Seasonal variations of nutrients in Korean fruits and vegetables:
Examining water, protein, lipid, ascorbic acid, and β-carotene contents

Mee-Jeong Kim, Ju-Hyeon Kim¹, Hyun-Kyung Oh, Moon-Jeong Chang and Sun-Hee Kim⁺
Dept of Foods and Nutrition, Kookmin University, Seoul, 136-702, Korea
⁺Korea Food and Nutrition Foundation, Seoul, 121-718, Korea

Abstract

The purpose of this study was to investigate the seasonal variations in water, protein, lipid, ascorbic acid, and β-carotene contents of 17 vegetables and 4 fruits that are available all the year round and frequently consumed by Koreans. The water contents of the fruits ranged from 83-89%, and the vegetables contained more water than the fruits. The apples and pears had more water in the spring and summer than in the fall and winter. The tangerines showed a high water content in the winter, whereas the strawberries contained more water in the fall. The vegetables also showed seasonal variations in water content. The protein contents of the fruits were lower than 1%, the cucumbers contained 0.1% protein, which was the lowest level, but spinach, lettuce, bean sprouts, sesame leaves, and mushrooms had more than 1% protein. The ascorbic acid and β-carotene contents of the apples, pears, and tangerines were higher in the fall and winter than in the spring and summer. The vegetables, in general, contained more ascorbic acid than the fruits. The cabbage and radishes showed higher ascorbic acid contents in the fall and winter than in the spring and summer, indicating that vegetables as well as fruits are more nutritious during their harvest season. The zucchini, spinach, and green peppers had higher β-carotene contents in the winter than in the other seasons. The above results show that there were seasonal differences in the ascorbic acid and β-carotene contents of the fruits and vegetables. In addition, the fruits and vegetables had a tendency to contain more ascorbic acid and β-carotene in the season they were harvested. Therefore, we recommend the consumption of those fruits and vegetables during their harvest season.

Key words: seasonal variation, water content, protein content, lipid content, ascorbic acid content, β-carotene content

1. 서론

식품에 있어 계절이라 함은 모든 자연의 조건이 그 당시에 그 식품을 가장 맛있게 할 수 있도록 이러한 식

품을 계절식품이라 한다. 이러한 계절식품은 식품에 따라 가장 맛이 있고 영양가도 많은 계절이 있으며 많
이 생산되는 계절에는 가격 또한 저렴하다(Cho JS
1984). 최근에 농업기술의 발달로 계절식품에 대한 기
존의 관념을 깨고 많은 종류의 제철과 과일이 재질이
있고 1년 내내 수확되어 판매되며, 저장기술의 발달로
인해 항상 구입하여 맛을 수 있는 실정이다. 또한 은
상 재배와 수경 재배를 하여 생산량을 늘리고 유전자
를 조작하여 새로운 형태의 식품을 생산하기까지에 이
르렀다. 그 결과 식품의 생산 체계가 변화되었고, 특정

한편 최근에 건강에 대한 관심과 웰빙(well-being) 열풍으로 인해 삶의 질 향상을 염두에 두면서 제절 식품에 대한 관심이 높아지고 그 중요성이 다시 한번 강조되고 있는 실정이다. 따라서 이러한 식품들의 영양 가치에 대한 새로운 평가가 요구되고 있다.

II. 실험재료 및 방법

1. 식품의 선택과 재료준비

우리나라에서 많이 섭취하는 과일과 채소를 위주로 과일 4종, 채소 17종, 총 21종을 냉, 여름, 가을, 겨울 계절별로 구비하여 그 성분을 분석하였다. 식물의 종류는 본 연구실에서의 조사연구에서 다빈도식품으로 나타난 식품들을 우선적으로 선택하였으며, 분석에 사용된 식품계료는 현대백화점 미아점의 식품코너에서 신선한 것으로 구입하였다. 구입한 과일은 사과, 배, 청, 백미자, 브로콜리, 양파, 오이, 호박, 시금치, 당근, 꽃당추, 대파, 양배추, 당근, 꽃갈매기, 칠리, 미나리, 브로콜리 등으로 총 17종이었다. 구입한 식품은 당일 손질하여 -50°C 냉동Freezer와 Concentrator, Ishin Lab Co. Ltd, Korea로 보관하고 24시간 후 동결건조 시켰다. 사과, 배 등의 과일류나 대부분의 재료는 겨울에 따라 가식 부분만을 손질하여 약 60 g을 분석에 사용하였고, 당근, 시금치 등 부피에 비해 무게가 적게 나가는 식품은 약 30 g을 사용하였다. 오이는 겉면을 제거한 것과 제거하지 않은 것 두 가지로 분류하였다. 48 - 72시간 동결건조를 마친 후 무게를 측정하여 수분함량을 측정하였고 분말 상태로 만들어 분석에 사용하였다.

