Quality Characteristics of Sponge Cakes Containing Various Levels of Millet Flour

Hak-Gil Chang*
Department of Food and Bioengineering, Kyungwon University

Effects of normal (non-waxy) and waxy millet flours on properties of sponge cake were examined. Total dietary fiber contents of normal and waxy millets were 5.04 and 5.72%, respectively, while that of soft wheat flour was 2.23%. Alkaline water retention capacity value generally increased with addition of normal and waxy millet flours, whereas peak, minimum, and final viscosities decreased. Mixing time and mixing height decreased with addition of millet flour. Lightness of cake crust increased with addition of normal millet flour, whereas it decreased with addition of waxy millet flour. Lightness of cake crumb decreased as the amount of normal and waxy millet flours increased. Increasing proportions of normal and waxy millet flours resulted in significantly decreased loaf volume. Replacement of 10% wheat flour by both normal and waxy millet flours did not significantly affect characteristics of sponge cake, but addition of more than 20% millet flour resulted in significant differences in quality characteristics.

Key words: sponge cake, cake, millet, waxy-millet

Sponge cake system은 기본적으로 밀가루, 설탕 및 달걀로 구성되며, sponge cake의 특성은 밀가루의 품종 및 척가물의 이화학적 특성에 따라 다르다(6,7). Pierce와 Waker(8)는 sponge cake 제조 시 sucrose fatty acid ester를 참가함으로써 부피가 증가하고 제품내부의 텍스처가 향상됨을 보고한 바 있다.

한편, 풍부의 식생산은 영양소의 과잉섭취로 여러 가지 문제점과 함께, 식이섬유의 섭취를 증가하도록 권장하고 있다(9). 영양학적 가치가 없는 물질로 인식되었던 식이섬유가 Cowgill과 Sullivan(10)에 의해 완화제로서 wheat bran에 대하여 보고한 이후, Hipsley(11)가 처음으로 "dietary fiber"라는 용어를 사용하였다. 그 후 Burkitt(12)과 Trowell 등(13)에 의해 비만, 고혈압, 당뇨병 등의 성인병과 식이섬유의 섭취가 밀집한 관계가 있을음을 보고하면서 이에 대한 연구가 진행될 척가물의 여러 분야에서 수행되었다(14-16).

특히 식이섬유유인 종류가 참가물의 척가물에 따른 bakery products에 대한 연구는 극히 제한적으로 수행되었는데, 이는 참가물의 특성상 제품의 부피가 작아지고 텍스처가 저하되는 등 관능적 특성이 감소하기 때문이다. Pomeranz 등(17)은 제빵 시 oat hulls와 wheat bran을 7% 척가물 수분부분율에 증가되었으나 부피는 감소되었다고 밝혔다. Jeltima 등(18)은 oat bran, soy hulls, navy bean 등의 척가가 sugar-snap cookie의 spread factor와 관능적 특성에 현저하게 영향을 미친다고 보고했다. 본 연구에서는 국내산 참가물의 이용률을 향상시키고자 sponge cake

*Corresponding author: Hak-Gil Chang, Department of Food and Bioengineering, Kyungwon University, San 65 Bokjeong-dong, Sujeong-gu, Seongnam 461-701, Korea
Tel: 82-31-750-5382
Fax: 82-31-750-5273
E-mail: jhk@kyungwon.ac.kr
조분말의 첨가가 Sponge Cake의 품질특성에 미치는 영향

제조 시 조 분말의 첨가에 따른 밀가루의 이화학적 품질특성
과 sponge cake 제조작업 등을 조사한 바 그 결과를 보고한다.

제료 및 방법

제료

본 연구에 사용된 재료는 2001년도에 생산된 메조(층瞩 퓨
찰과 체중 천안산)를 구입하여 분쇄한(ICA MF10, IKA-
WERKE GMBH & Co. KG, Staufen, Germany)로 분쇄하여
사용하였다. 사용된 메조 및 조조 분말의 입자크기는 100-140
mesh 이었다.

