changsun Choi¹*
¹Department of Food and Nutrition, College of Human Ecology, Chung-Ang University,
²McCoy Corporation,
³Department of Companion and Laboratory Animal Science, Kongju National University

ABSTRACT - The aim of this study is to evaluate the estrogenic activity of Cucurbita pepo seed extract which includes β-sitosterol and other phytosterols. Sample was extracted from Cucurbita pepo seed by supercritical carbon-dioxide method and resuspended with ethanol. Estrogenic activity was measured by recombinant yeast assay which detects estrogenic activity using recombinant yeast with high level of estrogenic receptor. However, estrogenic activity of pumpkin seed extract was not found in this study. Based on this data, pumpkin seed extract will not cause estrogenic disturbance.

Key words: Cucurbita pepo, β-sitosterol, Phytoestrogen, Recombinant yeast assay
상 완화, 실험관계 질환, 차폐, 액스트로겐 관련 질병, 골 다공증을 예방 및 완화시키고 전행증인 골다공증의 치료에도 효과가 알려져 있어 임상적 선용을 해야만 효능을 인정받을 수 있다. Kim 등은 연구에 따르면 비정상적인 에스트로겐의 노출 수용성 증가, 즉, 메타게놈성 에스트로건의 노출도 실험에서 이상을 유발하는 것으로 밝혀졌다. 특히 비정상적으로 에스트로건에 노출된 수컷 실험동물에 대해서는 비정상적인 에스트로겐 생성, 아로마타제의 활성, 에스트로겐 수용체 기전에 손상을 일으키며, 정서 변성의 회복, 새로운 자연(autopoiotos) 증가, 정상형성과정의 이상, 정차수의 감소, 수컷의 압관형행동, 생식 이상, 불임 등이 유발된다고 보고되었다.

Phytoestrogen는 위, 아몰 분야의 호르몬 대체 요법에서부터 기능성 식품 개발 분야에서 이르기까지 광범위하게 이용되고 있다. 그러나 이러한 식물 소재에 포함할 수 있는 phytoestrogen의 과도한 섭취는 난성에게 부작용을 유발할 수 있어 기능성 소재로서 활용함에 앞서 식품안전성 확보가 요구된다. 따라서 기능성 원료로 사용하게 되는 야보작주출물의 에스트로겐 활성의 존재여부를 측정하고자 하였다.

재료 및 방법

실험재료

연구에 사용된 호박종자추출물은 이산화탄소를 이용한 초음파 추출법으로 분리하고 maltodextrin으로 분말화 가공한 제품을 RIA INTERNATIONAL LLC(NJ, USA)에서 구입한 후 4℃에서 보관하며 실험에 사용하였다. 호르몬 활성 측정을 위한 양성대조 시료는 Sigma Chemical Co. (St. Louis, MO, USA)에서 17β-Estradiol(E2)를 구입하였다. Park의 연구에서 phytoestrogen의 추출율에 따른 추출율은 유의적인 차이가 없었고 일반적으로 호박씨를 생으로 섞고 분말형태의 녹인양한 각 재료는 100% Ethanol을 이용하여 40℃에서 15분간 추출하여 각각의 농도로 희석하였다.

제조합 효모 분석

제조합 효모 균주

에스트로겐 활성 측정에 사용한 제조합 효모 균주 Saccharomyces cerevisiae ER+LYS 8127(YER)은 서울대학교 수리과학대학 수의과학과 연구실에서 분양 받아 사용하였다. 균주의 배양은 Yeast Nitrogen Base(without amino acid, 67 g/ml, YNB: Invitrogen, USA), 1% dextrose, L-lysine (36 μg/ml), 그리고 L-histidine (24 μg/ml)이 혼합된 선택 중간 배양액을 이용하여 30℃ 배양기(EYELA, LTI-600 SD, Japan)에서 150 rpm으로 진탕 배양(OPTIMA, orbital shaker, os-752, Japan)하였다. 제조합 효모는 분광광도계(Spectronic 20 Genesys, Spectronic instruments, USA)로 측정한 600 nm O.D.값이 1.0에서 2.0 사이에 도달할 때까지 배양한 후 본 실험에 사용하였다.

