A study on the ecosystem-based management system for fisheries resources in Korea

Chang-Ik Zhang*

Department of Marine Production Management, Pukyong National University, Busan 608-737, Korea

The potential of ecosystem-based fisheries management is recently recognized to be very important to improve the sustainability of fisheries resources. Under the depressed condition of many fisheries resources, this recognition has been expanded and more effort has been taken to improve this approach. Taking ecosystem concept includes the use of other tools of management in addition to fisheries regulation, such as stock and productivity enhancement, provision of physical structure, or marine protected areas. In the ecosystem-based fisheries management approach, it would require to holistically consider ecological interactions of target species with predators, competitors, and prey species, the effects of climate on fisheries ecology, the complex interactions between fishes and their habitat, and the effects of fishing on fish stocks and their ecosystem. Fisheries management based upon the understanding of these factors can prevent significant and potentially irreversible changes in marine ecosystems caused by fishing. A useful approach for analyzing tropho-dynamic interactions and mass-balance in marine ecosystems is introduced to demonstrate the complexity and usefulness of the ecosystem approach, which was applied to a small ecosystem in Korea. Korea should seriously consider to take the ecosystem-based approach to fisheries management, since most major fish stocks are currently depleted due to many reasons such as overfishing, land reclamation and coastal pollution.

Key words: Ecosystem-based approach, Fisheries management, Ecological interactions, Tropho-dynamics

*Corresponding author: cizhang@pknu.ac.kr Tel:82-51-620-6124 Fax:82-51-622-3306
원은 현재 거의 모든 해역에서 60~90%가 이미 남획 또는 고갈되었다. 세계 총어획량은 1988년 이래 어업에 의한 생산은 정체되고, 양식에 의한 생산의 증가로 인해 1억톤 수준에서 정체된 상태에 있다.

이러한 상황에서 유엔해양법 협약 (UNCLOS) 이 1994년 11월 16일자로 발효됨에 따라 국제해양어업은 새로운 질서에 의하여 개편되고 있다. 이에 따라, 해양생물자원의 관리에 있어서는 새로운 제도들이 채택되고 있다. 유엔해양법에서는 베타적경제수역 (EEZ) 설정시 충허용어획량 (TAC)에 의한 어업관리의무를 규정하고 있으며, 1992년의 책임어업 (Responsible Fisheries)에 관한 Cancun회의와 1992년 개정된 유엔환경개발회의 (UNCED)의 Agenda 21은 어업자의 보호를 강력하게 요구하고 있다. 이밖에도, 1995년의 UN Fish Stocks Agreement 등이 전통적인 어업자원 이용방식의 변화를 요구하고 있다.

특히, 한국의 어업산량은 점차 감소하고 있으며, 어획량의 구조를 나타내는 영양단계도 점차 감소하고 있다 (Zhang and Lee, 2004). 한국의 주변 해역은 많은 어업자원들이 남획으로 인해 자원량이 크게 줄어들고, 연안어업의 증가로 연안생태계가 변형되어 근경해의 어업산량은 저하된 상태에 처해 있다 (Zhang et al., 1992; Zhang and Kim, 1999). 이러한 상황에서 WTO의 수산물 수입자유화 권고에 따라 수산물에 대한 수입이 개방되어 수산물 경쟁력이 약화되고 있는 실정이다. 또한 UN 해양법 협약의 EEZ제도에 의해서 일본과 중국 등 주변국들과 새로운 어업협정의 체결이나 교섭으로 인해 전통적인 어업수역의 축소로 어업생산의 감소가 예정되고 있다.

이러한 현실을 극복하기 위해서 참여정부는 수산정책의 목표를 ‘농어촌 바다, 깨끗한 환경의 복지어촌 건설’의 두고 추진방향으로서 첫째, 지속가능한 수산자원 관리체제의 확립, 둘째, 경제적 가치 있는 수산업을 위한 어업구조 조정, 셋째, 어촌대안 활성화로 어가족트 항상, 넷째, 사전극히 복지어촌 건설 등을 추진하고 있다.

최근까지 수산자원의 경제와 관리의 환경은 고려하지 않고 개체군 수준에서 기업과 성장, 자원사사, 어획사량 등에 요소만을 고려하는 개체군 역학적 분석결과에 의한 수용되어 왔다. 또한, 현재의 수산자원관리 체제에서는 어획으로 인한 생태학적 변화가 고려되지 않고 있으며, 과도어획으로 인한 생태계 변화가 모니터링 되지 않고 있다.

어업에 이용되는 수산자원은 해양생태계의 한 부분이고, 많은 종들은 서로 박고 밀히는 관계에 있거나 또는 서로 경쟁하는 관계에 있다 (Fig. 1).

이러한 인식을 바탕으로 다중어업자원을 분석하여 평가하는 방법들이 일부 제안된 바 있으나 아직 실용화되는 수준에까지는 이르지 못하고 있다 (예로, MSVPA (Sparre, 1991)). 지속가능한 어업을 유지하기 위해서는 생태계 차원의 균형적인 관점에서 어업관리가 고려되어야 한다. 따라서, 근년에 들어 수산자원을 관리하는데 전통적인 단일어종 집중방식에서 다중어업 분석방식으로 점차 전환되고 있으며, 최근에는 생태계를 기초한 자원관리방식으로의 인식전환 (paradigm shift)이 점차 강조되고 있다.

지금까지 개발된 생태계 모델의 대부분은 실

Fig. 1. Interactions of organisms with biotic and abiotic environments in a marine ecosystem.
생태계 차원에서의 수산자원관리 방안 연구

본 논문에서는 수산자원관리 개념의 변천과 국제적 추세인 생태계 기반 수산자원관리의 개념과 방법을 고찰하였으며, 이 방법을 실제 적용하기 위해서 연구가 진행 중에 있는 동일바다목장 생태계의 연구개발 현황을 소개하였다. 마지막으로 생태계 기반 자원관리를 우리나라 해역에 적용시킬 수 있는 방안을 모색해 보았다.

자원관리방법 및 모델
수산자원관리 개념의 변천
개체군 수준에서의 관리
수산자원관리는 최근까지 목표자원을 효율적으로 이용하기 위하여 개체군 수준에서 분석된 자원상태를 양적으로나 질적으로 바람직한 수준으로 변화시키거나, 혹은 유지시키는데 목표를 두어 왔다. 일반적으로 자원관리를 개체군 역학적인 개념에서 자원의 변동 요인과 관련시키면, 수산자원은 사망에 의하여 자원량이 감소하고, 출생 및 성장에 의하여 자원량이 다시 증가된다. 이러한 과정을 통해 자연적으로 안정상태를 유지하는 자원에 어업이 가해지면 자연사망 에 의한 감소 외에 어획에 의한 감소가 추가된다. 여기서 출생이라는 개념은 자원으로의 가입을 의미하며 자원을 개체수로 나타낼 경우 자원의 변동은 가입수와 자연사망에 의한 개체수, 어획 사망에 의한 개체수 등 세 개의 변수에 의해 결정된다. 대개의 어업자원은 중량으로 나타내므로 이 경우에는 앞에서의 세 가지 요소에 개체의 성장에 의한 무리의 증가를 추가시킨다. 그러나 이러한 요소들은 수산자원이 속해있는 생태계의 환경에 의해서도 영향을 받게 된다. Russell (1993)은 이러한 관계를 다음과 같이 나타내었다.

\[S_2 = S_1 + A + G - D - Y \]