제료의 이화학적 특성

일반성분의 분석은 AACC 방법(19)에 따라서 측정하였다.
즉, 수분 함량은 상압가열건조법, 조지방 함량은 soxhlet 추출
법, 조소성 함량은 건식회화법, 조단백질 함량은 micro-Kjedahl
method로 측정하였다. 총이식량(total dietary fiber, TDF)의 함
량은 Prosky 등(20)의 방법에 따라 dietary fiber assay kit(Sigma
Chemical Co., St.Louis, USA)를 사용하여 분석하였다. Alkaline
water retention capacity(AWRC)는 AACC method(19)에 따라
서 원심분리관에 시료 1,000.0 g를 정량하여 넣은 후, 0.1 N
sodium bicarbonate 용액 5 mL을 첨가하여 vortex shaker로 교반
한 다음, 1,000 × G에서 15 분간 원심분리한 후, 상등액을 제거
하고 남은 시료의 중량과 원심분리 전 시료중량 대비 백분율
로 표시하였다. 시료의 흙축특성은 Rapid Visco Analyzer(RVA,
Model 3d, Newport Scientific, Nararben, N.S.W., Australia)를
이용하여 시료 3.50 g를 정량하여 test canister에 넣고 중량수
25.0 mL을 첨가하여 혼합한 후, 25℃에서 95℃까지 그
리고 다시 50℃까지 5℃/min의 속도로 가열 및 냉각시켜 initial
pastrating temperature, maximum viscosity, minimum viscosity
및 final viscosity를 측정하였다(21,22).

Mixograph 특성

Mixograph 특성은 AACC Method(19)에 따라서 10 g Mixograph
(MIXSMART Version 4.0, National Mfg. Co., Lincoln, NE,
USA)를 사용하여 박력분의 최적 수분흡수율을 구한 다음, 각
시료에 박력분을 기준으로 중량을 첨가하여 다음과 같이 peak
time, peak height 등을 측정하였다(군). 1)

Sponge cake의 제조 및 특성

Sponge cake의 배합비는 Table 1과 같다. 달걀(fresh whole
egg) 700 g은 mixing bowl에 넣고 2 분간 낮은 속도에서 혼합
한 다음 혼합(fine-granulated sucrose) 700 g을 첨가하였다.
Sponge cake의 제조는 달걀의 기포성을 형성시키고 식별의 용
해성을 증가시키기 위하여 부피를 크게 하기 위하여 53℃의 물
로 증강하여 mixing bowl을 40℃로 유지시켜 hot mixing method를 사용하였다(6,7). 즉, sponge cake batter는 저속에서 30
초, 고속에서 8 분 동안 혼합한 다음, 중량수 140 mL을 첨가하
여 2 분 동안 혼합하고, 저속에서 30초간 혼합하여 cream
mass(egg-sugar batter)를 만들었다.
Crmass 240 g을 bowl에 옮기고 시료(밀가루, 조 분말이
첨가된 밀가루) 100 g를 첨가한 다음, wooden spoon으로 40회
전진적이 혼합한 후, 다시 40회 뒤직이 혼합한 cake batter@ cake
pan(inside dimensions, 14.8 cm; depth 6.9 cm; inside volume,
1260 mL)에 330 g 넣고, 180℃에서 30분 baking 하였다.

