다축적 수치지도의 도로 및 건물정보 일괄갱신 연구

A Study on the Consecutive Renewal of Road and Building Information in the Multi-scale Digital Maps

박경식1)

Park, Kyeong Sik

Abstract

In the existing digital map of the Ver.1.0, it is impossible to make a small scale digital map, which is under the 1/5000 scale map, by using the 1/1000 digital map which is the most large scale one. Because of this reason, the existing digital maps are produced into a 1/1000 and a 1/5000 map by means of different scale aerial photos. The next generation digital map should be successively related to a small scale digital map based on the most large scale digital one. This is so important from the aspects of data share and the consecutive renewal. Ever since the development of the digital map of the Ver. 2.0, the possibility of making a multi-scale consecutive digital map has been presented and the related research has been done again. The most basic thing in the multi-scale digital maps is to decide the criteria of the generalization between the two scales. In this study, I try to formulate the criteria of the generalization required to make the 1/5000 digital map by using the 1/1000 digital one. In addition, I try to explore the application possibility of the consecutive renewal by carrying out auto-generalization.

Keywords : Map generalization, Generalization criteria, Digital map consecutive renewal

초 록

기존의 수치지도 1.0에서는 가장 대축적인 1/1,000수치지를 이용하여 1/5,000과 그 이하 소축적 수치지도를 제작하는 것이 불가능하다. 이러한 이유로 1/1,000과 1/5,000 이하의 수치지도는 각각 다른 축척의 복잡시안으로부터 제작되었다. 복잡시대의 수치지도는 가장 고프적인 수치지도로 기반으로 점차 소축적의 수치지도가 연속으로 연결되어져야하며, 이것은 데이터의 통합과 일괄갱신 측면에서 매우 중요한 일이다. 수치지도 2.0이 개발된 이래 다축적 연속수치지도제작에 관한 가능성이 제기되면서 이에 대한 연구가 다시 시작되었다. 다축적 연속수치지도에서 가장 기본이 되는 것은 축척간에 연계되는 일반화 기준은 결정하는 것이며, 본 연구에서는 1/1,000 수치지도를 이용하여 1/5,000수치지도를 제작할 수 있는 일반화 기준을 정립하였다. 또한, 정립된 기준을 이용하여 자동일반화를 수행함으로서 일괄갱신에서의 활용 가능성을 모색하였다.

핵심어 : 지도일반화, 일반화기준, 수치지도 일괄갱신

1. 서 론

수치지도는 종이지도와 달리 GIS 및 각종 전산 자료로서 활용성이 뛰어나기 때문에 그 효용성이 점차 증대되고 있는 추세이다. 현재 우리나라에서 활용되는 수치지도의 축척은 1/1,000, 1/5,000, 1/25,000, 1/50,000등이 있으며 축척에 따라 각각 도화되거나 편집을 통해 제작되고 있다.

이론적으로는 가장 대축적인 1/1,000 수치지도를 편집하여 1/5,000을 제작하고 이를 다시 1/25,000과 1/50,000으로 제작하는 것이 가능하다. 그러나 1998년부터 연차 사업으로 시행된 연구결과 여러 가지 이유로 인해 1/1,000 수치지도를 이용하여 1/5,000을 제작하는 것은 불가능하다는 결론으로 도출되었다(국립지리원, 1999).

1) 경희원 인하공업전문대학 지형공간정보과 교수(E-mail: pks@inha.ac.kr)
지도로는 실제로는 1/10,000을 기준으로 이보다 소속적
과 대체적 구분하여 각각 도화하며 이를 위한 항공활
영 역시 별개로 시행하고 있다. 이러한 현행 시스템은
가장 대체적으로 소속적까지 일관성 있는 자료의 표현
을 저해하는 원인이 되고 있으며, 특히 GIS 활용시 동일
한 데이터베이스를 활용하지 못함으로 인해 차례에
따른 정보의 단절이나 상이성과 같은 제약이 발생하게
된다. 물론, 지형지물의 변화 발생시 각각의 지형도를
수정해야하는 빈가로움에 접하게 된다.

