Standardization of CPUE for bigeye (*Thunnus obesus*) and yellowfin (*Thunnus albacares*) tunas by the Korean longline fishery in the Indian Ocean

Youjung Kwon, Doo Hae An¹, Jae Bong Lee²*, Chang Ik Zhang and Dae Yeon Moon¹

Department of Fisheries Physics, Graduate School, Pukyong National University, Busan, 608-737, Korea

¹Distant Water Fisheries Resources Division, National Fisheries Research and Development Institute, Busan, 619-902, Korea

²Fisheries Resources Research Division, National Fisheries Research and Development Institute, Busan, 619-902, Korea

This study standardized catch per unit effort (CPUE) of the Korean longline fishery, which has been used to assess the status of stock as an index of abundance, for bigeye and yellowfin tunas in the Indian Ocean. The Generalized Linear Model (GLM) was used to analyze the fishery data, which were catch in number and effort data collected each month from 1971 to 2007 by 5 × 5 degree of latitude and longitude. Explanatory variables for the GLM analysis were year, month, fishing area, number of hooks between floats (HBF), and environment factors. The HBF was divided into three classes while the area was divided into eight sub-areas. Although sea surface temperature (SST) and southern oscillation index (SOI) were considered as environmental factors, only SST was used to build a model based on statistical significance. Standardized CPUE for yellowfin tuna showed a declining trend, while nominal CPUE for the species showed an increasing trend.

*Corresponding author: leejb@nfrdi.re.kr, Tel: 82-51-720-2296, Fax: 82-51-720-2277
Key words: Bigeye tuna *Thunnus obesus*, Yellowfin tuna *Thunnus albacares*, Standardized CPUE, Generalized Linear Model, Indian Ocean

서 론

다양어류는 경골어강(Class Osteichthyes) 농어목(Order Perciformes) 고등어과(Family Scombridae)에 속하는 어류로, 눈다량어, 황다량어, 낙가다량어, 가다량어, 낙다량어 등이 있다. 이들 은 모두 고도회유성어종으로 외양상이며, 각 대양별로 하나 혹은 두개의 계통군으로 구성되어 있다(FAO, 1997). 특히, 눈다량어(T. obesus)는 전 대양의 온대 및 열대해역에 광범위하게 분포하고, 대양의 표층 근처 또는 중층 수역(수심 0 - 250m)에서 생활한다(FAO, 2003). 10°N - 10°S 사이 동부대양양에서는 연중 산란을 하나 북반구에서는 4 - 9월, 남반구에서는 1 - 3월이 주 산란기이다. 황다량어(T. albacares)는 전 대양의 온대 및 아열대 해역에 걸쳐 광범위하게 분포하며, 주로 표층에서부터 수온약중을 경계로 그 주위에서 서식한다(FAO, 2003). 눈다량어와 황다량어는 전 대양에 분포하기 때문에 각 서식해역에 따라 관리하는위원회가 각각 다르며, 인도양에서는 인도양다량어위원회(Indian Ocean Tuna Commission, IOTC)에서 관리하고 있다.

인도양해역에서 눈다량어와 황다량어는 1950년대 초부터 어획되기 시작하였으며, 최근에는 전 세계 38개국이 어획하여 50만톤의 어획량 수준을 보이고 있는데(FAO, 2007). 이 중 우리나라를 비롯한 6개국이 총어획량의 52%를 차지하고 있다. Fig. 1(a)는 인도양 해역에서의 눈다량어 및 황다량어 어획량 상위 6개국에 대한 어획량 변동을 보여주고 있다. 1980년대 초반까지는 10만톤 이하의 어획량 수준을 보이고 있다. 어획량 초반부터 1960년대 중반까지는 대부분 일본이 어획하였으나, 점차 우리나라, 대한민국, 인도네시아 등의 국가에서도 어획에 참여하였다. 1980년 중반부터 인도네시아, 프랑스 스페인의 어획 참여로 인도양해역에서 눈다량어와 황다량어의 어획량이 증가하여 최근에는 30만톤 정도가 어획되고 있다.