Yeast을 통한 에스트로겐 활성 분석

제조합 효모 배양액은 600 nm O.D.값이 0.03이 되도록 희석한 후 10 mM CuSO4(5 μl/ml)를 넣어 receptor를 발현하여 제조합 효모 배양액에 호박종자추출물, 양상대조군 및 음성대조군 각각 5 μl씩 처리하고, 배양기에서 30°C, 150 rpm으로 18시 간 배양하였다. 호박종자추출물은 에탄올 용액에 희석하여 250 mg/ml의 농도가 되도록 준비하고 50배 단계 희석하여 희석액을 준비하였다. 양상대조군으로 사용되는 estradiol은 10배 단계 희석하여 10-1M~10-12M 농도를 준비하였으며, Vehicle control은 추출물 용액에서 사용한 100% ethanol이 사용되었다. 배양 후 배양액에 희석하여 600 nm에서 OD 값이 0.25이 되면 이를 96well-plate에 각각 100 μl씩 3개 well에 분주하였으며, Microplate reader(Spectramax190, Molecular Device, USA)를 이용하여 590 nm에서 OD를 측정한 후 o-nitrophenyl-β-D-galactopyranoside(ONPG, 2 mg/ml), 0.1% sodium dodecyl sulfate(SDS), 50 mM β-mercaptoethanol 그리고 1.163 mg/ml(25 μg/ml)의 Zymolase 20T(MP biomedicals, USA)가 첨가된 Z buffer(60 mM NaH2PO4, 40 mM Na2HPO4, 10 mM KCl, 1 mM MgSO4, pH7.0)를 각 well에 100 μl씩 처리하여 β-Galactosidase 활성을 유도하고 20분이 지난 뒤 420nm에서 OD를 측정하였다. 측정된 각각의 3개 well의 값을 평균낸 후 420 nm에서 측정한 값에서 590 nm에서 측정한 값을 빼 후 반응 희석액을 사용하였다.

통계처리

모든 실험은 3반복으로 수행되었으며 관찰된 실험결과는 SAS 통계 프로그램(version 9.1, SAS Institute, Cary, NC, USA)의 ANOVA procedure를 이용하여 분석하였다. 각각의 처리군은 통계적으로 유의적으로 나타나는 경우에 (P≤0.05)각각의 3반복 실험에 의한 평균값은 Duncan's multiple range test를 이용하여 분석하였다.

결과 및 고찰

제조합 효모는 양상대조 시료인 17β-Estradiol(E2) 처리에 강한 에스트로겐 활성을 나타내었다. 처리된 17β-Estradiol의 농도에 따라 에스트로겐 활성이 일부 감소하는 경향이 있었으며, 10-11M 이하의 농도에서는 호르몬 활성이 현저히 감소되었다(Data not shown). 따라서 양상대조군은 10-3 estradiol을 처리하였다. 최종농도 250 ug/ml-2.5 μg/ml 호박종자추출물을 처리한 모든 실험군에서
루렛한 에스트로겐 활성은 관찰되지 않았다. 또한 양성대조군과 실험군과의 통계적 유의성 검정에서도 모든 실험군의 에스트로겐 활성값이 유의하게 (P≤0.05) 낮게 관찰되었다(그림 1).

사람을 대상으로 한 선행연구들은 호박종자 추출물 1밀 160 mg - 320 mg 용량을 급여하고 생체 반응을 관찰하였다 그러나 일부의 경우에서 이상반응이나 독성작용이 관찰되지 않았다고 보고하였다. 11) 12) 본 연구에서 사용한 호박종자 추출물의 최고 농도는 250 ug/ml로 선행 임상연구에서 사용된 용량, 인체 흡수율, 생체의 실험(In vitro) 조건 등을 고려한다면 충분히 넓은 용량으로 사료된다. 따라서 호박종자추출물은 생체내에서 에스트로겐 활성을 나타내지 않을 것으로 기대된다.