2. 수분함량 측정

식품을 구입한 당일 가식부위만 손질하여 -50°C 냉동Freezer와 Concentrator, Ishin Lab Co. Ltd, Korea에 넣고 전에 무게를 측정하고, 48 - 72시간 동결건조를 마친 후 무게를 측정하여 수분함량을 측정하였고 분말 상태로 만들어 분석에 사용하였다.

3. 단백질 분석

시료 0.1 g를 취하여 2% NaOH 5 ml을 첨가하여 균질화시킨 다음 25°C 항온수조에서 20분 방치한 후 vortex 하였다. 이것을 refrigerated centrifuge(Supra 30 K High Speed Vacuum Refrigerated Centrifuge, Hanil Science Instrumental Co. Ltd, Korea)를 이용하여 4°C, 4,244.9
5,000 rpm에서 10분간 원심분리하고 상층액을 취하여 정숙시킨 다음 30분간 방치한 후 540 nm에서 spectrophotometer(Spectronic Genesys 5, Milton Roy, USA)로 단백질을 분석하였다. 표준물질로는 albumin bovine(Sigma Co, USA)을 사용하였고, 소방 제약의 Biuret법(Kang GH 등 1998, Shin HJ 1990)에 의해 단백질 측정용 시약을 사용하여 분석하였다.

4. 지방 분석
시료 0.3 g을 취해 0.9% NaCl 용액 1 ml을 첨가하여 균질화시키고 다음 chloroform과 methanol을 1:2로 섞은 용액 4 ml을 넣고 강하게 vortex하여 25℃ 항온수조에서 15분 방치한 후 다시 vortex하였다. chloroform 1 ml을 첨가한 후 vortex하고 refrigerated centrifuge(Thermo Scientific, model RCF5000, USA)로 10,000 rpm에서 10분간 원심분리하여 아래층을 취하였다. 다시 chloroform 1 ml을 첨가하여 vortex하고 원심분리하여 아래층을 취하여 이것을 혼합하여 진조로 증발시킨 후 두께를 측정하였다.

5. Ascorbic acid 분석
시료 0.3 g을 취해 6% 메타인산 10 ml을 첨가하여 가볍게 vortex 한 다음 실온에 10분간 두었다. 이것은 refrigerated centrifuge를 이용하여 4℃, 3,000 rpm에서 10분간 원심분리하여 상층액을 취해 syringe filter(0.45 μm, Waters Co, USA)에서 여과한 후 10 μl을 HPLC에 주입하여 ascorbic acid의 함량을 측정하였다. 상층액을 취한 후 6% 메타인산을 더 첨가하여 위와 같은 방법을 반복하여 2차로 분석하였다.

Ascorbic acid 함량 분석에 사용된 기기는 HPLC (Model # 1100 plus, Waters Co, USA)이었으며, UV detector(254 nm)을 이용하여 검출하였다. 사용한 column은 Nova-pack C18으로 3.9×150 mm이었으며, PIC Reagent A가 첨가된 HPLC 용 J.T. Baker water (HPLC Grade, J.T. Baker, USA)를 용액으로 1.0 ml/min의 속도로 분리하였다. 표준물질로는 L-Ascorbic acid, 99% A.C.S. reagent(Sigma co, USA)를 사용하였다.

6. β-carotene 분석
시료 0.1 g을 phosphate buffer(2 mM, pH 7.2)에 0.7 mM EDTA와 1.5 mM ascorbic acid를 첨가한 용액 3 ml을 넣고 vortex한 후 2-propanol 1 ml과 100 mM SDS 0.5 ml을 첨가하여 vortex하였다. 3분 후 hexane/ dichloromethane(5:1)과 1.2 mM BHT를 혼합한 용액 6 ml을 첨가하여 vortex하고 25℃ 항온수조에서 15분 방치한 후 세제 vortex하였다. 이것을 refrigerated centrifuge를 이용하여 4℃, 5,000 rpm에서 10분간 원심분리한 후 아울론을 따서 절소에 엽체를 증발시키고 1 ml의 HPLC buffer에 용액시켜 syringe filter(0.45 μm, Waters Co, USA)에서 여과한 후 10 μl을 HPLC에 주입하여 β-carotene의 함량을 분석하였다.

β-carotene 함량 분석에 사용된 기기는 HPLC (Model # AS-2055 plus, Jasco Co, Japan)이었으며, UV Detector(460 nm)을 이용하여 검출하였다. 사용한 column은 HiQsil C18W 4.6×250 mm이었으며, methan/acetonitrile/dichloromethane/water(7:7:2:0.16)를 용액으로 1.0 ml/min의 속도로 분석하였다(Stahl W 등 1992, Lee HS와 Castle WS 2001).

7. 통계처리
시료는 각 식품에서 계절별로 한 가지였으며, 동결건조 후 수분, 단백질, 지방, 아스코르브산, 베타-카로틴을 정량하였는데 정량은 triplicate 한 값을 평균값으로 제시하였다.