그러나 수치지도 1.0의 여러 가지 단점을 보완한 국
가자리지정보체계구축에 적합한 수치지도 2.0이 개발되면
서 수치지도 2.0을 기반으로 하는 일반화 연구가 다시 시

동시에 수치지도 2.0의 데이터베이스와 SUBUFID를
이용하여 여러차원의 수치지도를 일괄적으로 생성하고
자 하는 연구가 수행되기에 이르렀다.

차세대 수치지도는 다측적 연속 수치지형도의 개념을
지니고 있어 대체적 지도의 특정 지형지물을 정밀한 경
우 소속적의 동일 지형지물이 일괄적으로 재현되어야
한다. 따라서, 각 차례간의 갭이 체계적이고 자동적으
로 이루어져야하며 이 과정에서 자동일반화가 적용되어
간다.

다측적 연속 수치지형도에 자동일반화를 적용하기위
해서는 적절한 알고리즘과 변환계수를 결정하여야한다.
본 연구에서는 일반화를 이용하여 다측적 연속 수치지
형도를 정밀화하여 대체적 수치지도와 소속적 수치
지도간의 변환알고리즘과 변환기준을 정립하고자한다.
다만, 일반화의 과정 중 1/5,000에서 1/25,000 또는
1/50,000수치의 일반화는 기존 연구(국립지리원, 1998)를
동하여 정립되었으므로 본 연구에서는 1/1,000에서
1/5,000으로의 일반화에 대해서도 적용하고자 한다.

적용범위는 일반화의 기준이 되는 도로와 건물이며,
정립된 기준을 적용하여 자동일반화를 수행함으로써 일
괄생산에서 연구결과가 활용가능한지 모색하였다.

2. 일반화

지도란 지리적인 각종 현상을 추상화시켜 도면 위
에 표시한 것으로 이 변환과정을 지도학적 추상화와 일
반화라고 하며, 이에는 선택, 분류화, 단순화, 기호화 등
일반의 과정이 포함된다(이희언, 1995).

수치지도에서의 일반화는 대체적에서 소속적으로의
일반적인 표현에 따르며, 복잡성을 감소시키고, 공간 및
속성 정확도를 유지하며, 자료의 미적 품질과 논리적 체
계를 유지함을 물론 일반화를 위한 규칙을 적용하여야
하는 등 이론적 기본요건을 만족하여야 한다(Ruas and
Pizanetz, 1996).

수치지도 일반화에서 대체적을 소속적으로 할 때 원
래의 정확도를 유지하는 것은 실재적으로는 불가능하
다. 지도의 명확성 유지는 눈으로부터 30cm거리에서 대
략 0.2mm이상으로 나타나야 하며, 어떠한 형태도 0.2mm보다 작으면 구별되지 않는다. 그러나, 인지할 수
있는 한계까지 지도상의 물체를 줄이는 것 역시 컴퓨
터 해상도나 인체기능 등에 의해 현저하게 손상될 수 있
기 때문에 실제로는 곤란하다. 그러므로, 이론적인 한
계보다는 만들어진 지도의 전체적인 명확성에서 무엇이
보이고 무엇이 보이지 않는지 그 관계에 중점을 두어야
한다(박광열, 1999).

일반화를 위해 사용되는 대표적인 알고리즘은 다음과
같다.

2.1 단순화

지형지물의 형태를 지도상에 그대로 표현하는 것은
매우 복잡하고 양이 방대하여 불가능하다. 지도에서는
특정한 지형지물에 대하여 상세한 부분까지 표현하기
보다는 축적에따라 특징점들만 추출하여 전체형상으로
타낼 수 있도록 해야 하는데 이점을 단순화라고 한다.

단순화는 일반적으로 선의 형태를 지니는 지형지물에
적용한다.

![그림 1. 거리각도 알고리즘에 의한 단순화](image)

2.2 단선 처리

하천이나 도로처럼 실목을 가지는 지형지물은 축적에
따라 표현되는 형태가 달라지게된다. 대체적일때는 실
폭으로 표현되지만 소축처인 두는 단지 하나의 선만으로 표현되어있는 경우가 있다. 단천처리는 실질적으로 표현 되는 지형지물은 하나의 선으로 변환시키는 일반화처리 기법이다.

2.3 정리 처리
지형지물이 매우 복잡한 경우 작은 부분을 생략하고 계속한 부분만 표현함으로써 전체적인 복잡성을 감소시키고 정보의 전달을 명확히하기 위한 일반화방법이다.

정리처리는 하천과 도로와 같은 선형의 경우 기존이 하의 길이박분을 삭제하여 처리하며, 건물의 경우 기존 면적이하의 것을 삭제하여 처리 한다. 그림 2는 축척의 감소에 따른 정리처리의 한 예이다.

![그림 2. 정리처리](image)

2.4 축약 처리
일정한 면적내에 많은 개수의 독립된 지형지물이 존재할 경우 매우 복잡한 형태를 보이며 이것을 단순화 시켜 표현하는 처리이다. 독립건물과 축소건물 두 가지 방법이 있다.

독립건물이라면 개개의 건물을 구분하여 표현할 수 있는 건물 또는 개개의 건물로 구분할 필요가 있는 건물이다. 일반화에서 독립건물처리는 정리대상에 속하지는 않지만 그 면적이 일정한 기준이하의 경우 건물의 형태를 무시하고 독립된 하나의 건물로 대치하는 것을 말한다. 이때 대치되는 건물이 커지면서 서로 접치는 경우가 발생할 수 있으므로 주의해야한다.

축소건물은 복잡한 건물의 형태를 그대로 나타내지 않고 일정기준 이하인 변에 대해서는 단순화시켜 나타내는 방법이다. 또한 그림 3과 같이 건물이 밀집되어 있는 경우, 이격거리 기존(d)보다 실제 이격거리(D)가 작으면 건물을 병합처리를 하여 복잡성을 줄일 수 있다.

![그림 3. 이격거리에 의한 건물병합](image)

3. 일반화기준 정립
1/1,000 수지지도를 1/5,000으로 일반화하기 위하여 본 연구에서는 각 모듈별로 일반화 기준을 정립하고 처리를 수행하였다. 본 연구에서 일반화를 위해 정립한 기준은 다음과 같다.

3.1 단선처리
수지지도작성작업내규에 의하면 하천과 도로는 축척 1/5,000에서는 3m이상, 1/25,000에서는 6m이상의 폭을 지나는 것에 한하여 실질적으로 표현하고 그 외는 단선으 로 표현하도록 규정하고 있다.

수지지도 2.0에서 도로와 하천은 면의 형태로 경계를 표현하며, 모든 도로에는 중심선이 존재하고 있다. 따라서 도로경계의 폭이 3m보다 작은 경우 그림 4와 같이, 도로경계선 삭제하면 중심선만 남겨되어 자연적으로 단선처리가 수행되어질 수 있다.

![그림 4. 단선처리](image)

3.2 단순화
단순화는 축척의 감소로 인하여 곡선 데이터의 밀도
3.3 길이정리

하천이나 도로의 경우 주거지에서 결다리로 뻗어져 나간 지류나 도로의 길이가 짧은 경우 초속적으로 감수록 지저분해질 수 있다. 따라서 그림 6과 같이 일정 길이 이하의 선형을 섞어함으로써 전반적인 응력은 두께 세부적인 내용은 생략할 수 있어 복잡성을 감소시킬 수 있다. 도로에서 축력에 따라 적용시킬 거리의 기준은 1/1,000에서는 모든 도로를 표현하고 1/5,000에서는 5m 이상, 1/25,000에서는 25m 이상의 것으로 표현한다.

3.4 독립 건물

독립 건물의 변화는 일정한 변해 이하의 건물을 그림 7과 같이 크기가 형태가 같은 모양으로 변화 시키는 것을 말한다. 독립 건물의 처리 기준은 수치지도 관리법에 나타나 있지 않고 축적별 도식적용규정에서 인용할 수 있다. 각 축적에서 독립건물의 기준은 단변의 길이가 도상 0.5m이다.

따라서 1/5,000의 경우는 2.5m이고 1/25,000에서는 12.5m가 된다. 독립 건물 처리시 변해가 6.25m 이상이고 단변이 포함된 건물은 독립건물로 변경한다. 변해된 독립건물들은 변해를 경계로 서로 겹치는 현상이 발생할 수 있는데 이는 사용자의 수작업으로 처리해주
이야 한다.

![그림 7. 독립건물](image1)

3.5 축소 건물
축적변화는 복잡한 건물의 실제 모양을 그대로 표현하는 것을 불가능하게 만들므로 이러한 복잡한 모양의 건물을 단순한 형태로 변화시켜주는 것이 축소 건물 기능이다. 6.25m² 이상의 건물을 대상으로 짧은 폭의 길이가 2.5m 미만인 경우 그림 8과 같이 건물의 모양을 단순화시킨다.

![그림 8. 축소건물](image2)

3.6 면적비교정리
건물의 면적이 일정기준보다 작은 경우 소축적으로 일반화 할때 삭제해야한다. 현재, 지형도나 수치지도와 관련된 면적비교정리에 대한 기준이 없으며, 작업자의 판단에 따라 적절히 삭제하고 있다.

본 연구에서는 자동화된 면적 비교정리를 위하여 동일지역의 1/1,000과 1/5,000 지형도를 분석하고 비교테스트를 수행한 결과 31.25m²의 면적을 기준으로 정리를 수행했음때 가장 유사한 결과가 나왔음을 알 수 있었다. 면적에 의한 비교정리의 기준은 31.25m²로 하였다.

4. 일괄상신을 위한 자동일괄화실험
본 연구에서는 1/1,000수지도를 수정하거나 캐치할 때 1/5,000수지지도 역시 자동으로 캐치되도록 일반화 기준을 정립하였다. 일괄상신을 위해서는 각 수치지형도를 구성하는 각 지형지물간의 연관관계가 명확해야하며 각 지형지물은 축적에 관계없이 하나의 UFID를 가지아한다. 그러나 현재 수치지도 2.0에서는 축적에 따라 삼지여는 기관이나 도영마다 UFID가 다르게 나타나고 있어 지형지물의 연관관계를 명확하게 하는 것이 어렵다. 이를 위해 SUBUFID에 관한 연구가 진행되었으며 본 연구에서는 각 지형지물간의 연관관계를 명확하게 연결된 경우를 가정하여 실험을 수행하였다.

일괄상신 실험을 위한 프로그래밍의 개발환경과 활용라이브러리는 표 1과 같다.

<table>
<thead>
<tr>
<th>개발환경</th>
<th>활용라이브러리</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>WindowXP</td>
</tr>
<tr>
<td>Lang</td>
<td>C++</td>
</tr>
<tr>
<td>DB</td>
<td>Oracle10g</td>
</tr>
<tr>
<td></td>
<td>GEO.lib ver.3.00</td>
</tr>
<tr>
<td></td>
<td>중 Spatial Operation</td>
</tr>
</tbody>
</table>

자동상신을 위해서는 먼저 일반화하고자 하는 객체에 대한 검색이 이루어져야하며, 사용자 선택 검색과 최근 캐치한 목록을 선택하여 각각의 축적에 맞게 로드할 수 있도록 하였다. 일괄상신을 위한 실험대상은 강원도 원주시의 1/1,000과 1/5,000 수지지도 2.0이며, 일괄상신 호름은 그림 9과 같다.

4.1 레이어 자동정리
1/1,000과 1/5,000측의 수지지도는 표현해야 할 지형지물의 크기뿐만 아니라 종류도 서로 다르다. 수치지도의 일반화를 수행함에 있어 불필요한 레이어를 삭제하는 것은 가장 기본적으로 수행해야하는 과정이다.
레이어 자동정리는 1/1,000 수지지도에서 1/5,000 수치지도로 일반화 할 때 삭제 할 목록을 파일로 구성하여 삭제가 이루어질 수 있도록 하였다.
4.2 일반화 환경설정
레이어에 대한 자동정리가 완료되면 그림 11과 같이 일반화 환경을 설정한다. 일반화를 위한 알고리즘은 여러 종류가 있으나 동일한 많은 분들의 연구와 실험을 통하여 정립된 알고리즘을 선정하고 그 기준값을 입력하여 일반화가 진행될 수 있도록 하였다. 앞 절에서의 실험결과 단순화는 격리각도 알고리즘이 타당하며, 면적이 교정의 기준은 31.25㎡로 하는 것이 적절한 것으로 나타났다.

4.3 일반화처리
건물의 경우 일반화는 앞 절에서 정립한 기준으로 수행하였으며, 독립건물과 축소건물을 그리고 면적비교 정리를 수행하였다.
그림 15는 그래픽 비교를 수행한 후의 모습이며 축적 면으로 서로 다른 객체에 대하여 한 눈에 알아보기 쉽게 구성하였다.

4.4 객체검색

대상 레이어에 대하여 일반화처리가 완료되면 기존의 1/5,000 수치지도를 경신하기 위해 현재 로드되어있는 객체를 대상으로 검색을 실시한다. 객체 검색 결과, 선택한 대상과 목적하는 소추적 데이터가 그림 14와 같이 동시에 화면에 표현된다.

4.5 객체 경신

경신해야할 객체의 검색이 완료되면 소추적 수치지도에 경신대상 객체들을 중첩시켜 하나의 화면에 객체의 생성, 수정, 삭제가 나타나도록 한다. 그림 16은 1/5,000
수치지도에 캐치 및 생성대상 건물이 중첩되어 있는 것을 나타낸 것이다.

마지막 단계는 DB 반영 단계로서 캐시오대상 건물의 기본 메타데이터 정보를 업데이트 한 뒤 DB 반영을 수행한다. 그림 17은 DB를 반영한 후 다시 1/5,000 수치지도를 로드 한 것으로서 건물이 갱신되었음을 알 수 있다.

그림 16. 캐시오대상 객체의 종합

5. 결 론

동일한 데이터베이스를 갖는 수치지정도와 캐시오식 수치지도간의 일괄갱신을 위해 일반화기준을 정립하고 자동일반화를 수행한 결과 다음과 같은 결론을 얻을 수 있었다.

1. 기존의 연구결과 정립되지 못했던 1/1,000축에서 1/5,000축으로의 도로 및 건물관련 일반화 기준을 정립하였다.

2. 건물의 면적비교 정리는 31.25㎡를 기준으로 하는 것이 1/5,000과의 비교에서 가장 적절한 것으로 나타났다.

3. 정립된 일반화 기준을 적용하여 자동일반화를 수행한 결과 수치지정도의 일괄갱신 가능성을 확인할 수 있었다.

다축적의 수치지정도를 자동일반화에 의해 일괄갱신하기 위해서는 건물과 도로외에도 여러 가지 지형지물에 대한 일반화 기준의 정립과 가능성을 검토가 필요하다. 본 연구를 토대로 나머지 지형지물에 대한 추가적인 연구도 점차적으로 수행하고자 한다.

감사의 글

이 논문은 2009학년도 인하공업전문대학 교내연구비 지원에 의하여 연구되었음.

참고문헌

국립지리원 (1998), 대축적 수치지정도의 소축적변환 연구, 국립지리원.
국립지리원 (1999), 대축적 수치지정도의 소축적 변환 및 레스터지도 제작에 관한 연구, 국립지리원
국토지리정보원 (2003), 지도측소편집자동화 시스템개발, 국토지리정보원, pp. 26-34.
국토지리정보원 (2004), 지도측소편집자동화 시스템개발(II), 국토지리정보원, pp. 26-34.
박성식, 임인성, 최석근 (2001), 수치지도 일반화 위치정 확도 평가기, 한국측량학회지, 제 19권 2호, p. 179.
박경열 (1999), 수치지도제작을 위한 자동일반화시스템 개발, 충북대학교대학원 박사학위논문.
이희연 (1995), 지도학, 법문사.

(검수일 2010. 12. 14, 심사일 2011. 01. 23, 심사완료일 2011. 01. 31)