Yang 등은 한국산 약용식물 9종의 추출물을 대상으로 에스트로겐과 안드로겐 활성을 측정한 바 있다. 약용식물 9종의 추출물 중에서 7종의 추출물은 에스트로겐 활성을 나타내었으며, 4종의 추출물은 안드로겐 활성을 나타내는 것으로 조사된 식물 추출물 중에서 phytoestrogen이 상당히 포함되어 있음을 알 수 있었다. 한편 에스트로겐 양성 세포주 MCF-7의 증식능성 실험에서는 한국산 약용식물 추출물 7종 중에서 8종의 추출물이 유방암 세포주 증식을 유의적으로 억제하였다고 보고하였다. 이는 약용식물 추출물에 에스트로겐 활성이 있음에도 불구하고 MCF-7의 증식을 유의적으로 억제하는 양합 인자 활용될 수 있을 것으로 보고하였다. 10

Lee 등은 통계적 유의한 Pueraria mirifica 추출물의 에스트로겐 활성을 보고하였다. 홍미름제도 제조한 효모를 이용한 에스트로겐 활성 측정에서는 활성이 관찰되지 않았으나 MCF-7 세포주 증식능 측정법에서는 에스트로겐 활성이 관찰되었다고 보고하였다. Lee 등은 추출물의 직접적인 에스트로겐 활성을 측정하는 제조법 효모법과 달리 세포 내에서 대사된 추출물이 MCF-7 세포줄 증식시킨 에스트로겐 활성을 가졌을 것으로 보고하였다. 11

제조법 효모를 이용한 에스트로겐 활성 측정 실험에서 사용된 호박종자추출물은 Phytoestrogen을 포함하는 다른 식물성 추출물들과 달리 에스트로겐 활성을 갖지 않는 것으로 조사되었다. 다른 Lee 등의 연구와 같이 호박종자추출물의 대사산물이 에스트로겐 활성을 갖는지 여부는 조사되지 못하였다. 그러나 최근 실험처방에서 수행된 호박종자추출물 실험에서 에스트로겐 활성에 따른 부작용 보이고 있는 것을 근거로 대사산물의 에스트로겐 활성과 상관성이 없음을 것으로 추정할 수 있다. 따라서 친구의 실험에서는 호박종자추출물의 대사산물인 에스트로겐 활성 측정 또는 MCF-7 세포주 등을 이용한 추가적인 연구가 수행될 필요가 있다고 하였다. 한편 본 연구결과와 같이 호박종자추출물의 에스트로겐 활성 부재는 영양 성 조절에서 중요한 의미로 해석될 수 있다. 또한 호박종자추출물은 전가기능식품의 안전한 식품소재로 활용될 수 있을 것이다.

감사의 말씀

본 연구는 농림수산식품부 농림기술개발사업(특례번호: 108054-03-1-G000)의 지원에 의하여 수행되었으며, 이에 감사의 말씀을 드립니다.

요 약

기능성 식품 소재로 주목을 받고 있는 호박종자추출물의 에스트로겐 활성을 제조법 효모법을 이용하여 측정하였다. 양성대조군으로 사용된 17β-Estradiol은 강력한 에스트로겐 활성을 나타내었으며, 농도의존적인 반응을 나타내었다. 초임계추출법에 의하여 얻은 호박종자추출물 일반적 효능으로 재추출하여 실험에 사용한 결과 에스트로겐 활성이 관찰되지 않았다. 따라서 호박종자추출물이 건강기능식품 제조에 사용될 때 에스트로겐 활성으로 인한 부작용은 없을 것으로 기대된다.

참고문헌

Fig. 1. Effect of Pumpkin seed extract powder on the yeast expressing human estrogen receptor. E2, 10^4M 17β-Estradiol; VC, vehicle(0.1% EtOH) control; NC, negative (untreated) control; S1, 250 ng/ml; S2, 25 ng/ml; S3, 2.5 ng/ml; S4, 250 ng/ml; S5, 25 ng/ml; S6, 2.5 ng/ml; S7, 250 pg/ml; S8, 25 pg/ml; S9, 2.5 pg/ml.*Significantly different from control (P≤0.05).