Fig. 1. Mixogram of typical soft wheat flour.
Peak time (min): MP, Peak height (cm): Height at MP, Width at peak:
Band width at MP, Height at 8 min: Height at TX

Table 1. Sponge cake formula and ingredient specifications

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Amount % (flour basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flour (sifted)</td>
<td>100</td>
</tr>
<tr>
<td>Sugar (fine-granulated)</td>
<td>100</td>
</tr>
<tr>
<td>Fresh whole eggs (with shell)</td>
<td>100</td>
</tr>
<tr>
<td>Distilled water</td>
<td>40</td>
</tr>
</tbody>
</table>

Fig. 2. Measurement of volume, symmetry and uniformity index on sponge cake.
Volume index = B + C + D
Symmetry index = 2C = B – D
Uniformity index = B = C

석이심유연으로서 조 분말(normal millet, waxy millet)의 첨가
량은 0, 10, 20, 30, 40, 50%로서 cake batter의 pH와 비중을
측정하였다. 한편 글루아가 보고한 sponge cake로 30분간 pan에서
냉각시킨 후, 부피, 무게, 비용을 측정하였고, volume index,
symmetry index, uniformity index는 AACC 방법(19)의 기준에
따라 다음과 같이 측정하였다(2,7). Sponge cake의 크고과
cumb의 색깔은 색도계(Model CR-200, Minolta Co., Osaka,
Japan)를 사용하여 L, a, b value를 측정하였다.
Sponge cake의 기포특성은 수분흡수율을 방지하기 위하여 cake
를 LDPE Zipper bag(주)크림을 넣고 25℃에서 6일간 저장
하면서 Texture analyzer (TA-XT2, Stable Micro Systems Co.,
Haslemere, England)로 hardness를 측정하였다. 이때 사용된
probe는 직경 2.5 cm, 측정 속도는 1.0 mm/sec이었다. 관찰결과
는 15명을 선정하여 충분히 교육시킨 뒤 검사에 응하도록 하
었으며, 향, 맛, 조합 및 종합적 기호도는 9-point scale scoring
test 방법에 따라 조사하였다.

식이섬유유리로서 조 분말(normal millet, waxy millet)의 첨가
량은 0, 10, 20, 30, 40, 50%로서 cake batter의 pH와 비중을
측정하였다. 한편 글루아가 보고한 sponge cake로 30분간 pan에서
냉각시킨 후, 부피, 무게, 비용을 측정하였고, volume index,
symmetry index, uniformity index는 AACC 방법(19)의 기준에
따라 다음과 같이 측정하였다(2,7). Sponge cake의 크고과
cumb의 색깔은 색도계(Model CR-200, Minolta Co., Osaka,
Japan)를 사용하여 L, a, b value를 측정하였다.
Sponge cake의 노화특성은 수분흡수율을 방지하기 위하여 cake
를 LDPE Zipper bag(주)크림을 넣고 25℃에서 6일간 저장
하면서 Texture analyzer (TA-XT2, Stable Micro Systems Co.,
Haslemere, England)로 hardness를 측정하였다. 이때 사용된
probe는 직경 2.5 cm, 측정 속도는 1.0 mm/sec이었다. 관찰결과
는 15명을 선정하여 충분히 교육시킨 뒤 검사에 응하도록 하
었으며, 향, 맛, 조합 및 종합적 기호도는 9-point scale scoring
test 방법에 따라 조사하였다.
Table 2. Proximate composition of tested flour samples

<table>
<thead>
<tr>
<th>Flours</th>
<th>Moisture (%)</th>
<th>Ash (%)</th>
<th>Protein (%)</th>
<th>Fat (%)</th>
<th>TDF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft wheat</td>
<td>13.64 ± 0.56</td>
<td>0.40 ± 0.03</td>
<td>9.39 ± 0.14</td>
<td>1.51 ± 0.04</td>
<td>2.23 ± 0.14</td>
</tr>
<tr>
<td>Normal millet</td>
<td>11.58 ± 0.52</td>
<td>3.44 ± 0.03</td>
<td>10.01 ± 0.08</td>
<td>2.86 ± 0.16</td>
<td>5.04 ± 0.27</td>
</tr>
<tr>
<td>Waxy millet</td>
<td>11.28 ± 0.40</td>
<td>3.20 ± 0.03</td>
<td>10.68 ± 0.27</td>
<td>2.63 ± 0.03</td>
<td>5.72 ± 0.66</td>
</tr>
</tbody>
</table>

1) Total dietary fiber.
2) Means in a column sharing a common superscript letter(s) are not significantly different (p > 0.05).