인도양해역에서의 우리나라 다량어연속어업은 1960년대 중반부터 시작되어 1970년대 중반부터 1980년대 초반까지는 총어획량의 절반 이상을 우리나라가 차지하였다. 우리나라 다량어연속어업의 어획량은 조업시작 이후 꾸준히 증가하다가, 1977년 6만 5천톤을 기점으로 감소하여 1988년 이후부터는 1만톤 내외의 낮은 어획량을 나타내고 있다. Fig. 1(b)와 같이 우리나라 다량어연속어업에 의한 주어획대상은 눈다량어와 황다량어이며, 어획에도 낙가다량어, 낙방참다량어, 가다량어 등이 부수적으로 어획되고 있다.

국제수산기구에서 다량어 자원을 대상으로
수행되는 자원평가의 대부분은 종도수를 사용한 개체군역학모델에 의해 자원평가가 평가되고 있으며 (Polacheck et al., 1993), 종도수로는 단위 노력 당 어획량 (catch per unit effort, CPUE)이 널리 사용되고 있다 (Mauner, 2001).

지금까지 우리나라 담량어연산어업에 의해 어획되는 인도양해역 논등량어와 황등량어의 어획자료가 포함된 자원평가는 지급까지만 수행된 바가 없으며, IOTC에서는 일본 및 대만의 어획자료를 사용한 논등량어 및 황등량어 자원평가 결과를 채택해 오고 있다. 이에 1970년대 초반부터 수집된 본 해역의 어항현황 및 우리나라 담량어연산어업의 어획자료를 활용하여 향후 수행된 다량어 자원평가를 위한 기반연구의 일환으로 CPUE의 표준화 연구가 필요하다.

따라서, 본 연구에서는 인도양해역의 우리나라 담량어연산어업에서 어획되는 논등량어 및 황등량어의 시공간적 변동을 살펴보고, 계절성, 어항현황, 어구 등의 외부요소들이 미친 영향에 대하여 CPUE를 표준화하였다. 마지막으로 표준화된 CPUE를 통해 논등량어와 황등량어간의 어획관련성을 비교하였다.

자료 및 방법

인도양해역에서의 우리나라 담량어연산 어획자료는 국립수산과학원에서 1971 - 2007년간 출어선 선장들로부터 수집한 조업일지에 기재된 어획관련 자료를 5°×5° 단위로 나누어 정리하였다. 대상해역은 인도양동대양어위(Indian Ocean Tuna Commission, IOTC)의 관리해역인 51 번과 57 번 해역을 7 개의 소해역으로 나누었던 Okamoto and Shono(2006)의 해구 구분을 근간으로 본 연구에서는 Fig. 2와 같이 7개의 소해역을 추가하여 전체 8개의 소해역으로 구분하였다. CPUE 표준화에 사용된 어획관련 자료는 논등량어 및 황등량어의 어획수수, 노력량(남시수), 등과 동간의 납시 바늘수 (number of hooks between floats, HBF) 및 환경인자들을 사용하였다. 여기서 HBF는 남시 바늘수에 따라 9개 이상, 10에서 15개, 16개 이상으로 크게 3개의 그룹으로 나누었으며, 환경 인자는 남방전동계수(southern oscillation index, SOI)의 어획시점의 표층수온 차이(SST)를 사용했다.

논등량어와 황등량어의 연산어업CPUE에 영향을 미치는 인자를 구명하기 위해 일반선형모델 (Generalized Linear Model, GLM)을 설정하고, 인자 선택은 분산분석법 (analysis of variance, ANOVA)을 통해 전기조차법 및 후진조차법을 사용하였으며, 통계분석은 SAS (version 9.1 for Windows)를 사용하였다. 본 연구에서 사용된 논 등량어와 황등량어의 CPUE 자료는 큰 오차 구조 (multiplicative error structure)를 가정하고 관향된 확률분포를 가졌 (Quinn and Deriso, 1999).
대수정규분포(log-normal distribution)를 가정하고 대수변환하였다.

일반선형모델(GLM; Nelder and Wedderburn, 1972)은 CPUE와 관련된 많은 인자들 중에서 영향을 미치는 인자를들 분리시키는데 가장 보편적으로 사용되는 방법이다(Maunder and Punt, 2004). 일반선형모델의 일반식은 식(1)과 같으며, 종속변수의 기대값은 각 독립변수들의 선형 관계를 가정한다(Guisan et al., 2002).

\[g(\mu) = X_1^T \beta \]

여기서 \(g \)는 미분함수이고, \(\mu = E(Y) \)는 연결함수, \(X_1 \)는 종속변수\(i \)번째 값에 대한 독립변수들의 벡터, \(\beta \)는 추정 가능한 파라미터의 벡터, \(Y_i \)는 \(i \)번째 반응변수이다. 식(1)으로부터 연속어업에 의한 돼다리어와 황다리어의 CPUE 표준화에 적용된 일반선형모델은 식(2)과 같다. 본 연구에서 는 인도양대양어위원회(IOTC)가 일본 및 대만의 CPUE 표준화 분석에 사용한 인자들 중에서 현재 우리나라 대양어연수 여isque료에서 이용 가능한 자료인 시기, 해역, 어구특성, 표층수온 등이 인자로서 고려되었다(Okamoto et al., 2007; Liu et al., 2007; Wang et al., 2006). 종속변수인 CPUE의 분산을 줄이기 위한 대수변환시 이론이 없을 때(CPUE=0)를 고려하여 CPUE에 상수 (c=0.1)를 더하였다(Maunder and Punt, 2004). 모든 독립변수들은 틀리변수(dummy variable)에 의해 일반선형모델에서 범주화되어 분석되었으며, 환경변수인 표층수온 및 남방젠투계수는 종속변수로 분석되었다.

\[\log(U_{ij} + c) = \mu + Y_i + M_j + A_k + H_l + E + (interaction) \]

여기서 \(U_{ij} \)는 낚시바늘 1,000개당 어획미수 \(c \)는 상수, \(\mu \)는 절편 \(Y_i \)는 \(i \)년도에 의해 CPUE가 받은 영향, \(M_j \)는 \(j \)월에 CPUE가 받은 영향 \(A_k \)는 \(k \)해역에서 CPUE가 받은 영향, \(H_l \)은 HBF로부터 CPUE가 받은 영향 \(E \)는 환경요인에 의해 CPUE가 받은 영향을 나타낸다. 또한, CPUE의 연도 \(Y_i \)에 대한 영향은 연간 증감에 반영하기 때문에 필요 인자로 포함하여(Maunder and Punt, 2004), 단일 인자들과 더불어 각 모델내에서 주요 요소들 사이의 상호작용(interaction)이 고려되었다. 환경인자(E)는 어획시점의 표층수온 및 남방젠투계수를 입력하였으나, 남방젠투계수는 분석과정에서 동계적적으로 유의하지 않아 소거하고 본 연구에서는 표층수온(T) 자료만을 선택하였다.

본 연구의 일반선형모델의 기본식인 식(2)에서 소개법에 의해 적합화된 식은 식(3)과 식(4)이다. 식(3)은 늑다리어, 식(4)는 황다리어의 CPUE 표준화를 위해 적합된 식이다.

\[\log(U_{ij} + c) = \mu + Y_i + M_j + A_k + H_l + T \]

\[+ (Y \times A) + (A \times H) + (M \times H) + (M \times T) \]

(3)

\[\log(U_{ij} + c) = \mu + Y_i + M_j + A_k + H_l + T \]

\[+ (Y \times A) + (T \times X) + (M \times A) \]

\[+ (A \times H) + (T \times H) \]

(4)

식(3)과 식(4)에서 추정된 \(Y \times A \)에 대한 최소제곱 평균치(least square mean, LSM)를 사용하여 식(5)와 같이 Shono and Ogura(1999)에서 사용한 방법으로 표준화된 연간CPUE를 계산하였다.

\[U_i = \sum W_k \cdot (e^{LSM}_{i,k}) - c \]

(5)

여기서 \(U_i \)는 \(i \) 연도에 대해 표준화된 CPUE, \(W_k \)는 \(k \)소해역의 상대적 크기로, 대상해역(고장)에 대한 면적의 총합계는 1이다(\(\sum W_k = 1 \)).

결 과

1971년부터 2007년까지 인도양해역에서 우리나라 연수어업에 의한 늑다리어의 연간 어획미수는 Fig. 3과 같이 1978년에 최고를 나타낸 이후 80년대 중반과 90년대 중반에 다소 증가하
적원을 전반적으로 감소추세를 보였고, CPUE 역시 어획량 동향과 유사한 경향을 나타냈다 ($r = 0.524, P = 0.001$). 각 소해역별 어획량을 살펴보면 소해역 1부터 5에 이르는 북부 및 중부 인도양해역에서 대부분 어획되었다. 1970년대 후반에는 소해역 1과 3에서 높은 어획량을 보였으나, 이후 감소하여 1990년대 후반부터는 대부분의 소해역에서 어획량이 크게 감소하였다. 소해역별 CPUE 변동은 소해역 7 ($r = 0.038, P > 0.1$)을 제외한 대부분의 소해역에서 어획량과 유사한 경향을 보였다.

Fig. 3. Time series of annual catch and CPUE of bigeye tuna by sub-area in the Indian Ocean.

Fig. 4. Time series of annual catch and CPUE of yellowfin tuna by sub-area in the Indian Ocean.
우리나라 닫다방어의 연속어업에 의한 인도양해역 낚다방어 (Thunnus obesus) 및 황다방어 (Thunnus albacares)의 CPUE 변화

사한 경향을 나타냈다.

황다방어의 어획미수 변동은 Fig. 4와 같은데, 연간 어획미수의 1978년에 최고어획을 나타낸 이후 지속적인 감소 추세를 나타내어 닫다방어의 어획량은 유사하였다. 황다방어의 CPUE는 1980년대 후반까지는 어획변동과 유사한 경향을 나타냈으나 이후 증가하여 어획과는 반대의 경향을 나타내었다 (r=0.455, P=0.005). 각소해역별 어획은 소해역 1과 3에서 높았으며 상대적으로 소해역 6부터 8까지에 이르는 남부인도양해역에서는 거의 어획이 이루어지지 않았다. 특히 황다방어 어획이 최고를 보인 1978년에는 전체 어획의 약 60%가 소해역 3에서 어획되었으며, CPUE의 소해역별 변동은 상대적으로 높은 어획량을 보이는 북부 및 중부 인도양해역의 경우 어획변동과 유사한 경향을 보였으나 어획이 낮은 남부해역에서는 다소 차이를 보였다.

1971-2007년까지 전체적인 녹다방어와 황다방어의 어획은 대부분 북·중부 인도양해역을 중심으로 어획되고 있었으나, 1980년대 후반부터는 어획이 급감하면서 어장의 위치도 중서부

인도양해역으로 이동하였다. 또한 Fig. 5는 각소해역별 녹다방어와 황다방어에 대한 어획변동을 나타내는데, 누적 어획량은 소해역 3이 높은 수준을 나타냈고, CPUE는 상대적으로 어획이 적은 소해역 5와 6에서 각각 가장 높았다. 하지만, 소해역별 어획미수와 CPUE의 중산경향은 유사성이 있겠다는 녹다방어 r=0.381, P=0.352; 황다방어 r=0.451, P=0.282.

Table 1은 일반실험모델에 의한 1971년부터 2007년까지 녹다방어와 황다방어의 연도 해역, 어구, 환경인자에 대한 ANOVA 결과이다. 각자들의 자유도에 의해 제목으로 나뉘는 값들에 차이는 Type II의 제공한 결과 값들을 통해 살펴보았는데 연도 개발 해역 어구 수온에 따른 결과값들은 녹다방어와 황다방어 모두 통계적으로 유의하게 나타났다. 특히 두 어종 모두 해역의 영향이 CPUE가 가장 크게 영향을 미치는 것으로 나타났다. 각자들의 상호작용에 대한 영향에서 녹다방어는 Y×A, A×H, M×H, M×T에서 유의한 결과가 나왔으며, 황다방어는 Y×A, Y×T, M×A, A×H, T×H에서 유의한 결과가 나타났다. 두 어종의 CPUE 관측치와 추정치에 대한 표준화치는 Fig. 6과 같이 모두 정규 분포를 따르는 것으로 나타났으므로 이 분석결과가 타당한 것으로 판단되었다.

Fig. 7에서는 두 어종의 표준화된(STD) CPUE가 표준화되기 전(nominal)과 비교해도 전체적인 중산경향이 유사한 것으로 나타났다. 특히, 녹다방어와 황다방어의 CPUE는 표준화 전과 후에서 공동적으로 1970년대 초반에는 음의 값을 보인 후 1970년대 중·후반부터는 양의 값을 계속하여 1980년대 중반까지 지속되었다. 하지만 1980년대 후반까지는 녹다방어와 황다방어의 CPUE 아노발리는 서로 반대의 경향을 보였다. 다시 말해 녹다방어 CPUE 아노발리는 1980년대 후반-1990년대 후반까지 양의 값을 보인 후 2000년대 이후 음의 값을 계속되었던 반면, 황다방어는 동일한 기간동안 음의 값을 보

Fig. 5. The correlation between accumulative catch and CPUE of (a) bigeye and (b) yellowfin tunas by sub-area in the Indian Ocean.
인 후 전환되어 최근에는 양의 값을 띠는 경향이 두드러졌다. 눈 tatsa위의 CPUE는 Fig. 7(a)와 같이 표준화 전과 후에서 모두 1978년 이후 유사한 감소하는 경향을 보였고(\(t = 0.407, P = 0.001\)). 또한, 표준화된 CPUE는 표준화 이전에 비해 변동성(CV)이 더욱 증가하여 유의한 분산 차이를 보였으며(\(F = 2.38, P < 0.01\)), 평균값은 유의한 감소를 나타냈다(\(t = 4.49, P < 0.001\)). 눈 tatsa위의 CPUE 평균값에 대한 아노발리는 표준화 전후의 CPUE에서 모두 1970년대 후반~1980년대 후반까지와 1990년대 중반에서 양의 값을 나타냈으며, 최근 2000년대에 들어서는 음의 값으로 전환되는 경향을 보였다. 황 tatsa위의 CPUE는 Fig. 7(b)와 같이 표준화 전과 후에서 변동성이 유사하였으며(\(t = 0.463, P = 0.004\)), 전반적인 변동은 감소 후 증가향을 나타냈다. 표준화된 CPUE는 표준화 이전에 비해 변동성(CV)이 크게 증가하여 유의한 분산 차이를 보였으며(\(F = 1.93, P < 0.05\)), 평균값은 유의하게 감소하였다(\(t = 4.86, P < 0.001\)). 황 tatsa위의 CPUE 아노발리는 1970년대 후반~1980년대 후반까지는 눈 tatsa위에서와

Table 1. Results of ANOVA for standardizing CPUE

(a) Bigeye tuna

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>315</td>
<td>957.59</td>
<td>3.04</td>
<td>9.55</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Error</td>
<td>1,580</td>
<td>502.76</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>1,895</td>
<td>1,460.34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>36</td>
<td>212.30</td>
<td>5.90</td>
<td>18.53</td>
<td>< 0.001</td>
</tr>
<tr>
<td>M</td>
<td>11</td>
<td>13.42</td>
<td>1.22</td>
<td>3.83</td>
<td>< 0.001</td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>72.40</td>
<td>10.34</td>
<td>32.50</td>
<td>< 0.001</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>2.19</td>
<td>1.10</td>
<td>3.45</td>
<td>0.032</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>2.69</td>
<td>2.69</td>
<td>8.46</td>
<td>0.004</td>
</tr>
<tr>
<td>Y × A</td>
<td>211</td>
<td>183.48</td>
<td>0.87</td>
<td>2.73</td>
<td>< 0.001</td>
</tr>
<tr>
<td>A × H</td>
<td>14</td>
<td>7.61</td>
<td>0.54</td>
<td>1.71</td>
<td>0.048</td>
</tr>
<tr>
<td>M × H</td>
<td>22</td>
<td>12.53</td>
<td>0.57</td>
<td>1.79</td>
<td>0.014</td>
</tr>
<tr>
<td>M × T</td>
<td>11</td>
<td>14.03</td>
<td>1.28</td>
<td>4.01</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

(b) Yellowfin tuna

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>395</td>
<td>999.97</td>
<td>2.53</td>
<td>6.96</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Error</td>
<td>1,476</td>
<td>537.25</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>1,871</td>
<td>1,537.22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>36</td>
<td>30.76</td>
<td>0.85</td>
<td>2.35</td>
<td>< 0.001</td>
</tr>
<tr>
<td>M</td>
<td>11</td>
<td>25.65</td>
<td>2.33</td>
<td>6.41</td>
<td>< 0.001</td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>58.69</td>
<td>8.38</td>
<td>23.04</td>
<td>< 0.001</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>3.57</td>
<td>1.78</td>
<td>4.90</td>
<td>0.008</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>1.41</td>
<td>1.41</td>
<td>3.88</td>
<td>0.049</td>
</tr>
<tr>
<td>Y × A</td>
<td>209</td>
<td>206.64</td>
<td>0.99</td>
<td>2.72</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Y × T</td>
<td>36</td>
<td>28.61</td>
<td>0.79</td>
<td>2.18</td>
<td>< 0.001</td>
</tr>
<tr>
<td>M × A</td>
<td>77</td>
<td>103.10</td>
<td>1.34</td>
<td>3.68</td>
<td>< 0.001</td>
</tr>
<tr>
<td>A × H</td>
<td>14</td>
<td>11.02</td>
<td>0.79</td>
<td>2.16</td>
<td>0.007</td>
</tr>
<tr>
<td>T × H</td>
<td>2</td>
<td>3.35</td>
<td>1.68</td>
<td>4.61</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Fig. 6. Histogram of residuals in GLM. (a) Bigeye tuna, (b) Yellowfin tuna.

Fig. 7. Time series of nominal and standardized CPUEs (left panel) and their anomalies (right panel) for (a) bigeye and (b) yellowfin tunas in the Indian Ocean. STD indicates standardized CPUE.
Fig. 8. Correlations between catch and CPUEs for bigeye and yellowfin tunas in the Indian Ocean. (a) & (c) Catch vs. Nominal CPUE, (b) & (d) Catch vs. STD CPUE. STD means standardized CPUE.

Fig. 9. Correlations of CPUEs between bigeye and yellowfin tunas. (a) Nominal CPUE, (b) Standardized CPUE.

유사하게 양의 값을 보였으나 이후 낮아져 1990년대 후반까지는 음의 값을 나타냈다.

표준화된 CPUE는 Fig. 8과 같이 표준화 이전에 비해 실제 어획량 변동은 보다 잘 설명하였으며, 눈داف랑어의 실제 어획량의 변동은 표준화된 CPUE ($r = 0.750$, $P < 0.001$)가 표준화 이전 ($r = 0.524$)에 비해 43% 향상된 상관성으로 설명되었으며, 황다랑어의 경우에는 표준화된 CPUE ($r = 0.667$)가 표준화 이전 ($r = 0.456$) 대비 47% 향상된 상관성으로 설명되었다.

インド洋におけるアンダアやイエロフィンの捕獲とCPUEの関係をFig. 9のように比較した。標準化される前後の比較において、アンダアやイエロフィンの捕獲量の変動の説明力が高まり、標準化される前のCPUE ($r = 0.524$, $P < 0.001$)が標準化される前のCPUE ($r = 0.456$)に比べて、43%の向上を示す結果が得られた。

고 참
어획량이 일정하다고 가정할 때, CPUE는 상대적인 자원의 중도성을 나타낸다. 그러나 실제 CPUE는 조업 시기, 환경, 어군 등에 따라 유의한 양의 상관성을 나타내는 경우가 있다 ($r = 0.481$, $P < 0.01$).
우리나라서양어란어(Thunnus obesus) 및 황자란어(Thunnus albacares)의 CPUE 변화

과정이 수행되지 않으면, 자원량과 관계 혹은 관
소추정되어자원관리의 실패를 야기시킬 수 있
다. 따라서 자원평가의 기본 입력자료가 되는
CPUE의 표준화가 평가 이전에 우선시되어야
한다(Maunder, 2001). 그러나 CPUE를 표준화 하
는 데 있어서 사용되는 자료는 출어한 어선의 일
별 혹은 분기별 조업일자의 자료에 의존하기 때
문에 사용할 수 있는 자료가 한정되어거나 국가
또는 분석자들에 따라 달라질 수 있다.
Gavaris(2008)는 국가 어구형태, 범급 월 조업
해택, 연도별 CPUE에 영향을 주는 인자로 간주
하였으며, Olsen and Laevastu(1998)는 연속어업
CPUE에 영향을 미치는 인자를 3가지로 기술
하고 보램에 결합시킨 바 있다. 이러한 인자를
중에서 첨수시간 낚시바늘간의 갯격 낚시바늘
크기, 낚시의 위력, 양념기계성능이 등이 주
영향인자로 제시되었다. 본 연구에서는 그레고
시간의 낚시바늘수(H), 조업해택 3개(H), 어장 수
온(T) 등의 조업상황과 관련된 인자와 더불어 계
절성(M) 및 연면적(Y)이 논다량어와 황다량어
의 CPUE에 영향을 주는 인자로 제시되었다.
또한 단일 인자간의 상호작용을 통해서도 연속어
업의 CPUE가 영향을 받는 것으로 나타났다. 다
시 말하면 논다량어와 황다량어의 CPUE는 공
통적으로 연도별 어장의 영향(Y xA)과 소형역
별 낚시바늘수 차이(A x H)의 복합적 상호작용
을 통해서 영향을 받는 것으로 해석된다.

대상자원의 상태를 평가할 때 어획노력량과
어획의 차별화로 중요도를 설명하기에는 한계
가 있다(Polacheck, 2006). 이에 대상자원의 중요
도를 설명하기는 어획의(계절성, 어구특성, 조
업해택 등)을 고려한 CPUE 표준화는 대상자원
의 중요도 전반에서 보다 과학적인 접근이다. 특
히 본 연구의 Fig. 7에서와 같이 어획량적 어획
의 연도별로 논다량어와 황다량어의 CPUE는 표준화를 통해서 자원팅도를 과대평가
할 오류의 가능성을 줄일 수 있다.

표준화 후의 CPUE가 표준화 전의 CPUE 경향
과 유사하게 나타났으나 실제 어획량을 설명
하는데는 항상된 상관성을 보였다. 이는 인도양
해역 연수어업의 표준화된 CPUE를 활용하여
계절성 및 어장 수온 등의 외부여행 변동에 대한
시나리오별 논다량어 및 황다량어 미래 풍도 및
어획량 예측이 가능할 것으로 생각된다.
자원평가 및 관리에 있어서 바로 전년도의
CPUE 값만을 사용한다면 현재 우리나라의 어획
량이 다른 조업국에 비해 낮은 상태이기 때문에
무시할 정도의 값이다. 그러나 과거의 자원상태
의 변동양상에 따른 전반적인 자원상태를 추정
하거나 더욱 정확한 자원평가를 위해서는 우리
나라의 CPUE 자료가 필수적인 자료이다. 조업
일자의 보고 누락이나 자료입력시 실수 등으로
발생되는 자료의 신뢰성의 문제를 이를 보정할
만한 해석알이나 우도할수와 같은 통계학적
기법들이 표준화 이전에 선정되어야 할 것이다.
또한 논다량어의 어획량 하락하는 영향을 미치는 여러
외부인자들에 대한 조사 및 자료수집이 병행되
어야 한다.

논다량어의 자원상태는 인도양을 계외한 대
양 해역 및 빅서양에서 과도어획으로 인한 남획상
태에 있는 것으로 평가되고 있다(Maunder and
Harley, 2005; ICCAT, 2005; Hampton et al.,
2006a). 황다량어는 현재 과도어획으로 인한 남
획상태에 있으므로 어획량을 조정해 줄여야 한
다는 연구결과가 있다(IOTC, 2007; Hoyle and
Maunder, 2005; ICCAT, 2004; Hampton et al.,
2006b). 인도양의 논다량어 및 황다량어의 자원
평가에 사용되는 CPUE는 일본과 대만의 어획
자료에서 얻어진다 IOTC 보고서(2007)는 1960
년부터 일본 CPUE와 1980년 이후의 대만CPUE
표준화를 통한 자원상태 평가결과 황다량어의
자원은 안정적인 상태로 평가되었으나 1960~
1980년 기간의 대만 CPUE 자료가 부족한 경우
황다량어 자원상태는 감소경향을 보였다. 이는
dem CPUE가 1960~1980년 기간에는 크게 감
소하는 경향을 보였고 1980년 이후부터는 상
결론

참고문헌

Polacheck, T., R. Hilborn, and A.E. Punt, 1993. Fitting surplus production models: comparing methods and

Shono, H. and M. Ogura, 1999. The standardized skipjack CPUE including the effect of searching devices, of the Japanese distant water pole and line fishery in the Western Central Pacific Ocean.