III. 결과 및 고찰
1. 수분 함량
본 연구에서 분석한 식품별 4 계절별 수분 함량은 Table 1과 같으며, 한국양성학회와 미국 농무성에서 제시한 값과 참고자료로 제시하였다. 또한 과일과 채소의 절대와 저장 기술의 발달로 계절의 의미는 많이 사라졌지만 참고로 각 시기의 계절을 살펴보면 시금치, 당근, 미나리, 모기름, 오이, 호박, 뽁고추 상추는 여름, 사과, 배는 늘 가을, 무, 배추, 곶, 브로콜리의 겨울이 계절이라고 할 수 있다.

식품별 수분 함량은 한국양성학회의 분석기 및 USDA의 분석기와 매우 근접하였다. 분석한 4종의 과일은 대개 84-89%의 수분을 함유하는 것으로 나타났다. 채소는 과일보다는 더 많은 수분을 보유하는 것으로 나타났으며 분석한 채소 중에서는 오이가 95% 경
도의 수분을 함유하여 가장 수분 함유율이 높았다. 과일 중에 사과 및 배의 경우에는 봉, 여름에 가을, 겨울에 비해 수분 함량이 많은 경향을 보였으며 족과 따뜻기는 계절별 수분 함량 차이를 크게 보았다. 한국식품연구소협회(Korean Society of Food Sci Tech 1984)의 자료에 의하면 사과 등의 경우 폼돌별 수분 함량은 차이가 있어서 봉은 87.07, 후지 84.37, 스타크림은 85.61, 홍봉 86.76, 국봉 82.03%였으며 배도 품종과 따라 수분 함량의 차이를 보여, 동일한 과일에서 폼돌에 따른 성분의 차이를 감지할 수 있다. 채소 종에서 양파의 경우 봉이 가을에 비해 6%나 수분함량이 적었으며, 시금치는 여름이 가을에 비해 7.8% 수분함량이 많았으며 가을, 겨울, 봉, 여름의 순서로 수분함량이 증가하였다. 일반적으로 4 계절 간 큰 차이는 없었으나 시금치와 함께 캐하였다 계절 간 차이가 많이 나타나는 캐伊拉이 가을과의 계절이며, 경향이 가을과의 계절 간에 비해 6.5% 수분 함량이 적었다. Cho JS(1984)의 보고에 따르면 염정재료인 배추는 94.7, 파는 92.5, 상추는 94.1, 브로콜리 87.7, 근채류인 무의 수분 함량은 92.9, 당근은 85.8, 양파는 80.1, 근채류인 오이 96.7, 고추는 91.2%라고 보고하였다. Jeong CH 등(2006)은 황색 양파에서 수분 함량은 92.80%라고 보고하였으며, Kim GH(1982)는 콩나물의 수분 함량은 90.2 g/100 g이라고 보고하였다. Song JC(1992)의 자료에 의하면 배추는 94.9, 무는 94.6, 당근은 87.8, 시금치는 92.2, 상추는 94.7이며 말기는 89.1, 배는 86.7, 사과는 88.1, 뿌리 87.5%였다. 그러므로 본 연구의 분석결과는 다른 연구결과와 매우 비슷한 범위에 있음을 알 수 있었다. 특히 배추와 같이 보란인 채소의 경우 본 연구에서 가을에서부터 94.18-94.40%로 나타났는데 위의 연구들(Cho JS 1984, Kim SO 1985)과 매우 근접하였다. 한편 본 연구에서 배추의 수분 함량이 음식물에는 93.05%로 나타나서 계절간 차이가 있음을 입증하였다.

2. 단백질 함량
본 연구에서 분석한 식품별 4 계절별 단백질 함량은 Table 2와 같으며, 한국영양학회와 미국 농무성에서 제시한 값과 참고자료로 제시하였다.

식품별 단백질 함량은 본 연구에서 분석한 식품에서 콩나물과 캐伊拉이 계절하 2% 미만이었는데, 파일

| Table 1. Seasonal variation of water contents in Korean common fruits and vegetables (%) |
|-----------------------------|-----------|-----------|-----------|-----------|----------|----------|----------|
| Items | Spring | Summer | Fall | Winter | KNS | USDA |
| Apple | 86.62 | 87.30 | 85.65 | 84.34 | 86.80 | 86.67 |
| Pear | 89.91 | 87.60 | 86.97 | 86.76 | 85.80 | 83.71 |
| Tangerine | 84.31 | 86.63 | 85.80 | 87.24 | 80.10 | 87.60 |
| Strawberry | 83.10 | - | 87.95 | 86.90 | 91.50 | 90.95 |
| Cabbage | 94.40 | 93.05 | 94.34 | 94.18 | 95.20 | 94.39 |
| Radish | 92.06 | 93.75 | 92.72 | 92.50 | 94.30 | 91.87 |
| Scallion | 88.83 | 88.82 | 86.34 | 86.02 | 91.10 | - |
| Onion | 86.88 | 90.41 | 92.89 | 90.47 | 90.00 | 88.54 |
| Cucumber(with peel) | 94.88 | 95.14 | 95.23 | 95.53 | 96.30 | 96.23 |
| Cucumber(without peel) | 94.99 | 95.41 | 95.74 | 95.97 | - | 96.73 |
| Zucchini | 92.45 | 93.74 | 92.62 | 93.30 | 90.80 | 94.74 |
| Spinach | 89.62 | 93.04 | 85.25 | 86.55 | 89.40 | 91.40 |
| Carrot | 88.51 | 89.93 | 88.39 | 90.09 | 89.60 | 88.29 |
| Lettuce(Lactuca sativa) | 93.09 | 93.94 | 93.05 | 92.42 | 93.00 | 96.26 |
| Lettuce(Lactuca sativa var.) | 92.87 | 93.54 | 92.49 | 91.92 | 92.90 | 95.63 |
| Pickpursue | 80.81 | - | 80.45 | 81.29 | 87.80 | - |
| Green pepper | 91.68 | 91.91 | 93.59 | 92.83 | 91.30 | 92.50 |
| Bean sprout | 87.74 | 83.82 | 87.57 | 87.16 | 90.70 | - |
| Sesame leaf | 79.64 | 85.78 | 86.09 | 83.86 | 87.60 | - |
| Dropwort | 93.51 | 93.68 | 92.57 | 94.33 | 93.00 | 89.40 |
| Broccoli | 88.54 | 85.53 | 86.92 | 83.55 | 90.70 | 89.30 |
| Mushroom | 91.14 | 90.12 | 92.95 | 91.12 | 91.50 | 92.46 |

\(^1\)Data from the Korean Nutrition Society, 2000
\(^2\)Data from the United States Department of Agriculture Nutrient Database, 2003
은 1% 미만이었으며 채소에서는 오이가 0.1%대로 가장 낮았고 시금치, 꽃사탕, 삽추, 냉이, 콩나물, 췌장, 양송이가 1%를 넘었다. 특히 콩나물의 머리 부분으로 인하여 단백질 함량이 많았고, 췌장도 2.03 ~ 4.63%로 단백질 함량이 많았는데 여름과 가을의 췌장이 봄과 가을에 비해 단백질 함량이 많았다. 가을철 과일인 사과, 배, 씨의 경우 봄철에 가장 단백질 함량이 많은 것으로 나타났다. 시료에 따라 한국영양학회와 미국 농무성의 자료와의 차이가 다양하게 나타나는 것은 과일과 채소의 단백질은 함유량이 적고 그 외 품종과 토질 등의 영향을 받은 것으로 사료된다. Cho JS(1984)는 사과와 배의 단백질 함량은 각각 0.4와 0.3%이며 밤은 0.8%라고 하였다. 시금치는 겨울철에 당근은 가을철에 단백질 함량이 많았고, 삽추는 여름과 가을보다는 봄과 가을에 단백질 함량이 더 많았다. 그리고 배추의 단백질 함량은 1.4%, 대파는 1.6%, 상추는 1.8%, 브로콜리는 2.8% 이라고 하였고 무는 1.1%, 당근은 1.3%, 양파는 1.1% 이며 오이는 0.7%, 고추는 1.0%라고 하였다. Kim GH(1982)은 콩나물의 단백질 함량은 4.2 g/100 g이라고 보고하였다. Song JC(1992)는 밭기의 경 우 0.8, 배와 사과는 0.3, 뿌는 0.9%의 단백질을 함유하며 배추는 1.5, 무는 1.1, 당근은 1.9 시금치는 3.3%의 단백질을 가지고 있다고 보고하였다.

3. 지방 함량

본 연구에서 분석한 식품별 4 계절별 지방 함량은 Table 3과 같으며, 한국영양학회와 미국 농무성에서 제시한 값과 참고자료로 제시하였다. 식품별 지방 함량을 보면, 과일의 경우 봄이 사과나 배보다는 지방이 많았으며 채소에서는 콩나물이 1% 이상의 지방을 함유하는 것으로 나타났다. Cho JS(1984)는 사과와 배의 지방 함량은 각각 0.5, 0.2, 0.3%라고 하였다. 많은 채소의 경우, 예를 들면, 오이, 시금치, 췌장, 콩나물, 브로콜리, 양송이는 겨울철에 더 많은 지방을 함유하는 것으로 나타났다. 그리고 배추의 지방 함량은 0.1%, 대파는 0.2%, 상추는 0.4%, 브로콜리는 0.3%이며 무는 0.1%, 당근은 0.2%, 양파는 0.2%, 오이는 0.1%, 고추는 0.2%라고 하였다. Kim GH(1982)는 콩나물의 지방 함량은 2.9 g/100 g이라고 보고하였지만, Song JC(1992)는 대부분의 채소는 0.4 g의 지식을 가지고 있었다.