Table 3. Alkaline water retention capacity (AWRC) of millet and wheat flour blends

<table>
<thead>
<tr>
<th>Flours</th>
<th>Blend (%)</th>
<th>AWRC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft wheat</td>
<td>10</td>
<td>45.6 ± 0.85</td>
</tr>
<tr>
<td>Normal millet</td>
<td>20</td>
<td>47.9 ± 1.13</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>49.5 ± 0.71</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>51.2 ± 1.56</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>53.3 ± 1.70</td>
</tr>
<tr>
<td>Waxy millet</td>
<td>10</td>
<td>49.0 ± 1.41</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>50.8 ± 1.13</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>53.4 ± 1.41</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>56.0 ± 2.12</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>60.1 ± 1.41</td>
</tr>
</tbody>
</table>

Means in a column sharing a common superscript letter(s) are not significantly different (p > 0.05).

Table 4. Rapid Visco Analyzer pasting characteristics of wheat and millet flour blends

<table>
<thead>
<tr>
<th>Flours</th>
<th>Blend (%)</th>
<th>Initial pasting Temp. (°C)</th>
<th>Maximum viscosity (RVU)</th>
<th>Minimum viscosity (RVU)</th>
<th>Final viscosity (RVU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft wheat</td>
<td>10</td>
<td>72.3°</td>
<td>114.5°</td>
<td>81.0°</td>
<td>165.0°</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>75.3°</td>
<td>110.5°</td>
<td>73.5°</td>
<td>155.5°</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>74.7°</td>
<td>104.5°</td>
<td>68.0°</td>
<td>152.5°</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>76.2°</td>
<td>102.5°</td>
<td>62.5°</td>
<td>151.0°</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>77.8°</td>
<td>95.2°</td>
<td>57.5°</td>
<td>147.0°</td>
</tr>
<tr>
<td>Normal millet</td>
<td>10</td>
<td>72.4°</td>
<td>100.5°</td>
<td>67.0°</td>
<td>139.5°</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>76.2°</td>
<td>87.0°</td>
<td>53.0°</td>
<td>113.5°</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>73.4°</td>
<td>75.0°</td>
<td>44.0°</td>
<td>94.0°</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>72.3°</td>
<td>65.0°</td>
<td>39.0°</td>
<td>86.0°</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>71.6°</td>
<td>61.0°</td>
<td>36.0°</td>
<td>77.0°</td>
</tr>
</tbody>
</table>

1) Means in a column sharing a common superscript letter(s) are not significantly different (p > 0.05).
Table 5. Mixograph characteristics of wheat and millet flour blends

<table>
<thead>
<tr>
<th>Flours</th>
<th>Blend (%)</th>
<th>Peak time (min, sec)</th>
<th>Peak height (cm)</th>
<th>Width at peak (cm)</th>
<th>Height at 8 min (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft wheat</td>
<td>10</td>
<td>3.00</td>
<td>4.6</td>
<td>0.9</td>
<td>4.1</td>
</tr>
<tr>
<td>Normal millet</td>
<td>20</td>
<td>2.40</td>
<td>4.2</td>
<td>0.8</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.55</td>
<td>3.7</td>
<td>1.1</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1.10</td>
<td>3.2</td>
<td>1.0</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Waxy millet</td>
<td>10</td>
<td>2.30</td>
<td>4.0</td>
<td>0.9</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.43</td>
<td>3.5</td>
<td>1.0</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.30</td>
<td>3.4</td>
<td>1.1</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1.00</td>
<td>3.2</td>
<td>0.9</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.58</td>
<td>2.8</td>
<td>0.8</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Table 6. pH and specific gravity of sponge cake batter in wheat and millet flour blends