즉, 어느 해 초기의 자원량 \(S_1 \)과 다음 해 초기의 자원량 \(S_2 \) 사이에는 가입량 \(A \)와 개체의 성장에 따른 증감량 \(G \)에 의한 자원의 증가요인과 자연사망량 \(D \) 및 어획에 의한 사망량인 어획량 \(Y \)에 의한 감소요인을 작용한다. 그러므로 효과적인 자원평가와 관리를 위해서는 각 요소를 명확히 파악하여 자원변동의 구체적인 법칙성을 구하는 것이 필요하다. 이와 같이 개체군 수준에서의 수산자원관리는 자원량 변동과 관련되는 요소인 가입과 성장, 자연사망 및 어획사망 등 내
가치 요소에 대한 관리로 포함한다.
수산자원을 평가하고 관리하는데 있어서 필수적인 요소는 자원량이 어떻게 변하는가를 파악하고 그 자원에 가해지는 어획의 영향을 알아내는 것이다. 수산자원의 자원량을 파악하는 데는 여러 가지 방법이 있지만 연령별 어획량 자료를 사용해서 연령별 자원량을 추정할 수 있는 코호트 분석법이 가장 많이 사용되고 있다 (Zhang, 1987). 한편, 수산자원에 대한 어획의 영향을 추정하는 모델에는 크게 두 가지 계열, 즉 임여생산량 모델 (surplus production models)과 가입당생산량 모델 (yield per recruit models)이 있다 (Zhang, 1987). 또한, 두 계열모들은 자주 사용되지 않지만 제한된 어종에 대해서 사용되고 있는 재생산 모델 (spawner – recruit models)의 계열도 역시 자원평가에 있어서 중요하다.

다종자원 관리
다종자원이어이란 두개 또는 그 이상의 어종들이 서로 직접적 또는 간접적으로 영향을 주는 어업을 의미하며, 대부분의 어업은 다종자원을 대상으로 한다. 어업대상 생물들은 간의 상호작용을 고려한 다종자원어업의 중요성을 인식하기 시작한 것은 1980년대 초반부터이다 (Pauly and Murphy, 1982; Mercer, 1982; Mahon, 1984; May, 1984; Jamieson and Bourne, 1986).
이와는 대조적으로 기술적인 요인은 해양생태계에 어업이 적용함에 따라 발생한다. 그리고 생물학적인 요인처럼 같이 기술적인 요인도 관련되는 종의 수가 증가함에 따라 더욱 복잡해 지며 이 복잡성은 종간 연관성의 크기의 함수로 나타난다. 기술적인 요인은 직접적(두개 또는 그 이상의 어종이 함께 어획되는 경우) 또는 간접적(예를 들어, 한 어구에 의한 어획이 이루어 질 때 하나의 어종이 다른 어종으로 인해 최적 서식지를 변경하게 되는 경우)으로 작용한다. 어획물 내에 여러 종이 동시에 출현하는 것은 무방적(예로, 바다겨울이 해수 표층에 우병적으로 잡히는 경우)일 수도 있고, 고의적(예로, 황해의 트롤리어들이 여러 종의 저서어종들을 목표로 어획하는 경우)일 수도 있다.
생물학적인 요인과 기술적인 요인을 구분하는 것은 아주 중요하며 생물학적인 상호작용은 생태계 고유의 특성을 나타내는 것으로서 인간에요한 변형은 시급할 수 있지만 완전하게 조절할 수 없는 것이다. 기술적인 요인은 어떤 경우에 종들의간의 생물학적 관계에 의해 작용하기도 하지만 인위적인 조절이 가능하며 대부분의 어업은 생물학적 요인과 기술적인 요인간에 상호의존성을 가진다. 대부분의 경우 주요 어종들의 상호작용이 두 가지 요인 중 어느 한쪽에 속하지만 어떤 경우에는 이 두 가지 요인들이 복잡하게 작용해서 다종자원을 대상으로 하는 어업의 특성을 분석하고 관리방안을 도출하기가 매우 어렵다.
다종자원어업의 관리방법으로는 수학적 모델들과 경험론적 방법론들이 고려되고 있다. 생물학적인 상호작용을 하는 시스템을 연구하는 데는 많은 수학적 모델들이 개발되어 오고 있는데
생태계 차원에서의 수산자원관리 방안 연구

그 중에서 Sugihara et al. (1984)은 모델의 복잡성 이 증가함에 따라 오차의 수준이 어느 정점수준 까지는 감소하다고 이후부터는 증가하는 현상을 설명하면서, 모델의 복잡성을 줄이기 위해 시스템을 단순화시키는 방법들을 소개하였다.

생물학적 상호작용은 기술적인 요인과 관련된 시스템에서는 여러 종류의 실용적인 방법이 자원관리에 사용된다. 이 중 가장 많이 연구된 방법 가운데 하나는 상당량의 부수적절적이거나 농업에서 개별 어종의 어획에 대해 제한을 가하면서 총어획량을 결정하는 선형프로그램법 (Linear programming)을 이용하는 것이다. 이 에는 1974년 북서대양수산관리협의회(ICSNF)가 설정한 두 단계의 할당량 제도인데, 이 제도에서는 각 어종에 총어획량(TAC)을 설정하면서 동시에 전 어종에 대한 TAC를 각 어종에 대한 TAC의 합보다 적게 설정한 바가 있다 (ICNAF, 1974).

한편, 다중자원을 단일어구에 의해서 이용하는 다중자원어업과는 달리 단일어종 또는 단일 자원을 복수어구에 의해서 이용하는 복수어구 어업도 종종 행해지고 있다. 현재 행해지고 있는 복수어구어업은 폭의 구조 및 관리방안에 대해서는 한국 근해 참조기어업과 같은 복수어구에 의한 단일어종 자원의 이용형태에 대해서 분석된 연구가 있다 (Seo and Zhang, 2001a; 2001b).

생태계 차원에서의 관리

해양생태계는 시간적으로나 공간적으로 매우 다양한 스케일로 변화하는 특성을 가지고 있다 (Fig. 2). 또한 해양생태계는 구성생물체간의 상호작용 및 이들 생물체와 물리화학적 환경요소 간의 작용을 기반으로 한다. 수산자원은 해양생태계 내의 하나의 구성원이기 때문에 어업에 의한 자원의 이용이 생태계에 영향을 미치는 것

Fig. 2. Scales of physical variability affecting marine resources. Variability in marine ecosystems is linked to variability in the physical environment on a continuum of time and space scales (Figure courtesy of NMFS Pacific Fisheries Environmental Laboratory).
장 창 역

은 당연하다. 전통적인 어업관리는 생물학적 관계에서 추어진 생태계로부터 수산자원을 매년 어떠한 방법으로 얼마나 먹어야 하는지를 결정하는 것이었다. 그러나 생태계를 고려하는 관리는 자원을 어획함으로써 생태계에 미칠 수 있는 영향과 이에 따른 생명량의 변화에 유의하게 고려하는 시대적 전환을 요구한다. 따라서 생태계를 고려한 수산자원관리의 목표는 생태계 내의 종과 유전적 다양성을 유지하면서 경제적인 손실 없이 적정량의 수산자원을 지속적으로 이루어지는 것이다. 해양생태계 기반 수산자원관리에서 어획방법의 조절과 허용어획량의 결정, 그리고 이를 모니터링하고 감시하는 것을 포함한다. 그러나 이러한 방법들을 통한 잠재적인 생물생산에 해를 끼치지 않고, 생물적 구성요소와 비생물적 환경을 적정수준으로 보존하면서 수산자원을 적절하게 유지시키면서 이루어져야 한다. 즉, 해양생태계를 건강하게 유지하면서 생태계를 지속적으로 보존, 이용하는 것이다.

생태계 기반 수산자원관리 개념

생태계 기반 수산자원관리 개념

유엔해양법은 모든 국가에 대해 해양생태계에 대한 자국정책의 영향을 파악해야 한다는 의무사항을 규정하고 있다. 이 의무사항은 FAO의 책임어업에 대한 협력기록서에서 다시 강조하고 있으며, FAO(1995), 최근 발표된 수많은 정책보고서에서도 이 의무사항을 강조하고 있다. 따라서, 단일어종의 지속적 생산량을 목표로 하는 전통적인 수산자원관리 방법은 더 이상 완전한 방법으로 인정되지 않고 있으며, 이 방법에 어업이 생태계의 구조와 기능에 미치는 영향도 동시에 고려해야 한다는 개념으로 인식이 전환되고 있다 (Gislason et al., 2000).

어획이 생태계에 미치는 영향은 직접적인 형태의 간접적인 형태로 나타나며 생각할 수 있다. 직접적인 영향은 상대적으로 보다 쉽게 측정할 수 있고 정량화 할 수 있다. 예로, 저층어구에 의해 연간 소화되는 해저의 면적을 구한다면, 어획은 대상종과 부수어획물의 어획량을 측정하거나, 이로 인한 사망률과 어획량 가운데 폐기되는 양을 구한다고지, 또는 어획활동으로 인한 서식처의 물리적인 변화를 측정하는 방법 등이 있다.

어획이 생태계에 미치는 간접적이고 장기적인 영향은 정량화하고 예측하기가 매우 어렵다. 이러한 어획의 효과는 어획계획과의 생태계와 연령구조의 변화를 트레이드오버에서 동시에영양수단의 구조도 변형시킨다. 장기적으로는 어획계획과의 유전적 조성의 진화적인 변화를 초래할 수도 있다. 그러나 현재의 저층수준으로는 이러한 영향을 정량화하거나 예측하는데 한계가 있다.

생태계 기반 관리를 정의하면 ‘생태계가 장기적인 지속성을 유지하면서 건강하고 완벽하게 기능을 하면서 인간과 공존할 수 있도록 인간의 활동을 생태학적, 사회경제적, 제도적 및 기술적인 측면을 모두 고려해서 관리하는 전략적인 방법’이라 할 수 있다.

생태계 기반 관리목표를 수산자원관리에 적용시키기 위해서는 측정 가능한 지표와 모니터링 계획을 설정해야 할 필요가 있다. 이를 위해서는 해양생태계의 구조 (생물다양성)와 기능 (서식처 생산력)에 대한 영향을 고려해야 한다.
Gislason et al. (2000)은 생태계 기반 관리목표와 각 목표에 대한 지표 및 기준점을 Table 1과 같이 제시하였다. 제시된 각각의 주요 생태계 보존목표는 (1) 생태계 다양성, (2) 종 다양성, (3) 종 내의 유전적 변이도, (4) 적절 영향 받는 종, (5) 생태계적으로 중요하게 취급하는 종, (6) 영향을 미치는 영향을 고려한 새로운 개념의 생태계 기반 환경속성을 정의해야 한다. 여러 개체군 수준의 남획개념이 드러난 이론적 기반을 가지고 있으며 실용성이 크다고 하자면 생물 다양성이나 서식처 환경, 어획으로 인한 면적의 변화 등은 문제에 대해서 적절적인 방향을 제시해 주지 못한다. 생태계 기반 남획 개념이 관리에 실질적인 역할을 하기 위해서는 명확하고 정량적인 목표가 개발되어야 한다. 이 목표는 (1) 생태계의 생체량과 생산량 및 구성요소 간 상호관계, (2) 구성요소별 다양성, (3) 자원 변이도의 패턴, (4) 사회경제적 이익 등의 요소를 정량적으로 지수화 할 수 있어야 한다. 생태계 기반 생산자원관리에서의 남획개념은 기존의 개체군 수준의 남획개념을 대체하는 것이 아니라 이를 평가하고 수정하는데 사용되어야 한다.

Table 1. Examples of ecosystem objectives, indicators and reference points for ocean management areas (OMAs)

<table>
<thead>
<tr>
<th>Objective</th>
<th>Indicator</th>
<th>Reference point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecosystem diversity</td>
<td>Areas of shelf disturbed by fishing</td>
<td>% of each habitat type that is undisturbed</td>
</tr>
<tr>
<td>Species diversity</td>
<td>Abundance of species at risk</td>
<td>Maximum annual by-catch</td>
</tr>
<tr>
<td>Genetic variability within species</td>
<td>Area of distribution</td>
<td>% of distribution area relative to period of moderate abundance</td>
</tr>
<tr>
<td>Directly impacted species</td>
<td>No. of spawning populations</td>
<td>% reduction in spawning areas</td>
</tr>
<tr>
<td></td>
<td>Selection differentials</td>
<td>Minimum selection differential F_{0,1}</td>
</tr>
<tr>
<td></td>
<td>Fishing mortality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spawning stock biomass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area of distribution</td>
<td></td>
</tr>
<tr>
<td>Ecologically dependent species</td>
<td></td>
<td>Minimum stock biomass for safeguarding recruitment and forage</td>
</tr>
<tr>
<td></td>
<td>Abundance of predator Condition of predator</td>
<td>% of distribution area relative to period of moderate abundance</td>
</tr>
<tr>
<td></td>
<td>% of prey species in diet</td>
<td>Minimum abundance predator</td>
</tr>
<tr>
<td>Trophic level balance</td>
<td>Minimum condition predator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope of size spectrum</td>
<td>Minimum % in diet</td>
</tr>
<tr>
<td></td>
<td>Pauly's FIB index</td>
<td>Minimum slope</td>
</tr>
<tr>
<td></td>
<td>Aggregate annual removals for each trophic level</td>
<td>Minimum value index</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum % removals</td>
</tr>
</tbody>
</table>

After Gislason et al. (2000).
장학익

Murawski (2000)는 생태계 기반 남패상태를
정의하면서 생태계의 누적어어의량과 부수어어들의
의생물 및 석석처 많은에 있어서 아래의 6가지
상태 가운데 한 가지 이상이 해당되는 경우
생태계가 남패상태라고 고정하였다. (1) 주요 수
산자원 단일 종 또는 두 종 이상의 그룹이 최소
생물학적 허용한계 이상으로 멸어진 경우, (2) 근
접이나 개체군의 다양도가 유의하게 멸어진 경
우, (3) 어획량이나 어종선택 패턴이 커다란 연
변동을 보이는 경우, (4) 어획으로 인한 어종조
성이나 개체군 특성의 변화가 개체군의 저항
력을 심각하게 멸어뜨리는 경우, (5) 상호작용을
하는 관계에 있는 종들에 대한 어획율이 사
회경제학적 수익을 멸어뜨리는 경우, (6) 피식
어종을 대상으로 하는 어획이 생태학적으로 중
요한 포유동물이나 기타 비어획 대상 생물들의
장기적인 존속성에 유해한 경우이다.

수산자원의 평가 및 관리에는 우선 7가지의
생태계 원리가 적용될 수 있다. 즉, 해양생태계
경계, 과학적 불확실성과 해양생태계에 대한 지
식, 생태계 모니터링, 멸어짐 정보, 폐기량
(discards), 생태계에 대한 어획의 영향, 서식처
등이 포함된다 (Zhang, 2002).

해양생태계 분석 모델 및 적용 예
지금까지 많은 생태계 분석 모델들이 제시되
았지만 해양생태계의 영양계 관계에서 사용되
는 실용적인 방법은 Polovina (1984)에 의해서 개
발된 Ecopath 모델이다. 이것은 Christensen and
Pauly (1992; 1995)에 의해 더욱 발전되었고,
수산자원의 평가나 양식장의 평가와 같이 수중생
태계에 널리 응용되고 있으며 또한, 최근에는 육
상목장 시스템 (farming system)을 분석하는데도
응용되고 있다 (Dalsgaard et al., 1995).

Ecopath은 주어진 시스템에 대한 정보를 요약
할 수 있는 방법으로 인정을 받고 있다. 즉, 이 모
델은 사용해서 생태계의 구조와 기능을 설명해
주는 다양한 생태계 특성치를 계산하고 이 값을
을 다른 생태계의 값들과 비교할 수 있다. 그
러나, Ecopath는 생태계 영양 구조의 정적인 단
면만을 보여 준다. 이를 극복하기 위해서
Ecopath 모델에 의한 생태계 특성치를 기초로 구
성생물들의 시간에 따른 변동을 분석할 수 있는
생태계 역학 모델이 개발되었다 (Ecosim module
of Ecopath). 이것은 미분방정식으로 이루어진
시스템으로 역학 시뮬레이션과 평형상태의 변
화를 분석할 수 있다 (Pauly et al., 2000). 이 방법
은 간단한 절량균형 모델 (mass - balanced model)
을 만들 수 있을 정도의 자료가 있으면 어업에
의한 생태계 반응을 이해하는데 사용될 수 있다.
또한, 이 모델은 생태계 영양 상호관계를 나타내
는 포식-피식 효율을 설명하는데 'top - down'
과 'bottom - up'에 관한 가설을 선택해서 생태
계 분석에 사용될 수 있다.

만약 대상생태계 내 구성생물들의 이입・이
출량이 갑오 평형상태로 가정하면, Ecopath에서
의 절량균형 모델은 다음 식에 의해 정의된다.

(i)의 생산량=(i)의 어획량+포식자에 의한 (i)
의 소비량+(i)의 기타사망량

(1)

여기서 i는 특정 환경, 특정 시간의 시작과 끝까
지 동일한 상태를 가지는 생태계 내의 특정그룹
단일 종 또는 두 종 이상으로 구성된다.

식 (1)은 다음과 같이 나타낼 수 있다.

\[B_i \cdot (P/B)_i = Y_i + \sum_{j=1}^{n} B_j \cdot (Q/B)_j \cdot D_{C_{ijl}} + M_{0bi} \]

(2)

여기서 B_i는 특정 기간 동안 i의 생체량이다.
(P/B)_i는 평형상태에서 순간전사망계수 (Z_i)_i와
같은 i의 생산량/생체량 비이다 (Allen, 1971). Y_i,
는 i의 어획량으로 Y_i=F_i+B_i로 나타낼 수 있고,
여기서 F는 순간어획사망계수이다. B_i는 소비자
혹은 포식자의 생체량이다. (Q/B)_j는 소비자 j의
단위 생체량당 먹이 소비량이고, D_{C_{ijl}}는 j의 먹이
에서 i가 차지하는 부분 (j가 i를 먹지 않을 때,
D_{C_{ijl}} = 0)이다. 그러므로, 특정 기간 동안 포식자
생태계 차원에서의 수산자원관리 방안 연구

\[Q_i = \frac{B_i(Q/B)_i D_C}{M_0} \]

가 최대치 \(i \)를 변화한 총 섭식량 \(Q_i \)은 \(Q_i = \frac{B_i(Q/B)_i D_C}{M_0} \)으로 나타낼 수 있다. \(M_0 \)은 어획 및 섭식에 의한 사망을 제외한 기타사망계수이다.

식 (2)를 다시 표현하면,

\[0 = B_i (P/B)_i - F_i \times B_i - \sum_{i=1}^{n} Q_{ij} - M_0 B_i \] \hspace{1cm} (3)

와 같다. 기초 생산자물질을 제외하고, Ecopath에서는 \(B_i (P/B)_i \)를 그룹 \(i \)에 의해 섭식된 먹이량 \((\Sigma Q_i) \)과 성장효율 \((g_i) \)의 곱으로 계산한다. 즉, 소비자 \(i \)로의 영양환원 \(Q_i \)은 \(B_i (P/B)_i = g_i \Sigma Q_i \) 이 만족되고로 계산되며, 식 (3)은 식 (4)와 같이 쓸 수 있다.

\[dB_i/dt = f(B_i) - F_i B_i - \sum_{j=0}^{n} C_{ij} (B_j, B_i) - M_0 B_i \] \hspace{1cm} (4)

여기서, \(i \)은 기초생산자라면 \(f(B_i) \)는 \(B_i \)의 함수가 되고, 만약 소비자라면 \(f(B_i) = g_i \Sigma Q_i \cdot (B_i, B_j) \)가 된다. 여기서, \(C_{ij}(B_i, B_j) \)는 \(B_i \)과 \(B_j \)로부터 \(Q_i \)을 예측하는데 사용되는 함수이다. 만약 \(f(B_i) \)와 \(C_{ij}(B_i, B_j) \)함수를 알 수 있다면 식 (4)는 시간에 따른 \(F_i \)로 적분될 수 있다.

Table 2는 Ecopath이 의한 동명마지나목장의 생태계 모델링에 필요한 입력 자료이다. 먼저, 생태계 내에 존재하는 생물을 생태학적 유사성에 따라 24개의 그룹으로 나누어서 각 그룹에 대한 생태량과 생산량/생태량 비, 섭식량/생태량

<table>
<thead>
<tr>
<th>Group name</th>
<th>Habitat area (fraction)</th>
<th>Biomass in habitat area (t/100)</th>
<th>Production /Biomass (year)</th>
<th>Consumption /Biomass (t/100)</th>
<th>Catch (t/100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finless porpoise</td>
<td>1.000</td>
<td>0.004</td>
<td>0.020</td>
<td>13.108</td>
<td>-</td>
</tr>
<tr>
<td>Otter</td>
<td>1.000</td>
<td>0.001</td>
<td>0.060</td>
<td>91.250</td>
<td>-</td>
</tr>
<tr>
<td>Pisc. Birds</td>
<td>1.000</td>
<td>0.010</td>
<td>0.800</td>
<td>60.000</td>
<td>-</td>
</tr>
<tr>
<td>Skates</td>
<td>1.000</td>
<td>0.101</td>
<td>1.365</td>
<td>2.560</td>
<td>0.000</td>
</tr>
<tr>
<td>Flatfishes</td>
<td>1.000</td>
<td>0.479</td>
<td>1.365</td>
<td>2.490</td>
<td>0.000</td>
</tr>
<tr>
<td>Adult Jacopever Rockfish</td>
<td>1.000</td>
<td>1.779</td>
<td>1.386</td>
<td>10.790</td>
<td>0.000</td>
</tr>
<tr>
<td>Juv. Jacopever Rockfish</td>
<td>1.000</td>
<td>2.279</td>
<td>2.772</td>
<td>37.176</td>
<td>0.000</td>
</tr>
<tr>
<td>Other Rockfishes</td>
<td>1.000</td>
<td>0.136</td>
<td>1.368</td>
<td>12.061</td>
<td>0.000</td>
</tr>
<tr>
<td>Sparidae</td>
<td>1.000</td>
<td>0.549</td>
<td>1.309</td>
<td>2.500</td>
<td>0.000</td>
</tr>
<tr>
<td>Anguiliformes</td>
<td>1.000</td>
<td>0.522</td>
<td>1.386</td>
<td>2.600</td>
<td>0.000</td>
</tr>
<tr>
<td>Moronidae</td>
<td>1.000</td>
<td>0.596</td>
<td>1.055</td>
<td>26.160</td>
<td>0.000</td>
</tr>
<tr>
<td>Grey Mullet</td>
<td>1.000</td>
<td>1.922</td>
<td>1.200</td>
<td>2.500</td>
<td>0.000</td>
</tr>
<tr>
<td>Hairtail</td>
<td>1.000</td>
<td>0.528</td>
<td>1.360</td>
<td>2.600</td>
<td>0.000</td>
</tr>
<tr>
<td>Other Demersal</td>
<td>1.000</td>
<td>1.850</td>
<td>1.055</td>
<td>18.293</td>
<td>0.000</td>
</tr>
<tr>
<td>Large Pelagics</td>
<td>1.000</td>
<td>1.606</td>
<td>2.214</td>
<td>3.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Small Pelagics</td>
<td>1.000</td>
<td>2.536</td>
<td>2.700</td>
<td>3.500</td>
<td>0.000</td>
</tr>
<tr>
<td>Cephalopoda</td>
<td>1.000</td>
<td>0.953</td>
<td>3.300</td>
<td>11.333</td>
<td>0.000</td>
</tr>
<tr>
<td>Benthic Feeders</td>
<td>1.000</td>
<td>8.740</td>
<td>2.534</td>
<td>7.100</td>
<td>0.000</td>
</tr>
<tr>
<td>Infauna</td>
<td>1.000</td>
<td>30.695</td>
<td>1.722</td>
<td>11.226</td>
<td>0.000</td>
</tr>
<tr>
<td>Epifauna</td>
<td>1.000</td>
<td>26.421</td>
<td>0.717</td>
<td>5.777</td>
<td>0.000</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>1.000</td>
<td>7.930</td>
<td>1.703</td>
<td>5.777</td>
<td>0.000</td>
</tr>
<tr>
<td>Zooplankton</td>
<td>1.000</td>
<td>15.955</td>
<td>9.000</td>
<td>22.000</td>
<td>-</td>
</tr>
<tr>
<td>Benthic Algae</td>
<td>1.000</td>
<td>27.000</td>
<td>534.068</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phytoplankton</td>
<td>1.000</td>
<td>71.001</td>
<td>170.000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Detritus</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prey/Predator</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1 Finless Porpoise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Otter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Pisc. Birds</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Skates</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Flatfishes</td>
<td>0.023 0.050 0.176</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Adult Jacopever Rockfish</td>
<td>0.035 0.050</td>
<td>0.029</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Juv. Jacopever Rockfish</td>
<td>0.035 0.050 0.457 0.054</td>
<td>0.115 0.194</td>
<td>0.214 0.029 0.129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Other Rockfishes</td>
<td>0.035 0.050</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Sparidae</td>
<td>0.035 0.050</td>
<td>0.023 0.029</td>
<td>0.037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Anguilliformes</td>
<td>0.035 0.050</td>
<td>0.023 0.029</td>
<td>0.037 0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Moronidae</td>
<td>0.035 0.050</td>
<td>0.176 0.023 0.024</td>
<td>0.037 0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Grey Mullet</td>
<td>0.035 0.050</td>
<td>0.176 0.023 0.029</td>
<td>0.037 0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Hairtail</td>
<td>0.039 0.050</td>
<td>0.023 0.029</td>
<td>0.037 0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Other Demersal</td>
<td>0.035 0.050</td>
<td>0.176 0.023 0.044</td>
<td>0.062 0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Large Pelagics</td>
<td>0.006 0.050 0.029</td>
<td>0.029 0.159</td>
<td>0.020 0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Small Pelagics</td>
<td>0.018 0.026 0.057 0.031 0.044 0.054</td>
<td>0.027 0.056 0.033 0.080 0.036 0.010 0.052 0.390</td>
<td>0.053 0.005 0.014 0.184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Cephalopoda</td>
<td>0.045 0.229 0.088 0.009 0.019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Benthic Feeders</td>
<td>0.433 0.217</td>
<td>0.088 0.266 0.120 0.067 0.244 0.059 0.194 0.307</td>
<td>0.355 0.107 0.026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Infauna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Epifauna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Gastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Zooplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 Benthic Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Phytoplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Detritus</td>
<td>0.107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Diet composition by group in the Tongyeong ecosystem after marine ranching activities
생태계 차원에서의 수산자원관리 방안 연구

Fig. 3. Flowchart of trophic interactions in the Tongyeong ecosystem. The size of the boxes is roughly proportional of the logarithm of the biomasses, while the arrows document the fate of production.

비, 연간 어획량 등의 자료를 사용하였다. Table 3은 먹이조성 matrix로, 각 그룹의 종 먹이량에 대한 먹이종류별 조성비를 나타낸다. Fig. 3은 동영바다목장 생태계의 구조와 에너지흐름을 보여주는 그림으로서, 각 그룹의 사각형 크기는 상대적인 생체량 크기를 나타내고, 평행선은 각 그룹의 영양단계를 나타낸다. 화살표는 포식-피식 관계에 따른 에너지의 흐름을 나타낸다. 동영바다목장 생태계의 경우 영양단계 3에서 에너지 흐름이 활발하게 이루어지고 있음을 알 수 있다 (Fig. 3).

동영바다목장에서는 자원조성을 위해 인공어 조 설치, 해중물 조성, 그리고 종묘방류 사업 등 을 실시하였다. 이러한 조성사업은 생태계의 기초생산력을 증가시키고, 수산생물자원의 가입량, 성장률, 그리고 생존율을 증가시켜 자원량을 증대시킴으로써 높은 생산성을 가져올 것이다. Fig. 4는 이와 같은 복생사업으로 인한 효과를 Ecosim 모델을 사용하여 나타낸 것으로, 저서식물 생체량과 조피블락 가입량을 각각 매년 15% 와 10%씩 증가시켜 생태계 내 생물군의 변동

Fig. 4. A dynamic simulation showing the effect on the Tongyeong marine ranching ecosystem by the annual increase in biomass of benthic algae (15%) and recruitment of jacoever rockfish (10%).
결과 및 고찰
우리나라 해역의 적응방안
우리나라 수산자원관리 현황
우리나라의 수산자원관리는 간접방식에 의한 자원관리를 위주로 시행되고 있다. 간접방식에 의한 관리방법에는 어구제한과 어체크기/성별 제한, 어장/어기제한, 각 종의 보호수역이나 보호수면의 설정 등이 있다. 그러나 바다적 경제수역이 선포되면서 총려용 어획량 (TAC)에 의한 어업관리 제도를 채택해서 실시하고 있다. 또한, 아직 연구 중이거나 개발 단계에 있는 바다목장 조성에 의한 자원관리와 자율관리어업의 자원 관리 등이 있다. 자원조성을 위한 방안으로는 인공어조식설, 수산종묘방류, 바다 순 조성 등이 있다.
간접방식 자원관리
- 어구제한
수산자원보호령에서는 어종이상의 자망에 대해서는 동서해안 두 지역을 제외하고는 사용을 금지하고 있으며, 19개 어업에 대한 방의 크기를 제한하고 있다. 산란어 및 백성어를 보호하기 위하여 18개 어구에 대해서 산란기 동안에는 산란장에서의 어구사용을 금하고 있다. 또한 24종의 산란기간에는 어업이 금지된다. 12개의 근해여업어역에 대해서는 연안에서의 조업을 금하고 있다.
- 어체크기/성별제한
수산자원보호령에서 27종에 대해서는 어체크기를 제한하고 있는데, 이 크기는 50% 성숙크기를 기준으로 하고 있다. 또한, 두 종의 대게에 대해서는 양쪽의 어획을 금지하고 있다.
- 보호수역 (MPA)의 설정
수산자원을 보호하고 조성하기 위하여 산란장과 보육장에서의 어업을 금지시키고 있는데 현재 10개의 하구역과 만 (육지면적 1,289km², 연안면적 2,542km²), 그리고 호수부근의 21개 지역이 수산자원보호수역으로 지정되어 어업이 금지되고 있다. 광량면 내의 2개 수역은 육성수면으로 지정되어 이 수역 내에서는 어업이 제한되고 어장정조를 규칙적으로 해야 하며 수산종묘를 발류해서 수역을 육성해야 한다. 또한 5개의 섬과 하구역은 생태계보존수역으로 설정되어서 특성별로 안정된 생태계를 유지하도록 보전해야 한다. 서해안의 5개 습지 (83.54km²)와 호수, 하구역, 산지 주변의 7개 지역 (44.48km²)은 생물다양성을 보전하기 위해서 보호습지로 지정되어 있으며, 남서해안을 따라 9개 지역이 주가로 지정될 예정이다.

TAC 관리
바다적 경제수역이 선포되면서 총려용 어획량 (TAC)에 의한 어업관리 제도를 채택해서 2006 현재 7개 어업에 9개 어종을 대상으로 하여 실시되고 있다. 그러나 아직 이 제도는 시작된 지 얼마 되지 않아서 여러 가지 보완되어야 할 사항들이 있다. 이 보완사항으로는 과학적지번 제도의 정착와 자원정용 조사선의 확보, 자원평가 및 조사들에 의한 인력의 확보, TAC 결정시스템의 보완 등이 이에 해당한다.

바다목장
통영바다목장의 조성 및 관리사업은 아직 본격적으로 시행되지 않고 있으며 현재 연구단계에 있어서 생태계 기반 관리 방식으로 추진할 계획을 가지고 있다. 이 사업에서는 먼저 생태계 모델링 연구를 통하여 생태계 구조와 에너지 호흡을 파악한다. 생태계 구조의 분석을 통해 필요한 시설물을 바다목장에 설치하고, 이용대상의 자원생물의 자사자료를 적정량 안공방류하여 자원을 조성한다. 이러한 조성효과를 바다목장역학 시뮬레이션에 의해 생태계의 변동을 예측하고, 이용대상 수산자원들의 TAC를 설정해서 자원을 관리하는 방식으로서 생태계 기반 관리 개념에 이르는 것이다. 이러한 방식에 의해 통영에 이어 남해안의 전남바다목장과 서해안의 태안
바다목장, 동해안의 올진바다목장, 제주도의 바다목장 등이 선정되어 정부의 사업으로서 계속 추진되고 있다.

차음관리업체
차음관리업체는 어업인들이 스스로 자제규약을 제정하여 공동으로 볼طم어업을 단속하고 수산자원을 조성하고 관리하는 어업이다. 2006년 현재 참여공동체수는 443개소로 마을어업 159개소, 마을·양식어업 75개소, 양식어업 70개소, 어선어업 70개소, 어선·마을어업 42개소, 어선·마을·양식어업 2개소, 어선·양식어업 7개소, 구획어업 3개소, 경치마 3개소, 내수면 1개소이다. 이 방식은 어업인들이 자율적으로 어장 생태계를 보전관리하며, 수산자원의 관리도 수행하는 것이다. 2004년부터는 현재의 기반조성 단계에서 환산단계로 전환하여 궁극적으로 모든 어업공동체가 참여할 수 있도록 연차적으로 확대시켜 나가고 있다. 그리고 차음관리업체의 효율적이고 효과적으로 시행하기 위한 자원 관리 기술과 생태계 보전기술이 아직 개발되지 않은 상태에 있으므로, 앞으로 이 기술들은 정부에서 개발하여 보급할 계획이다.

생태계 기반 통합수산자원관리시스템 구축
우리나라의 수산자원은 주로 전통적인 간척 방식에 의해 이루어지는 어업관리로 인해 남획되고 있는 상황에서 연안오염, 간척배림 등의 상승작용으로 주요 자원들이 붕괴의 위협에 처해 있다. 이와 관련된 새만금 간척사업이나 시화호 매립사업 등은 사회적인 문제까지 유발시킨 바 있다. 이에 대처하기 위해서는 수산생물들의 생태학적 특성과 생태계의 환경변화, 기후변동, 생물 간 상호작용 등을 고려하는 거시적 생태계 지식기반 자원관리 지침이 시급히 마련되어야 한다. 현재 우리나라는 수산자원의 조성은 위해서 인공어여 조업과 수산종묘방류 사업을 수행해오고 있는데 아직까지 생태계 개념이 없이 수행되고 있기 때문에 많은 문제점이 노출되고 있으며, 또한 자원망이나 생산성의 증대 효과가 미흡한 것으로 평가되고 있다. 현재 시행 중에 있는 인공어여조업과 종묘방류사업과 바다목장 조성사업으로 어업생산력에 영향을 미치는 것도 현상시제 추진되어야 한다. 즉, 생태계 차원에서 자원과 그 주변의 환경을 동시에 고려해서 자원을 조성하고 관리하는 과학적인 통합수산자원관리체계를 만들여야 한다. 특히 우리나라 해역의 수산자원은 중요한 대 부분의 자원들이 고갈되어 어업생산성이 아주 낮은 상태에 있다. 따라서 생태계 차원의 수산자원 회복방안이 우선적으로 마련되어야 할 것으로 보인다. 이를 위해서는 과학적인 생태계 종합적 연구와 심도있는 자원평가 결과를 근거로 체계적인 방안이 수립되어야 한다. 우리나라의 생태계 기반 통합수산자원관리시스템을 구축하기 위하여 우리나라의 해역 생태계를 근형과 연안, 친해 및 내만으로 나누어서 대상어업과 관리주제 및 관리방법을 아래와 같이 고려해 볼 수 있다.

첫째, 근해에는 광역생태계 기반 TAC관리시스템을 만들어서 국가(필요하면 지역의 국체각구)가 관리체계가 되어서 주로 연근어어업을 대상으로관리하는 방안을 마련하는 것이 필요하다. 인접국가와 공동으로 자원조사를 실시하고 자료를 교환해서 광역생태계 모델링을 포함한 공동자원관리 방안을 마련해서 모든 어종대상 어종을 대상으로 TAC에 의한 예방적 자원관리시스템을 만들어야 한다. 이를 효과적으로 추진하기 위해서는 고갈된 수산자원을 회복시키기 위한 방안을 마련하고 대부분이 경제위협으로 인한 수산자원의 공동조사와 공동관리를 위해서 인접국가들이 가정 ‘동북아 수산자원관리기구’를 조속히설립하도록 노력해야 한다.

둘째, 연안이나 환경에는 생태계 기반 자율관리시스템을 만들어서 어업인들이 관리체계가
장장의

이어서 자율관리지역 공동체 어장의 어선어업
이나 마을어업, 양식어업을 대상으로 주민의식
을 가지고 관리할 수 있도록 해야 한다. 이 방법
으로는 자원을 조성 (회복) 하고 어장생태계를
보호 (불법어업 선지 보호 포함)하며, TAC
에 의한 자율관리시스템이 되어야 한다. 이 정책
이 효과를 거두기 위해서는 자원의 과학적 관리
능력이 선정되어야 한다. 이를 위해서는 자율관
리의 주체인 어업인들이 자율적으로 자원을 지
속가능하게 관리할 수 있는 능력을 갖추도록 정
부가 과학적인 자원관리 방법을 지도보급하고
관리체계를 구축해 주어야 한다.

채체, 일부 선정된 전해나 내안에는 생태계를
다양한 방법으로 변형해서 자원의 활용도를 최
적화 시킬 수 있는 바다목장관리시스템을 만들
어야 한다. 바다목장관리 공동체가 관리주체가
되어서 주로 어선어업 (주로 낚시어업)과 나장
어업에 의하여 바다목장 생태계를 효율적으로
이용, 관리하는 것이 바람직하다. 이 방법에는
생태계 기초생산력 증대를 위한 인위적 영용용
구조물 설치나, 고갈된 자원의 인위적 가입량 증
대를 위한 종묘방류, 인위적인 서식처 조성을 위
한 인공어초의 투입, 바다 숲의 조성 등이 포함
된다. 이 시스템에서도 TAC에 의한 과학적 자원
관리 체계를 갖추어야 한다. 이 사업을 위해서는
우선 해역별로 시범생태계를 선정해서 심도있
는 탐사성 연구가 선정되어야 한다.

한편으로는 전통적으로 시행되어 오고 있는
간접방식의 자원관리방법도 자원을 보존하는
보조수단으로서 아주 중요하므로 관련 범위 (수
산자원보호령 등)을 과학적으로 재검토해서 실
제로 지켜질 수 있도록 현실성 있는 법령이 되도
록 개정해야 한다. 또한 현재 시행 중에는
TAC에 의한 자원관리를 효율적으로 추진하기
 위해서 승선유지비 제도를 조기 운용해야 하며,
생물학적 허용어획량 (ABC) 추정치의 과학적인

Fig. 5. Flowchart of the ecosystem modeling for the ecosystem-based resources management.
생태계 관리에서의 수산자원관리 방안 연구

신희도를 높이기 위하여 ABC 추정체계를 보완하고 자원투명조사에 의한 현장조사를 강화해야 한다.

Fig. 5는 해양생태계 기반 관리를 수행하는데 필수적인 생태계 모델링 연구의 체계와 방법을 설명하는 flowchart이다. 생태계 모델링 연구에는 해양조사와 자원조사, 어업조사 등 방대한 조사에 의한 업정난 규모의 자료가 분석에 사용되며 이를 바탕으로 다양한 생태학적 파라미터들이 추정된다. 이들은 입력자료로 사용하여 생태계 구조모델에 의해 생태계의 영향단계별 구조와 에너지 흐름이 밝혀지고 환경수용량 (carrying capacity)이 추정된다. 이러한 분석결과를 사용하여 생태계 기반 자원관리 방안이 마련될 수 있다.

이 관리방안에 대한 효과는 다시 생태계 역학적 시뮬레이션 모델에 의해 추정되고 생태계의 구조가 어떻게 변화하는지를 예측할 수 있다.

생태계 기반 수산자원관리의 개념은 해양생태계에 관한 현재의 과학적 지식과 정보, 그리고 해양생태계와 인간과의 관계에 관한 경험적인 정보를 기초로 만들어진 결과이다. 그러나, 현재까지의 과학적 지식수준은 이러한 개념을 만들기에 충분하지 않다. 그럼에도 불구하고, 이러한 개념을 수산자원의 관리에 실제 적용하기 위해서는 생태계의 과정이나 생태계의 역학에 대해 더 깊이 이해되어야 한다. 이를 위해서 우선적으로 필요한 연구 분야로서 다음과의 두 가지를 생각해 볼 수 있다. 첫 번째는, 어업이 해양생태계에 미치는 영향을 이해하는 연구이고, 두 번째는 해양생태계의 상태와 변동성을 모니터링 하는 것이다.

여업이 생태계에 미치는 영향을 좀 더 자세하게 설명하면 다음과 같다. 특정 어류자원을 폐가하는데 필요한 자료는 때때로 제한되어 있지만, 양육되는 어종들에 대한 어업의 영향은 대체로 이해되고 있다. 목표연에 대한 어업의 영향은 자원량이 10배이상 감소된 경우에도 종종 목격되고 있기 때문에 경도가 아주 심각할 수 있음을 알 수 있다. 어업은 연령조성과 같은 개체군 구조 뿐만 아니라 개체군의 유전적인 조성이 변화될 수 있으므로 어업으로 인한 유전적인 변화를 연구하는 것이 필요하다. 어업은 또한 부수어업 과 폐기에 의해 비목표연에 영향을 줄 뿐 아니라 특정어류에 의한 서식지 파괴나 선별어획으로 인한 해양생태계의 구조와 기능에 대해서도 영향을 미치는 것으로 알려져 있다.

따라서, 어업이 생태계를 어떻게, 얼마나 변화시키는가에 대해 연구가 필요하다. 즉, 총의 풍도와 다양성, 멸어짐 역학, 서식처 변화, 어업에 의한 영향의 폭과 크기 등이 연구되어야 한다. 이 같은 연구를 통해서 어업관리에 실용적으로 사용할 수 있는 정량적인 생태계 건강 지수를 개발할 수 있을 것이다. 또한, 어업이 생태계에 미치는 영향에 대한 복잡성에 대해 예측적 방법을 적용시키는 전략수립도 연구에 포함되어야 한다. 위험을 줄이기 위한 방법으로 해양보호구역의 지정이나 굴착/굴레어장 지정, 정비 및 체계 관리, 어구제한과 같은 전통적인 어업관리 정책도 정량적으로 재평가되어야 한다.

해양생태계의 상태와 변동성을 모니터링하기 위해서 새로운 생태계 모니터링 프로그램을 만드는 것은 매우 중요하다. 이 모니터링 프로그램은 해양생태계에 대해 자연이 야기하는 변화와 인간에 의해 초래되는 변화를 포괄적으로 이해할 수 있게 한다. 예를 대상으로, 대표 표준화된 체질방법에 의한 자원조사와 어획자료를 통해서 정리적으로 모니터링 된다. 그러나 우리 어획자는 경우에서도 어획자료와 자원조사 자료를 함수가 있다. 어떤 생태계에 있어서는 폭발하는 자료와 해양 포유류에 대한 자료가 있기 마련, 해양생태계의 모든 구성요소들에 대한 자료는 더 제한적이다. 이 같은 이유로, 이 모니터링 프로그램은 기존의 자원평가 방법을 향상시키기 위한 추가자료와 미래의 생태계 모델에 대한 입력자료에 관한 자료를 얻기 위해서 계획이 과학적으로 수립되어야 한다.

우선, 기존의 모니터링 프로그램을 확장시켜
장 왕 익

서 해양생태계의 상태와 동태에 대한 자료를 수집하여 생태계에 기초한 관리방안 마련에 필요한 생물학적-물리학적 관계를 구명해 나가는 방법이 가능할 것이다. 이 환경을 통해서 자료가 제한되어 있는 어류 대상은 현재 자원평가용 자료가 부족한 부분을 보충할 수 있고, 생태계의 다른 구성요소들이 어떻게 달라지는지를 체계 적으로 모니터링 할 수 있다.

일반적으로 어업이 생태계에 미치는 영향을 정확히 예측할 수는 어렵기 때문에, 그 영향이 부적절하다는 명칭을 얻어야 하고, 또한 이러한 생태계의 변화가 자연적인 변화인지 인간이 아닌 변화인지를 구별해야 한다. 북태평양에 발생한 공간적으로나 시간적으로 큰 규모의 기후계체변동도 이와 같은 진기적인 모니터링을 통해서 간과된 바 있다 (Zhang et al., 2000; Wooster and Zhang, 2004).

이 모니터링 프로그램은 어류 (유영어류, 지어 어류), 기초생산자, 동물플랑크톤, 저서생물 (저서식물, 저서동물), 해양포유류, 바다새류 등의 생물학적 자료와, 물리화학적인 요소들을 포함해서 해양생태계의 수용력과 잠재생산력을 평가할 수 있어야 한다. 이 자료들은 정규 조사선을 포함한 다양한 방법에 의해 얻어 질 수 있다. 예를 들면, 양육장과 어선으로부터의 어업 표본 조사, 인공위성, 비행선, 부표로부터의 위기탐사, 잠수정 발사, 자동해저자 조사 등과 같은 것이다. 이러한 자료와 정보는 누구나 쉽게 접근할 수 있도록 최신 자료관리시스템에 의해 관리되어야 한다. 이러한 모니터링은 정부과학자 외에 아니라 연구기관을 포함한 국가적 규모로 나아가 PICES와 같은 국제기구를 통해서나 아니면 GLOBEC, YS-LME 등과 같은 국제프로젝트로 발전되어 수정되어야 한다.

생태계 기반 자원관리 방법은 모든 가능한 상호작용을 고려해야 한다. 이 상호작용은 포식자와 공생자, 백인종들과 목표어류자원과의 관계, 어업생물과 생태계에 대한 기후의 영향, 어류와 그들의 서식처 사이의 복합적인 상호작용, 어류 자원과 그들의 서식처에 대한 어업의 영향 등이 다. 그러나 이러한 영향들은 아직 명확하게 밝혀져 있지 않다.

우리나라에서 생태계 기반 통합관리시스템을 추진하기 위해서는 첫째, 제도가 마련되어야 한다. 해양생태계 기반 통합관리시스템을 구축하기 위해 해양수산부가 주관이 되어 외교통상부, 환경부, 과학기술부, 기상청이 공동으로 로드맵을 만드어야 하는데 이를 위해서 적절한 기초 법률에 명시하거나 필요시에는 입법도 추진해야 한다. 둘째, 연구 활동을 강화해야 하는데 해양환경조사, 생태계 조사 및 어업자원조사와 지구 온난화, 온실가스 변화가 기후 변화, 해양 관련 연구지원 체제 구축도 필요하다. 셋째, 어업인들의 이해와 동참이 필요하다. 수산자원은 국가의 재산이며 한번 낙하면 되복되는데 많은 기간이 소요된다는 점을 이해하야 불법어업을 어업인 스스로 단속하고 불법 어구나 어업의 사용을 지양해야 한다. 또한, 국가의 자원복구를 위한 정책에 주민의식을 가지 고 적극 동참해야 한다. 넷째, 국제협력의 강화를 해야 한다. 분야별로 국제기구에의 참여를 강화하고 적극적인 활동을 해야 한다. 예를 들면, WTO의 수산물 수입개방과 보조금 규제, 관세인하, APEC의 무관세협상, OECD의 환경어업, IWC의 고래보호관리, PICES의 생태계 연구와 관리, UNESCO/IOC의 해양과학과 해양법, FAO의 수산자원과 어업생산, WMO, IPCC의 기후 기후변화, GEOSS의 전 지구 관측체계 등이다.

미국의 예를 보면, 국가의 법률로 생태계 차원의 관리를 명시하고 있으며, 해양대기청 (NOAA)은 2004년 국가 해양개발 5개년 계획 및 21세기 1/4분기 계획 (2005~2025)에 따른 전략 비전 (Strategic vision) 4과목을 수립하면서 생태계 기반 관리 (Ecosystem-based management) 를 21세기 추진과제 중 최우선과제로 설정하여 추진 중에 있다. 또한, 북태평양해양과학기구
생태계 차원에서의 수산자원관리 방안 연구

(PICES)는 2003년 ‘생태계 기반 관리과학 및 북태평양 응용 작업반’을 구성해서 생태계 기반 관리연구를 국제적으로 시행하였다.

사 사

본 연구는 해양생산 첨단산업 육성을 위한 전문 인력양성사업 (NURI)의 ‘생태계 차원에서의 수산자원관리 방안연구’의 연구비 지원을 받아 수행되었습니다.

결 론

해양생태계기반 수산자원관리 시스템의 조기 구축으로 우리나라의 선진국 수준의 자원 및 환경 관리분야에서 선진국 대열에 진입하는 해양 수산강국이 될것이며, 동북아 국가내의 핵심적 선도권을 선점하고 어업협상 시 모든 영역에서 비교우위를 유지하여 동북아 해양질서를 선도할 수 있을 것으로 보인다. 또한, 풍부한 수산자원의 확보로 어업생산성이 증대되므로 어업의 국제경쟁력이 높아져서 WTO나 FTA에 대한 우리보다는 오히려 어업인의 소득 증대와 더불어 국가의 동물성 단백질 식량자원 공급을 원활하게 해 줄 것이다. 이 시스템으로 부가적으로 얻게 되는 폐착한 해양환경은 안락한 바다휴식처를 제공할 수 있을 것이다. 우리나라의 수산은 지금 엄청나게 중요한 기로에 처해 있다. 금세기 초에는 기밀로 수산전진국으로 진입할 수 있도록 우리 모두가 지혜와 협을 모아야 한다. 생태계 기반 자원관리는 현재 수준에서는 현행 자원관리를 보완하는 수단으로 이해해야 할 필요가 있다. 어류와 어업에 존재하는 복잡한 생태학적 환경에서 어업이 생태계에 미치는 영향과 생태계 변화가 어업에 다시 미치게 될 영향을 조금씩 이해해 나가면 점차 생태계 개념을 어업자원관리에 적용해 나갈 수 있다. 그러나 생태계에 기초한 어업관리 방법이 현행 어업관리의 문제들을 모두 해결할 수는 없다. 복잡/과도어획의 불식이나 시식처 보호, 생태계 연구와 모니터링 프로그램의 지원 등에 정부의 의지가 결합되어 있으면 아무리 훌륭한 생태계 기반 관리방법을 사용하더라도 큰 효과를 기대할 수 없을 것이다.

참고문헌

Houghton, R.G., 1981. A mixed fishery assessment of the

Pope, J.G., 1979. A modified cohort analysis in which constant natural mortality is replaced by estimateds of predation levels. ICES CM 1979/H, pp. 16.