| Table 2. Seasonal variation of protein contents in Korean common fruits and vegetables (g/100 g) |
|---|---|---|---|---|---|
| Items | Spring | Summer | Fall | Winter | KNS¹ | USDA² |
| Apple | 0.80 | 0.76 | 0.74 | 0.78 | 0.30 | 0.27 |
| Pear | 0.73 | 0.52 | 0.40 | 0.53 | 0.50 | 0.38 |
| Tangerine | 0.74 | 0.66 | 0.52 | 0.56 | 0.90 | 0.63 |
| Strawberry | 0.58 | - | 0.63 | 0.67 | 0.80 | 0.67 |
| Cabbage | 0.38 | 0.27 | 0.24 | 0.41 | 1.40 | 1.20 |
| Radish | 0.21 | 0.19 | 0.18 | 0.23 | 0.80 | 0.90 |
| Scallion | 0.64 | 0.62 | 0.33 | 0.41 | 1.50 | - |
| Onion | - | 0.20 | 0.17 | 0.30 | 1.00 | 0.90 |
| Cucumber(with peel) | 0.13 | 0.16 | 0.12 | 0.16 | 0.80 | 0.65 |
| Cucumber(without peel) | 0.13 | 0.14 | 0.12 | 0.15 | - | 0.59 |
| Zucchini | 0.61 | 0.28 | 0.34 | 0.41 | 1.20 | 0.64 |
| Spinach | 1.52 | 1.37 | 1.74 | 1.88 | 3.10 | 2.86 |
| Carrot | 0.53 | 0.57 | 0.62 | 0.46 | 1.00 | 0.93 |
| Lettuce(Lactuca sativa) | 1.55 | 1.04 | 1.14 | 2.14 | 1.20 | 0.81 |
| Lettuce(Lactuca sativa var.) | 1.86 | 0.96 | 1.03 | 1.21 | 1.40 | 1.35 |
| Pickpursle | 1.58 | - | 1.83 | 1.73 | 4.70 | - |
| Green pepper | 0.53 | 0.61 | 0.56 | 0.64 | 1.60 | 0.90 |
| Bean sprout | 7.98 | 12.33 | 12.61 | 7.97 | 5.00 | - |
| Sesame leaf | 3.35 | 4.20 | 2.03 | 4.63 | 3.90 | - |
| Dropwort | 0.30 | 0.53 | 0.44 | 0.41 | 1.50 | 2.60 |
| Broccoli | 0.83 | 0.74 | 1.11 | 1.18 | 5.00 | 2.82 |
| Mushroom | 1.72 | 1.77 | 1.15 | 1.63 | 3.90 | 3.11 |

¹Data from the Korean Nutrition Society, 2000
²Data from the United States Department of Agriculture Nutrient Database, 2003
방을 가지고 있고 과일에서도 비슷하여 0.2-0.4%로 보고하고 있다.

4. ascorbic acid 함량
본 연구에서 분석한 식품별 4 계절별 아스코르бин산 함량은 Table 4와 같으며, 한국영양학회와 미국 농무성에서 제시한 값도 참고자료로 제시하였다.

식품별 아스코르бин산 함량을 보면, 과일의 경우 같은 사과나 배보다는 아스코르빈산이 많았으며 사과, 배, 풀의 경우 과일과 과일과 과일 및 과일에 비해 완전 많은 양의 아스코르빈산을 함유하고 있는 것으로 나타났다. 빨간의 경우에도 빨강과 가미가 가미가 가미와 가미의 가미보다는 아스코르빈산 함유량이 많았다. 따라서 과일의 함유된 아스코르빈산은 계절에 따라 많은 양을 알 수 있었다. Cho JS(1984)는 사과, 배, 풀의 아스코르빈산 함량이 각각 5, 4, 50 mg/100 g이라고 하였는데, 본 연구에서 가을철 사과는 6.9, 배는 4.5, 풀은 43.2 mg의 아스코르빈산을 함유하는 것으로 나타나 비슷한 결과를 보였다. 또한 한국영양학회에서 제시한 사과, 배, 풀의 아스코르빈산 함유량인 6.0, 4.0, 35.0 mg과 미국 농무성에서 제시한 4.0, 4.2, 30.8 mg과도 근접한 결과임을 알 수 있었다.

<table>
<thead>
<tr>
<th>Table 3. Seasonal variation of fat contents in Korean common fruits and vegetables (g/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Apple</td>
</tr>
<tr>
<td>Pear</td>
</tr>
<tr>
<td>Tangerine</td>
</tr>
<tr>
<td>Strawberry</td>
</tr>
<tr>
<td>Cabbage</td>
</tr>
<tr>
<td>Radish</td>
</tr>
<tr>
<td>Scallion</td>
</tr>
<tr>
<td>Onion</td>
</tr>
<tr>
<td>Cucumber(with peel)</td>
</tr>
<tr>
<td>Cucumber(without peel)</td>
</tr>
<tr>
<td>Zucchini</td>
</tr>
<tr>
<td>Spinach</td>
</tr>
<tr>
<td>Carrot</td>
</tr>
<tr>
<td>Lettuce(Lactuca sativ.)</td>
</tr>
<tr>
<td>Lettuce(Lactuca sativ. var.)</td>
</tr>
<tr>
<td>Pickpurre</td>
</tr>
<tr>
<td>Green pepper</td>
</tr>
<tr>
<td>Bean sprout</td>
</tr>
<tr>
<td>Sesame leaf</td>
</tr>
<tr>
<td>Dropwort</td>
</tr>
<tr>
<td>Broccoli</td>
</tr>
<tr>
<td>Mushroom</td>
</tr>
</tbody>
</table>

1) Data from the Korean Nutrition Society, 2000
2) Data from the United States Department of Agriculture Nutrient Database, 2003

한국조리과학회 제23권 제4호(2007) - 428 -
장이 중요하며 보관이거나 저장 온도와 시간이 아동의 함량에 영향을 미친다고 한다(Korean Society of Food Sci Tech 1989). 한편 Kim SO(1985)는 시금치의 비타민 C 함량은 35.4%라고 하였고 고추의 비타민 C 함량은 87.3%라고 보고하였다(Korean Society of Food Sci Tech 1989). Kye SH 등(1993)의 HPLC를 이용한 아스코르브산의 분석을 보면 배추는 10.46±0.53, 조선무 12.17±0.21, 당근 2.61±0.24, 뱃고추 63.35±1.95, 시금치 2.84±1.88, 개량종 오이 4.24±0.19 mg/100g이다. Song JC(1992)는 배추에 40, 무에는 20, 시금치에 100 mg/100g을 함유하는 것으로 보고하였다. 본 연구에서 배추는 가을에 26.5, 여름에 29.0, 봄에 16.5, 여름에 12.2 mg/100g으로 나타나서 Kye SH 등(1993)의 분석자비 비교해보면 여름철의 함유량이 비슷하며 Song JC(1992)의 분석자비에서 더 작은 양을 함유하였다. 그런데 Kye SH 등(1993)의 연구는 본 연구에서 농가의 위치와 관계없이 HPLC에 의한 분석이여서 분석값에 대한 신뢰도는 높게 평가될 수 있을 것으로 보인다. 한편 본 연구에서 가을과 겨울철의 배추에는 여름에 비해 2배 이상의 아스코르브산이 함유되어 있어 계절에 훨씬 많은 아스코르브산을 함유함을 알 수 있다. Choi YH와 Han JS(2001)의 보고에 따르면 캐주얼 아스코르브산의 함량이 연령이 가장 많은 가장 아래쪽은 67.3 mg/100g 함유되어 있었고 연령이 어린 것과 위쪽은 129.0 mg/100g 함유되어 있어 연령이 어린것의 아스코르브산의 함량이 많았다. Kim GH(1982)는 죽나물의 아스코르브산 함량은 16 mg/100g이라고 보고하였는데 본 연구의 결과보다는 작은 함량을 나타내었다.

5. β-carotene 함량

본 연구에서 분석한 식품별 4 계절별 β-carotene 함량은 Table 5와 같으며, 한국영양학회 및 미국 농무성에서 제시한 값과 참고자료로 제시하였다.

일반적으로 β-carotene는 황색을 띠며 식품 중 체소에 다량 함유되어 있는 것으로 알려진다. 본 연구에서 파일은 사과, 배, 고구마를 분석하였는데, 한국영양학회 자료에서 사과나 배는 β-carotene가 없는 것으로 분석되었으나 본 연구에서 보면 사과나 배도 소량의 β-carotene를 함유하는 것으로 나타났다. 계절에 따라 사과의 경우에 13-26 µg/100g, 배에는 9.21 µg/100g을

| Table 4. Seasonal variation of ascorbic acid contents in Korean common fruits and vegetables (mg/100g) |
|---|---|---|---|---|---|---|
| Items | Spring | Summer | Fall | Winter | KNS¹ | USDA² |
| Apple | 3.3 | 2.6 | 6.9 | 6.3 | 6.0 | 4.0 |
| Pear | 1.8 | 2.5 | 4.5 | 4.8 | 4.0 | 4.2 |
| Tangerine | 28.6 | 35.2 | 43.2 | 45.0 | 35.0 | 30.8 |
| Strawberry | 51.1 | - | 39.1 | 42.3 | 82.0 | 58.8 |
| Cabbage | 16.5 | 11.2 | 26.5 | 29.0 | 28.0 | 27.0 |
| Radish | 3.5 | 7.3 | 11.1 | 12.8 | 15.0 | 21.0 |
| Scallion | 27.0 | 26.1 | 26.4 | 25.0 | 21.0 | - |
| Onion | - | 9.1 | 12.3 | 10.2 | 8.0 | 6.4 |
| Cucumber(with peel) | 21.3 | 20.1 | 19.8 | 19.3 | 10.0 | 2.8 |
| Cucumber(without peel) | 17.3 | 16.5 | 15.1 | 16.2 | - | 3.2 |
| Zucchini | 32.1 | 28.5 | 31.6 | 42.5 | 40.0 | 4.6 |
| Spinach | 43.1 | 35.3 | 56.0 | 60.2 | 65.0 | 28.1 |
| Carrot | 43.5 | 38.7 | 45.5 | 38.4 | 6.0 | 5.9 |
| Lettuce(Lactuca sativa) | 30.2 | 26.3 | 28.7 | 30.1 | 19.0 | 3.9 |
| Lettuce(Lactuca sativa var.) | 12.5 | 11.0 | 13.6 | 13.5 | 17.0 | 3.7 |
| Pickpulse | 44.2 | - | 41.5 | 38.7 | 74.0 | - |
| Green pepper | 19.7 | 17.6 | 13.8 | 15.4 | 72.0 | 68.0 |
| Bean sprout | - | 38.4 | - | 74.2 | 8.0 | - |
| Sesame leaf | 64.3 | 46.1 | 41.5 | 47.3 | 55.0 | - |
| Dropwort | 13.5 | 13.4 | 15.9 | 12.5 | 10.0 | 69.0 |
| Broccoli | 23.0 | 20.4 | 17.4 | 41.0 | 98.0 | 89.2 |
| Mushroom | 0 | 0 | 0 | 0 | 3.0 | 2.4 |

¹Data from the Korean Nutrition Society, 2000
²Data from the United States Department of Agriculture Nutrient Database, 2003

- 429 -

한국조리과학회지 제23권 제4호(2007)
한국인 성장 과정의 제조 고양성분 변화: 수분, 단백질, 지방, 아스코르브산, 베타-카로틴 함량

함유하는 것으로 분석되었는데 이는 미국 농무성의 사고 17 μg, 배 13 μg과 비교할 때 비슷한 함량이다. 굵은 사과나 배보다는 많은 양의 β-carotene를 포함하고 있었는데, 특히 사과와 견과의 과에는 97과 101 μg/100 g으로 다량 함유되어 있었으나 여름에 되면서 함유량이 40 μg/100 g으로 현저하게 감소를 나타내었다.

체중 증가는 시금치, 당근, 냉이, 캐미, 미나리, 브로콜리가 1,000 μg/100 g 이상의 β-carotene를 함유하고 있으며, 깋잎이 9,000 μg 정도, 당근이 5,000 μg 정도의 다양한 β-carotene 함유량을 가지고 있는 것으로 나타났다. 호박, 시금치, 콩고추와 같은 채소는 다른 계절에 비해 겨울에 β-carotene 함유량이 많으나 식품에 따라 계절별 차이는 다소 다르게 나타났다. Cho JS(1984)의 자료에 의하면 배추의 캐로틴 함량은 100 IU. 이며 대파는 1,000, 브로콜리는 3,000, 무는 0, 당근은 4,000, 양파는 20, 오이는 100, 고추는 1,000 IU을 함유하고 있다고 하였다. 따라서 배추를 기준으로 보면 대파는 약 10배, 브로콜리는 30배, 당근은 40배, 고추는 10배를 함유하는 것으로 계산되는데 본 연구의 결과와 대략적으로 비교할 때 대파는 2배, 브로콜리는 30배, 당근은 100배, 고추는 10배로 식품에 따라 다소 차이가 있었다. Kim GH(1982)의 콩나물의 β-carotene 함량은 105 μg/100g 이라고 보고하였으나 본 연구에서는 6-7 μg/100 g으로 매우 적게 나타났다.

IV. 요 약

본 연구에서는 우리나라 농산물 중 한국인이 주로 많이 섭취하는 채소나 과일을 중심으로 보고, 가장, 무, 겨울에 4 계절 간 성분의 차이가 있는지를 알아보고자 하였다. 따라서 4 계절에 모두 구입 가능하면서 설탕이도가 높은 과일과 구입 4가지, 세자 17가지 총 21가지의 농산물을 보고, 가장, 겨울 계절별로 구입하여 그 성분을 분석하였다. 분석에 사용한 식품재료는 가스 부류를 순수화하여 약 30-60 g를 흙히하여 -50℃ deep freezer에 보관하였다가 24시간 후 방법에 따라 분리하여 다음 영양성분을 분석하였다. 영양소는 채소나 과일이 함유하고 있는 주요 영양성분으로 비타민 C와 베타-카로틴(β-carotene)을 HPLC로 분석하였으며 수분함량 및 지방과 단백질 함량도 분석하였다.

| Table 5. Seasonal variation of β-carotene contents in Korean common fruits and vegetables (μg/100 g) |
|-----------------|-------|-----|-----|-----|-----|-----|
| Items | Spring| Summer| Fall| Winter| KNS\(^1\) | USDA\(^2\) |
| Apple | 20 | 26 | 24 | 13 | 0 | 17 |
| Pear | 9 | 12 | 21 | 15 | 0 | 13 |
| Tangerine | 89 | 40 | 97 | 101 | 16 | 151 |
| Strawberry | 5 | - | 0 | 0 | 12 | 7 |
| Cabbage | 50 | 45 | 68 | 63 | 37 | 190 |
| Radish | 25 | 28 | 53 | 44 | 46 | - |
| Scallion | 98 | 123 | 135 | 192 | 3775| - |
| Onion | 0 | 0 | 0 | 0 | 0 | 1 |
| Cucumber(with peel) | 22 | 37 | 28 | 34 | 146 | 45 |
| Cucumber(without peel) | 22 | 48 | 27 | 41 | - | 31 |
| Zucchini | 301 | 364 | 360 | 525 | 840 | 670 |
| Spinach | 1654 | 1332 | 1723| 1907 | 3640| 5626|
| Carrot | 5951 | 6385 | 4145| 5330 | 7540| 5774|
| Lettuce(Lactuca sativa.) | 179 | 202 | 153 | 135 | 2191| 192 |
| Lettuce(Lactuca sativa var.) | 335 | 315 | 349 | 487 | 1612| 1987|
| Pickpurspe | 1287 | 1621 | 1481| - | 1163| - |
| Green pepper | 554 | 509 | 523 | 789 | 312 | 410 |
| Bean sprout | 6 | 7 | 6 | 6 | 0 | - |
| Sesame leaf | 9994 | 9958 | 9540| 9059 | 9319| - |
| Dropwort | 1770 | 1827 | 1815| 1576 | 1499| 4150|
| Broccoli | 1470 | 1442 | 1226| 1428 | 766 | 383 |
| Mushroom | 2 | 4 | 4 | 4 | 0 | 0 |

\(^1\)Data from the Korean Nutrition Society, 2000
\(^2\)Data from the United States Department of Agriculture Nutrient Database, 2003

한국조리과학회지 제23권 제4호(2007) - 430 -
다음과 같이 요약할 수 있다.
1. 분석한 4종의 과일은 대개 84-89%의 수분을 함유하였으며, 제소는 과일보다는 더 많은 수분을 보유하는 것으로 나타났으며 분석한 제소 중에서는 오이가 가장 수분 함유율이 높았다. 과일 중에 사과 및 배의 경우에는 봉, 여름에 가을, 겨울에 비해 수분 함량이 많은 경향을 보였으며 뜨개违法违规 계절별 수분 함량 차이는 크지 않았다. 제소 중에서는 양파의 경우 여름 겨울에 물감을 비해 수분함량이 적었으며, 시금치는 여름에 가을에 비해 수분함량이 많았으며 가을, 겨울, 봉, 여름의 순서로 수분함량이 증가하였다.

2. 식품별 단백질 함량은 분 연구에서 분석한 식품에서 2% 미만이었는데, 과일은 1% 미만이었으며 제소에서는 시금치, 꽃공주, 상추, 봉, 옥수수, 캔리, 양파가 1%를 넘었다. 가을철 과일의 사과, 배, 글의 경우 봉칠에 가장 단백질 함량이 많은 것으로 나타났다. 시금치는 겨울철에 망근은 가을철에 단백질 함량이 많았고, 봉일은 여름과 겨울에 많았고, 상추는 봉과 겨울에 단백질 함량이 더 많았다.

3. 지방 함량을 보면, 과일의 경우 과자나 배보다는 지방이 많았다. 제소에서는 콩나물이 1% 이상의 지방을 함유하는 것으로 나타났다. 제소에서 오이, 시금치, 캔리, 봉공주, 브로콜리, 양파는의 겨울철에 더 많은 지방을 함유하는 것으로 나타났다.

4. 비타민의 경우, 과일 사과나 배보다는 많은 양의 ascorbic acid와 β-carotene를 포함하고 있으며 특히 가을과 겨울의 사과, 배, 봉에는 봉이나 여름보다는 더 많은 아스코르빈산과 β-carotene가 함유되어 있음을 알 수 있었다. 제소에서는 과일보다는 전반적으로 더 많은 아스코르빈산을 함유하고 있으며 가을이나 겨울철의 배추나 봉에는 봉과 여름철에 비해 더 많은 아스코르빈산을 함유하는 것으로 나타났다. 반면 다른 제소의 경우에는 배추와 무를 등의 무려한 계절별 차이를 볼 수 없었다. 제소 중에서는 시금치, 망근, 봉, 캔리, 미나리, 브로콜리가 다양한 β-carotene를 함유하고 있으며 특히 캔리와 망근의 함유량이 많았다. 호박, 시금치, 봉공주와 같은 제소는 다른 계절에 비해 겨울에 β-carotene 함유량이 많으나 식품에 따라 계절별 차이는 다소 다르게 나타났다. 그러므로 과일과 제소의 경우 계절에 따른 계절에 비하여 주성분이라고 할 수 있는 ascorbic acid와 β-carotene의 함량이 더 많으며 특히 한국의 전통적인 식재료로 할 수 있는 배추와 무의 경우에 가을과 겨울에 더 많은 양의 ascorbic acid와 β-carotene를 함유하므로 경제적으로 가격도 큰 계절에 과일과 제소를 구입하는 것이 바람직하다고 사안된다.

참고문헌

(2007년 5월 25일 접수, 2007년 6월 18일 채택)