<table>
<thead>
<tr>
<th>Flours</th>
<th>Blend (%)</th>
<th>pH</th>
<th>Specific gravity (g/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft wheat</td>
<td>10</td>
<td>7.43<sup>ab</sup></td>
<td>0.59<sup>c</sup></td>
</tr>
<tr>
<td>Normal millet</td>
<td>20</td>
<td>7.23<sup>a</sup></td>
<td>0.71<sup>bcd</sup></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.17<sup>a</sup></td>
<td>0.72<sup>bcd</sup></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>7.10<sup>b</sup></td>
<td>0.86<sup>bcd</sup></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6.93<sup>c</sup></td>
<td>0.87<sup>b</sup></td>
</tr>
<tr>
<td>Waxy millet</td>
<td>10</td>
<td>7.39<sup>b</sup></td>
<td>0.70<sup>cd</sup></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.25<sup>b</sup></td>
<td>0.69<sup>cd</sup></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.14<sup>c</sup></td>
<td>0.82<sup>cd</sup></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>7.05<sup>c</sup></td>
<td>0.86<sup>cd</sup></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>7.05<sup>c</sup></td>
<td>0.89<sup>c</sup></td>
</tr>
</tbody>
</table>

¹Means in a column sharing a common superscript letter(s) are not significantly different (p>0.05).

Sponge cake의 재조 및 특성
메시 및 차조 분말의 참가가 sponge cake batter의 pH 및 비중에 미치는 영향을 보여 Table 6에 드러난다. 케이크 브레드의 pH 는 조의 참가량에 따라서 감소하였으며, 비중은 증가하는 경향을 보였다. Johnson의 Harris²⁹은 yellow shortened cakes에 있어서 cake batter의 pH는 7.46으로 캐러란트 외신 및 glutcono-δ-lactone 참가 시 각각 pH가 6.90 및 6.76으로 감소하였으며, 비중도 감소하는 경향을 보였으나, Chun³⁰의 연구에서 sponge cake 제조 시 양파분말의 참가량이 증가함에 따라서 비중이 증가함을 보여주었는데, 이는 참가물의 종류에 따라서 변동을 알 수 있다.

메시 및 차조 분말의 참가가 sponge cake의 부피, 무게 및 비중은 Table 7에서 보는 바와 같다. Sponge cake의 제조 시 메시 및 차조의 참가량이 증가함에 따라서 부피와 비용적 감소하는 현상을 보였는데, 특히 메시와 차조를 각각 40% 참가하였을 때, 부피와 비용적은 대조군과 유의적인 차이가 있었다. 이와 같은 현상을 Pomeranz 등의¹⁷은 제빵 시 cellulose, wheat bran 및 oat hulls 등의 식이섬유분을 참가함으로써 부피 및 비용적이 감소한다고 보고한 것과 같으며, cake weight가 증가함에 따라서 cake의 비용적이 감소함으로써 초 10% 이상 참가하는 것은 무거운 cake가 된다고 볼 수 있다.

한편 Sponge cake의 volume, symmetry 및 uniformity index를 보면 Table 8과 같다. Volume index는 대조군이 15.35로서 가장 높은 값을 보였으며, 메시 및 차조의 참가량이 증가함에 따라서 감소하는 현상을 보여 cake의 부피가 작아짐을 봤 수 있었다. Symmetry form은 cake의 길이를 보는 것으로, 메시의 경우 참가량이 증가함에 따라서 증가하는 현상을 보였으며,

Table 7. Sponge cake properties prepared with wheat and millet flour blends

<table>
<thead>
<tr>
<th>Flours</th>
<th>Blend (%)</th>
<th>Volume (cc)</th>
<th>Weight (g)</th>
<th>Specific loaf volume (cc/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft wheat</td>
<td>10</td>
<td>830<sup>ab</sup></td>
<td>281<sup>c</sup></td>
<td>2.96<sup>c</sup></td>
</tr>
<tr>
<td>Normal millet</td>
<td>20</td>
<td>780<sup>b</sup></td>
<td>284<sup>d</sup></td>
<td>2.75<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>745<sup>bc</sup></td>
<td>285<sup>red</sup></td>
<td>2.62<sup>bcd</sup></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>640<sup>d</sup></td>
<td>287<sup>bc</sup></td>
<td>2.23<sup>bcd</sup></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>630<sup>red</sup></td>
<td>288<sup>bc</sup></td>
<td>2.19<sup>bcd</sup></td>
</tr>
<tr>
<td>Waxy millet</td>
<td>10</td>
<td>750<sup>bc</sup></td>
<td>288<sup>bc</sup></td>
<td>2.62<sup>bcd</sup></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>745<sup>bc</sup></td>
<td>287<sup>bc</sup></td>
<td>2.59<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>680<sup>red</sup></td>
<td>288<sup>bc</sup></td>
<td>2.36<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>605<sup>d</sup></td>
<td>286<sup>bc</sup></td>
<td>2.12<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>570<sup>d</sup></td>
<td>288<sup>bc</sup></td>
<td>1.98<sup>d</sup></td>
</tr>
</tbody>
</table>

²Means in a column sharing a common superscript letter(s) are not significantly different (p>0.05).
Table 9. Crust and crumb color of sponge cakes prepared with wheat and millet flour blends

<table>
<thead>
<tr>
<th>Flours</th>
<th>Blend (%)</th>
<th>Crust color</th>
<th>Crumb color</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>a</td>
</tr>
<tr>
<td>Soft wheat</td>
<td>10</td>
<td>54.9</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>59.5</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>60.1</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>59.5</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>60.1</td>
<td>11.0</td>
</tr>
<tr>
<td>Normal millet</td>
<td>10</td>
<td>63.3</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>60.3</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>58.7</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>58.7</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>56.4</td>
<td>9.0</td>
</tr>
<tr>
<td>Waxy millet</td>
<td>10</td>
<td>61.6</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>60.3</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>58.7</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>58.7</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>56.4</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Means in a column sharing a common superscript letter(s) are not significantly different (p>0.05).
Table 10. Sensory characteristics of sponge cakes prepared from wheat and millet flour blends

<table>
<thead>
<tr>
<th>Flours</th>
<th>Blend (%)</th>
<th>Color External</th>
<th>Color Internal</th>
<th>Grain</th>
<th>Texture</th>
<th>Flavor</th>
<th>Taste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft wheat</td>
<td></td>
<td>7.40<sup>f</sup></td>
<td>7.97<sup>d</sup></td>
<td>6.97<sup>c</sup></td>
<td>4.03<sup>d</sup></td>
<td>2.04<sup>d</sup></td>
<td>5.04<sup>d</sup></td>
</tr>
<tr>
<td>Normal millet</td>
<td>10</td>
<td>7.53<sup>f</sup></td>
<td>6.93<sup>d</sup></td>
<td>6.73<sup>c</sup></td>
<td>7.00<sup>d</sup></td>
<td>6.87<sup>d</sup></td>
<td>6.40<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.87<sup>bc</sup></td>
<td>7.13<sup>d</sup></td>
<td>6.53<sup>cd</sup></td>
<td>6.60<sup>d</sup></td>
<td>6.27<sup>cd</sup></td>
<td>6.33<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.07<sup>cd</sup></td>
<td>6.00<sup>d</sup></td>
<td>5.80<sup>cd</sup></td>
<td>5.87<sup>cd</sup></td>
<td>5.87<sup>cd</sup></td>
<td>5.60<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6.07<sup>cd</sup></td>
<td>5.73<sup>d</sup></td>
<td>5.67<sup>cd</sup></td>
<td>5.80<sup>cd</sup></td>
<td>5.40<sup>bc</sup></td>
<td>5.33<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4.87<sup>ab</sup></td>
<td>4.13<sup>d</sup></td>
<td>5.60<sup>bc</sup></td>
<td>4.80<sup>d</sup></td>
<td>4.80<sup>d</sup></td>
<td>4.27<sup>d</sup></td>
</tr>
<tr>
<td>Waxy millet</td>
<td>10</td>
<td>6.80<sup>bc</sup></td>
<td>6.93<sup>d</sup></td>
<td>6.47<sup>bc</sup></td>
<td>6.47<sup>d</sup></td>
<td>6.27<sup>bc</sup></td>
<td>5.93<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.93<sup>cd</sup></td>
<td>5.87<sup>d</sup></td>
<td>5.80<sup>bc</sup></td>
<td>5.73<sup>bc</sup></td>
<td>5.27<sup>bc</sup></td>
<td>5.60<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.67<sup>bc</sup></td>
<td>5.07<sup>bc</sup></td>
<td>5.40<sup>d</sup></td>
<td>5.40<sup>bc</sup></td>
<td>5.57<sup>bc</sup></td>
<td>5.60<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5.13<sup>bc</sup></td>
<td>4.80<sup>ab</sup></td>
<td>5.67<sup>bc</sup></td>
<td>5.27<sup>ab</sup></td>
<td>5.20<sup>bc</sup></td>
<td>5.40<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4.53<sup>a</sup></td>
<td>4.47<sup>ab</sup></td>
<td>5.47<sup>ab</sup></td>
<td>5.33<sup>ab</sup></td>
<td>4.87<sup>ab</sup></td>
<td>4.93<sup>ab</sup></td>
</tr>
</tbody>
</table>

*Means in a column sharing a common superscript letter(s) are not significantly different (p>0.05).

Fig. 4. Changes in hardness of sponge cakes prepared with wheat and millet flour blends during 6 day storage at 25°C.

요 약

식이섬유중에서 메조와 치조 분말을 sponge cake 제조에 이용하고자 10-50%의 비율로 치조하여 cake 제조적성 및 이들
의 이화학적 특성을 조사하였다. 총 식이섬유는 백맥밀가루가
2.23%인 비하여 메조 5.04%, 치조 5.72%로서 2 배 이상 높
았으며, alkaline water retention capacity는 메조, 치조 모두 치
가량이 증가함에 따라서 감소하였다. Rapid Visco Analyser에
의한 호화특성에서 maximum, minimum 및 final viscosity는 메
조와 치조의 치가량이 증가함에 따라서 감소하였다. Mixograph
에 의한 밀착의 리즘로지특성에서 peak time 및 peak height는 메조와 치조의 치가량이 증가함에 따라서 감소하였다. Sponge
cake의 crust color의 L 값은 메조의 경우 치가량이 증가함에 따
라서 증가하였으나, 치조치조간은 대조군보다는 L 값이 높았지
만 치가량이 증가함에 따라서 감소하는 경향을 보였다. Crumb
color의 L 값은 메조, 치조치조 모두 대조군보다 낮았으며,
치가량이 증가함에 따라서 감소하였다. Sponge cake의 부피는
메조 및 치조를 참가함으로써 감소하였고, 10% 참가수준에서
는 유의적인 차이가 없었으나 20% 참가수준에서는 대조군에
비해 통계적 차이가 있었다.

문학

1. Shin HK, Chang HG, Ryu IS. Physicochemical characteristics of
(1978)
2. Chang HK, Rhu IS. Comparison of end-product potentialities of
Korean and American wheat. Korean J. Food Sci. Technol. 21:
521-523 (1998)
3. Chang HG. Influences of environmental factors on processing
properties of wheat produced in Korea. Dongguk Univ. Ph.D. the-
sis (1984)
4. Anjum FM, Walker CE. Review on the significance of starch and
(1991)
6. Nagao S, Imal S, Sato T, Kaneko Y, Otsubo H. Quality characteristics
of soft wheats and their use in Japan. 1. Methods of assessing
wheat suitability for Japanese products. Cereal Chem. 53:

