Study on the Palatability, Digestibility and Feeding Behavior in Spotted Deer (Cervus nippon) Fed Forest by-product Silage

B. T. Jeon, S. H. Moon, S. M. Lee and Y. J. Kwon*

ABSTRACT

This experiment was conducted to examine possibility and suitability of forest by-product as a roughage source of deer. As a experimental diet, forest by-product silage(FPS) and commercial mixed ration(CMR) were prepared to compare dry matter intake, digestibility, nitrogen balance and feeding behavior in feeding trials with spotted deer. The digestibility of dry matter was higher(P<0.05) in CMR than in FPS. The digestibility of crude protein was higher in CMR than in FPS and there was significant difference(P<0.05). CMR had more digestibility of crude fiber than FBS but the difference was not significant. Dry matter intake were similar in both diets. Digestible dry matter intake was higher in CMR than FPS, however, there was no significant difference between experimental diets. Nitrogen intake, urinary and digestible nitrogen were significantly higher(P<0.05) in CMR than FPS. The efficiency of nitrogen utilization was higher for FPS than for CMR. Feeding behavior were similar in FPS and CMR. Consequently, it would be expected that FPS that composed with various feed sources can be used as a good roughage source of deer. Because it has high digestibility, dry matter intake and internal availability of nitrogen.

(Key words: Deer, Intake, Digestibility, Forest by-product silage, Feeding behavior, Nitrogen balance)
하는 쥐를의 대체 죽음으로 각장받을 만큼
산업적 기반을 갖추게 되었다.

일반적으로 사용은 경제주름이 길고 노동 성
산성이 토지 이용성이 높기 때문에(Yeres and
Spiers, 1993)에 생산비 중 경영비가 차지하는
비중은 상대적으로 높은 반면, 사료비가 차지
하는 비중이 약 80% 정도(한국양육협회,
1999) 다른 가축에 비해 매우 높은 편이다. 국
내 양육업에 있어서 사료비의 비중이 높은 것
은 구입비로, 특히 수입사료에 의존하는 일반
적 경영형태 때문에, 결코 외국과의 가격
경쟁에서 생존하기 힘든 현실적 여건을 안고
있다. 따라서 사료비를 낮추기 위해서는 수입
사료의 비용을 낮추고 자급 조사자원의 비용을
높이는 것이 최대제한이란 것이다. 그
러나 우리나라의 사료작물 생산을 위한 면적
적 축소(농림부, 2000)되어 가금 단위면적 당
조사료 생산 단가는 지가상승 등의 요인으로
전국적으로 비해 월등히 높으며, 급등하는 인건
비 또한 조사자원의 자금을 낮추는 주된 요
인으로 작용하고 있다. 따라서 이런 산업적 여
건들을 타개하고 지속적인 양육업 발전을 위해
사는 무엇보다도 자급조사료의 양산과 그 효율
적이고 이용가능성을 마련하여 사료비의 부담을 줄
임으로써 그 해결방법을 모색해야 할 것이다.

사육은 소화성상 수염류나 광범초류를 줄
겨 먹며 일반 독초류까지도 충분히 재활할
수 있는 기초적으로 분류되어 있다(Henke 등,
1998; Hofman, 1988; 전 등, 1997). 특히 일반
잡란목 수염류에 대한 기호성이 매우 우수하기
(Currie 등, 1977; Crawford, 1982; 이 등, 1990)
때문에 이들의 적극적인 활용은 사육의 소화성
리를 고려하고 부족한 독초료의 효율적 이용이라는
측면에서 볼 때 매우 바람직할 것으로 판단된
다. 다행히 우리나라의 전국적으로 약 70% 정도
가 산지로 구성되어 있으며 기후적 특성상 경
제적 가치가 낮은 잡란목류의 정유비율이 높기
때문에 산지에서 생산되는 산림생산물을 적극
적으로 활용할 수 있는 환경적 조건을 갖추고
있다. 특히 국내에서는 산림의 효율적 관리와
경제적 수목을 가구기 위해 전국적으로 숲가구
기의(1998년~2002년)와 더불어 조림후 3~
5년 사이에 조림지를 대상으로 육림 및 간행사
업을 실시하고 있어, 매년 20만ha의 육림지(산
림청, 2000)에서 생산되는 잡란목, 수염류 및
일부 생목류의 생산량은 대략 80만~100만만
으로 예상된다(전 등, 2000). 그러나 이 사업으로
생산되는 산림(육림)부산물 대부분이 그대로
방치되거나 극히 일부만이 농업으로 이용
되고 있어 육림도가 매우 낮은 편인데 이들 중
5~10% 정도만이라도 사육용 조사료로 활용
된다면 국내에서 사육용 사료 소요
량의 대부분을 대체할 수 있을 것으로 기대된
다. 따라서 육림부산물이라는 부존자원의 활용
을 위해 이에 대한 사육용 사료화 및 그 이용
성, 그리고 생산성에 미치는 영향 등을 검토하
여 사육용 사료조시료 수급체계의 확립을 위한
제한 연구의 필요성이 요구된다.

이에 본 연구는 육림부산물의 사육용 조사료
원으로서의 사료가치를 평가하기 위해 육림부
산물을 수거하여 제조한 발효사료의 급여가 사
사육이 있어서 전물체 식량, 소화율, 질소출
용 및 재생등에 관한 연구를 실시하였다.

Ⅱ. 재료 및 방법
1. 육림부산물 발효사료의 제조

1998년 8월 충북 충주시 신라면 소재, 조림
후 2년 차의 육림 대상지에서 생성된 육림부산
물(잡란목류, 아초료 등 포함)을 바로 수거하여
전국대학교 자연과학대학 식품농생학과 기계적
처리를 통해 사료화를 위한 파쇄작업을 실시한
다. 기계적 처리는 일반 옥수수 파쇄기(chopper)
를 이용하였다. 파쇄된 사료의 평균 입자로
는 2.9~4.0cm 범위로 조사료로서의 물리적 등에
는 문제가 없도록 하였으며 남림동을 이용한
간이 사료로 활용하여 사료처리를 제조하였다.
사실로 내부에 혼합적 조건을 만들어 주기 위해 통비닐을 사료에 넣은 다음 육립부산물을 총합 시켰으며 원활한 발효조건을 만들어주기 위해 제료의 수분 함량이 60~65%가 되도록 증발과 중 약간의 가수분 끓였다. 간이 사료로 만든 공기의 진공장소기를 이용하여 제거. 최 대한 혼합적 조건을 유지하면서 발효하여 발효 사료를 제조하였다.

육림지에서 생산되는 부산물들은 조림 후 연 수, 정소와 임지조건에 따라 상당한 차이를 가지고 있으며 본 실험에 이용된 육림부 산물은 갈장나무 및 차나무, 삶 등의 수엽 잡원목류가 전체의 약 80~90% 이상 차지하고 있으며 그 외에 야초들도 포함되어 있다.

2. 육림부산물 발효사료 급여에 의한 쫓아습의 체식기호도 평가

가. 실험 장소

실험은 1999년 3월부터 5월까지 하나사슴연구소(충북 충주시소재)에서 실시하였다.

나. 공시동물

실험을 위한 공시동물은 꼭짓사슴(spotted deer, Cervus nippon)을 이용하였으며 평균 체중 약 30kg의 1년생 육성목(♀) 4두와 평균 체중 89kg의 5년생 우달 8두를 도시하였다.

다. 공시사료

성토 및 육성목의 체식기호도 측정을 위한 실험사료는 전국대학교 실험농장에서 제조된 육림부산물 발효사료와 일반적으로 유통되는 시판혼합사료(TMR)를 주 사료로 하여 배합사료를 혼합하여 Table 1과 같은 배합 비율에 의해 제조하였으며 각 실험사료에 대한 화학적 성분 함량도 Table 1에 나타났다.

라. 사양관리

사양시험을 위해 공시 사슴에게는 시험사료에 대한 적응기간을 중분히 두었으며 시험사료는 1일 2회, 오전과 오후에 반 냉각 각각 급여 하였다.

마. 실험설계

실험은 대조군인 시판혼합사료(CMR)구와 육림부산물발효사료(FPS)구로 구분하여 배치하였고 예비시험 10일을 거쳐 7일간의 본 실험을 실시하였다.

바. 조사항목 및 방법

본 실험기간 중 첫날과 마지막날을 제외한 5 일간의 자료를 체식 기호도를 측정하기 위해 활용하였다. 사료급여시 각각의 전량을 매일 측 정하여 급여량에서 전량을 제한 값에 사료 섭 취량으로 계산하였다.

3. 육림부산물 발효사료 급여에 의한 쫓아습의 체내이유성 평가

가. 실험기간 및 장소

1999년 6월10일부터 1999년 10월 31일까지 하나사슴연구소(충북 충주시소재)에서 실시하였다.

나. 공시동물

평균 체중 약 30kg의 꼭짓사슴 육성목(♀) 4두 를 공시동물로 이용하였다.

다. 공시사료

전국대학교 실험농장에서 제조된 육림부산물
Table 1. The formulation and chemical analysis of experimental diets for evaluation of palatability and feeding behavior in spotted deer

<table>
<thead>
<tr>
<th>Item</th>
<th>Experimental diets*</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FPS</td>
<td>CMR</td>
<td>FPS</td>
<td>CMR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td>Yearling</td>
<td>Adult</td>
<td>Yearling</td>
<td></td>
</tr>
<tr>
<td>Formulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest by-product</td>
<td>40</td>
<td>76</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>silage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial mixed</td>
<td>-</td>
<td>-</td>
<td>49</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>ration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa bale</td>
<td>5</td>
<td>-</td>
<td>12</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Lupin seed</td>
<td>31</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Concentrate</td>
<td>24</td>
<td>24</td>
<td>22</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Chemical composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter</td>
<td>61.3</td>
<td>67.1</td>
<td>85.5</td>
<td>84.3</td>
<td></td>
</tr>
<tr>
<td>Crude protein</td>
<td>20.0</td>
<td>12.3</td>
<td>20.3</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>Ether extract</td>
<td>3.0</td>
<td>4.9</td>
<td>3.8</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Crude fiber</td>
<td>30.6</td>
<td>34.7</td>
<td>21.8</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td>Crude ash</td>
<td>7.0</td>
<td>3.0</td>
<td>7.8</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Nitrogen free</td>
<td>39.4</td>
<td>45.1</td>
<td>46.3</td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>extract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* FPS : Forest by-product silage, CMR : Commercial mixed ration.

발효사료와 일반적으로 유동되는 시판혼합사료를 이용하여 무게한 급여했으며 농후사료는 채중의 1%를 급여하였다. 실험사료의 화학적 조성은 Table 2에 나타낸 바와 같다.

사료관리

실험기간 중 공시 사료은 본론을 분리 수거할 수 있는 대사료에서 사육되었고 일정기간 충분한 적응기를 두었으며 시험사료는 1일 2회, 오전과 오후에 반 양씩 각각 급여하였다.

조사행목 및 방법

본 실험기간 중 첫날과 마지막날을 제외한 5일간의 자료를 실험분석을 위해 활용했다. 매사료급여시 장양을 매일 측량하여 급여량에서 잔량을 제한 값으로 사료 섭취량으로 계산하였다. 전물 소화율은 전분 분석법에 의해 측정했으며 이를 위해 매일 사료급여 적전에 배설된 물을 수거하여 측량 및 이중 일부의 시료를 채취하여 dry oven에서 간조시켜 건물 함량을 구했다. 총체량을 알아보기 위해 각각의 개체에 마취를 실시하여 본 실험 개시 무게와 종료 후 무게를 각각 측정하였으며, 절소출산 실험
Table 2. Chemical composition of experimental diets for evaluation of internal availability in yearling spotted deer

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Experimental diets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FPS</td>
</tr>
<tr>
<td>Dry matter</td>
<td>36.5</td>
</tr>
<tr>
<td>Crude protein</td>
<td>8.2</td>
</tr>
<tr>
<td>Ether extract</td>
<td>2.0</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>43.2</td>
</tr>
<tr>
<td>Crude ash</td>
<td>5.0</td>
</tr>
<tr>
<td>Nitrogen free extract</td>
<td>41.6</td>
</tr>
</tbody>
</table>

은 소화실험과 동시에 실시했다. 분과 농은 서로 분리 채취하여 전량 측량한 후 일정량을 채취하여 분은 일정조조 하였고 농은 3°C로 냉장 보관하였다. 채취사료 및 분, 농의 시료에 대한 일반성분의 분석은 AOAC법(1990)에 준하여 실시하였다.

4. 육립부산물 발효사료의 곡물에 의한 꼬시사슴의 채식행동 평가

가. 실험기간 및 장소

1999년 1월 15일부터 1999년 7월 20일까지 건국대학교 하나사슴연구소(충북 충주시소재)에서 실시했다.

나. 공시동률

체중과 전년도 녹중생산성을 기준으로 평균 체중 89kg의 5년생 꼬시사슴 16두을 공시하였다.

다. 공시사료

육립부산물 발효사료(FPS)는 건국대학교 실습농장에서 제조된 사료를 이용했으며 대조구로 시판혼합사료(CMR)를 이용하였으며 각각의 실험군마다 같은 영양조건을 제공하기 위해 Table 1과 같이 사료를 배합했으며 이 실험사료에 대한 일반성분 함량 역시 Table 1과 같다.

라. 사양관리

실험사료는 공시사슴들이 낙각 예정일(4월초순)을 기준으로 3개월 전인 1월 15일부터 급여하기 시작했으며 모든 공시사슴이 충분한 양의 사료를 채식할 수 있도록 건물근처로 사슴의 객당 당 3.5%에 해당하는 급여량을 하루에 두 번씩 오전과 오후에 나누어 급여했다.

마. 조사 항목 및 방법

시판혼합사료구(CMR)와 육립부산물 발효사료(FPS)로 두 군으로 나누어 공시사슴을 각각 8두씩 배치하였다. 채식행동을 관찰하기 위해 실험이 진행되는 기간 중 일정한 날을 대하여
각 실험군별로 24시간동안 연속비디오 촬영을 실시했으며 비디오 분석을 통하여 채식, 반추, 휴식에 대한 행동발현을 각기 구분하여 군 행동은 10분 단위로 조정하였으며 야간에는 조명등
을 설치하여 개체별 행동을 24시간 연속 관찰
을 했다.

III. 결과 및 고찰

1. 육림부산물 발효사료의 웃사슴의 채식기
 혈도 평가

녹용생산용 성목과 육성목에 대한 육림부산물
발효사료(FPS)의 일간 채식기혈도를 조사했
다. 5년생 웃사슴 용목에 있어서 10일 동안의
일일 평균 채식량은 Fig. 1과 같다. 채식량에
있어서 다소의 일간 변이가 있지만 평균적으로
비슷한 경향을 나타내고 있었다. FPS가 수분
함량이 38.7%로 사프란혼합사료(CMR)의 14.5%
보다 상당히 높은에도 불구하고 Fig. 2에 나타
난 성목의 일일 평균 전물 채식량을 보면 일반
반추가축에게 기호성이 우수한 CMR과 비슷한
수준의 전물 채식량을 보여 채식기혈도가 아주
뛰어난 것으로 사료된다. 그러나 육성목의 경
우, 육림부산물의 비율을 높여 채식량을 측정
한 결과 FPS구가 1019g/일이고 CMR구가
1508g/일으로 나타났다. 따라서 일간 평균 전
물채식량은 FPS구가 유의적(P<0.05)으로 낮게
평가되었다. 이것은 FPS구가 일 부위뿐만 아니
라 중복되는 안전 상태에서 급여되었기
때문에 상대적으로 사료의 취득도가 CMR구에
비해 큰 관계로 완전하게 성숙되지 않은 육성
목에 있어서 반추가축 체류시간이 길어지는
(McLeod, 1986) 물리적인 채식기혈의 요소로,
또한 높은 수분 함량이 채식을 제한하는 요소로
작용했기 때문인 것으로 여겨진다.
특히 사슴소 소 동에서 비해 수분을 흡수하는
체 3위가 작기 때문에 다주 식물의 이용성이
낮고 미국에서는 다주식물이 다량 공로되어 있

Fig. 1. Daily changes of dry matter intake in
spotted deer fed experimental diets.

Fig. 2. Dry matter intake in adult and
yearling spotted deer fed experi-
mental diets.

* Means with different superscripts on the same
vertical bar differ(P<0.05).

는 지역에 서식하는 사슴도 수분이 적은 사료
무를 선택하여 채식한다는 보고가 있는 바(김,
1996), 반추가축에 있어 고수분 사료의 채식 역
제작용(Pelletier 등, 1976)에 의한 것으로 판단
된다. 따라서 어떤 육성목에 FPS 제공시 건
물 함량을 높일 수 있는 간초 등을 병합하여
수분을 조절해 주는 것이 채식량을 증가시킬
수 있는 효율적인 방법이 될 것으로 판단된다.

2. 육림부산물 발효사료에 대한 웃사슴의 체
내 이용성 평가

Fig. 3은 웃사슴 육성목에 있어서 육림부산물
발효사료(FPS)와 사프란혼합사료(CMR)의 건물,
조단백질 및 조성유의 소화율을 나타낸 것이 다. 진물소화율은 FPS구가 65.5%로써 CMR의 76.7%에 비해 유의적으로(P<0.05) 낮았다. 그러나 FPS구의 평균 소화율이 65.5%로 수염 참란 목의 일관된 것이 아니라 줄기가 포함되어 있다는 것을 감안하였을 때 양질 조사료 채식사 나 타나는 소화율과 비슷한 소화수준이며, 대부분의 일반 양목 농가에서 사슴용 사료로 이용하고 있는 수염간장의 경우 사료가지가 높은 일부만 급여할 수 있음에도 불구하고 진물 소화율이 50% 수준인 것과 비교하면 농후사료 가 포함된 것을 감안하더라도 유리부산물 발효 사료(FPS)가 뛰어난 진물소화율을 나타내고 있 었다. 조단백질 소화율은 FPS구가 64.7%로 CMR구의 78.5%보다 소화율이 떨어졌지만(P<0.05). 그리고 조성유의 경우 각각 49%와 54.6%로 CMR구가 높았으나 유의성은 인정되지 않았다. 일반적인 반추각류에 있어서 particle size (Forbes, 1986)와 같은 물리적 형태(Baich and Campling, 1962)는 반추류 내용물의 통과속도나 소화기관에 머무는 시간(Van Soest, 1982)에 관계하여 결과적으로 사료섭취와 소화율에 영향을 미치므로 사료의 임자료가 끊임없이 반추위를 통과하는 속도가 느리지 않고 소장으로 빠져 이긴되기 때문에(김 등, 1995) 사료 섭취량은 감소하지만 소화율은 증가하는 것이 보통이지만. 그러나 FPS구가 CMR구에 비하여 사료 임자료 가 크게 반해 소화율이 높아진 것은 질적 (Thomas 등, 1976)인 요인에 의한 것으로서, CMR구의 조성유 함량이 18.9%이고, FPS구가 43.2%로 상당히 높은 조성유의 차이가 FPS구에 비해 CMR구가 약 2배정도 높은 조단백질 함량 등 가용성 성분의 차이가 주된 요인으로 판단된다. 한편 Hofmann(1988)이 반추동물들 사료의 채식습성에 의해 능후사료형, 조사료형, 그리고 그 중간형태의 세 가지 유형으로 분류하면서 사슴은 중간형에 속한다고 했으며, Thomas 등(1976)에 의하면 사슴은 목초형에 분 류되어 있는 소보다 제중에 대한 우(負)의 융 적비가 작고, 또한 소화시간상 소나 멸균과 같은 가축보다 장의 길이가 짧아 소화관내 사료의 통과 속도가 빠르기 때문(Kay and Goodall, 1976; Milne 등, 1978)에 이와 같이 짧은 체육 시간은 과장식취에 의해 극복되어야 하고 그 결과 순수한 양이나 엄소와 비교해서 사슴의 조사료 소화율은 낮아지게 된다고 했다(Sasaki 등, 1993). 또한 FPS가 수염 참란목의 일부만 이 아니라 줄기 부위가 포함되어 반추류 내 분해율이 낮은 목초류가 다량 포함되어 기조형 에 영향을 미치는 요인이 되고 있으며 Fig. 4와 같이 비슷한 건물 체식량(DMI)을 나타내었으며 가공사료 건물체식량(DDMI)은 CMR구가 FPS구 보다 높았으나 유의성은 인정되지 않았다. 이것은 반추가속에 있어 일반적으로 건물 함량이 높고 양질의 사료를 급여하였을 때 자유체식량.
이 농합하는 것은 다양한 것으로(Blaxter 등, 1961; Forbes and Jackson, 1971) 이러한 점들을 감안한다면 FPS도 상당히 높은 채소 이용성을 나타내고 있는 것으로 판단된다.

Table 3. Nitrogen balance in spotted deer fed experimental diets

<table>
<thead>
<tr>
<th>Item</th>
<th>CMR</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen balance</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Nitrogen intake(NI)</td>
<td>28.5±3.8[^a]</td>
<td>20.5±2.3[^a]</td>
</tr>
<tr>
<td>Fecal nitrogen</td>
<td>6.1±0.9[^b]</td>
<td>7.1±0.8[^b]</td>
</tr>
<tr>
<td>Urinary nitrogen</td>
<td>10.7±3.4[^c]</td>
<td>3.5±2.2[^c]</td>
</tr>
<tr>
<td>Digestible nitrogen</td>
<td>22.5±2.4[^d]</td>
<td>13.4±1.7[^d]</td>
</tr>
<tr>
<td>Retained nitrogen(RN)</td>
<td>11.8±6.2[^e]</td>
<td>9.9±4.6[^e]</td>
</tr>
<tr>
<td>RN/NI(%)</td>
<td>41.3</td>
<td>48.3</td>
</tr>
</tbody>
</table>

[^a] Means with different superscripts on the same raw differ (P<0.05).

육림부산물 발효작용을 귀의한 육성학의 질소합감에 관한 결과는 Table 3과 같다. 질소섭취량은 CMR구가 FPS구에 비하여 유의적으로 높았다 (P<0.05). CMR구가 질소섭취량이 많은 것은 전체 체적량에는 큰 차이가 없었지만 조단백질 함량이 FPS구보다 높았기 때문이라 판단된다. 그리고 본으로 배설된 질소는 FPS구가 약간 높았으나 유의적인 차이는 없었다. FPS구 배설된 질소도 사료내 단백질 함량이 많은 CMR구가 높았다 (P<0.05). 총적질소의 경우 CMR구가 FPS구에 비하여 약간 높았지만 유의적인 차이는 없었다. 따라서 질소소화율은 CMR구 유의적으로 높게 평가되었다 (P<0.05). FPS구 배설된 질소는 FPS구가 17.1%이고 CMR구가 37.4%로 FPS구가 노에 의한 질소 손실이 낮기 때문에 섭취질소에 대한 총적질소의 비율이 FPS구가 높아 우수한 효율을 나타났다 (P<0.05). 이에 대해서는 여러 반추가축 및 야생반주동물의 실험에서도 유사한 결과가 보고되고 있는데 Griffiths(1984)는 육성공에 있어서 질소섭취량이 증가함에 따라 노에 질소 배설량이 많아졌다고 하였고, 가공적 단백질 섭취량이 증가되면 노에 배설되는 질소가 많아진다(Wanapat 등, 1982)고 보고하였다. Smith 등 (1975)은 자목에 있어서 사료내 단백질 수중의 증가와 함께 일일 질소섭취량, 분과 노에 배설되는 질소 함량이 증가한 반면, 질소 총합량은 감소한다고 보고하였고 Priebe와 Brown(1987)의 새끼영양에 대한 실험에서도 Smith 등(1975)과 같은 결과를 보였다.

3. 육림부산물 발효효과(FPS)를 급한 농사 습의 채식행동 평가

Fig. 5는 FPS와 CMR의 농사 습목에 대한 채식 행동을 보고 시간별에 대한 결과이다. 전체 24시간 간 채식을 보고한 시간은 CMR구가 127분이었고 FPS구가 216분으로 더 많은 채식시간을 나타내었다. 반추에 보고한 시간은 각각 154분과 197분으로 FPS구가 채식 및 반추에 더 많은 시간을 소비했다. 반추가축의 복잡한 소화세포에 큰 역할을 하고 있는 채식이나 경작행동은 채식(Welch와 Smith, 1969; Harumoto와 Kato, 1979)이나 사료에의 십유소와 체조로 구성물질의 비율 그리고 particle size(Balch와 Campling, 1962; Freen와 Campling, 1965; Poppi 등, 1981) 등에 의해 주로 영향 받는 것으로 알려져 있는데, FPS구가 CMR구보다 채식에 보고하는 시간이 많은 이유는 FPS구가 수유류의 증가로 인해 보고될 수 있는 기능에 있어서 식사입수도가 더 컸고 cellulose나 lignin 등의 구조성 탄수화물과 같은 난해성 조성유의

Fig. 5. Time spent on eating, ruminating and resting in spotted deer fed experimental diets.
비율이 더 높았기 때문으로 생각되며, 이에 따른 FPS의 물리적 제품에는 문제가 없을 것으로 사료된다.

Fig. 6은 CMR와 FPS를 각각 급여하여 사육하고 있는 롱스투 용목의 24시간 동안의 행동양식 변화를 10분 간격으로 조사한 결과이다. 두 실험군 모두 사슴의 고유한 행동양식을 보여주고 있었다. 특히 일반 반추가축의 경우 일정한 시간대에 집중적 채식과 반추가 이루어지는 반면에 사슴들은 절이 높은 빈도로 임중 행동양식이 지속되는 것으로 나타났다. 이러한 결과는 사슴이 아직 어린것이 많이 남아 있기 때문으로 사료되며, CMR구와 FPS구 모두 전형적인 사슴의 행동양식을 보여주고 있어 FPS가 사슴용 사료지원으로서 안정성과 물리성을 갖추고 있는 것으로 판단된다.

![Graph](image)

Fig. 6. Diurnal pattern of feeding behavior in spotted deer fed experimental diets.

IV. 요 약

본 실험이 롱스투에 있어서 육립부산물 발효사료 급여에 따른 체내 이용성과 행동양식을 시한 완전혼합사료와의 비교를 통해 육립부산물에 대한 사료사료로서의 적합성을 검토하기 위해 실시하였고 그 결과는 다음과 같다.

1. 전물체식량은 습성목의 경우 CMR구와 FPS구가 거의 비슷한 수준을 유지하였고, 육성목의 경우 FPS구가 약간 낮았다.

2. 소화율은 CMR구의 경우 개별적으로 평균 76.7%의 높은 전물 소화율을 나타냈으며 FPS구의 경우에도 CMR구에 비해서는 낮은 소화율을 나타냈으나 평균 65.5%의 전물소화율로서 비교적 높은 체내이용성을 보였다.

3. 질소층함 실험에서 섭취질소에 대한 축적 질소의 비율은 FPS구가 48.3%, CMR구가 41.3%로 FPS구가 더 높은 효율을 나타냈다.

4. 채식시간은 하루 중 CMR구가 127분이었고 FPS구가 216분, 반추시간은 CMR구가 154분과 FPS구가 197분을 수반하여 FPS를 급여한 사슴들이 채식시간과 반추시간이 더 길었다.

5. 사슴의 24시간동안 채식 및 반추 휴식 등의 행동에서는 CMR구와 FPS구 모두 짧고 잔은 빈도의 전형적인 사슴의 행동양식을 나타냈다.

이상의 결과로 볼 때 육립부산물 발효사료는 사슴에 있어서 높은 체내이용성을 나타내어 사육사료로서 충분한 가치가 있다고 평가된다.

V. 인용 문헌

33. 전병태의 7명. 2000. 생산비용감소를 위한 목립 및 간염 생물학적 개발과 이론기술 개발. 농림부과계 최종보고서.

34. 전병태의 9인. 1997. 한국사슴의 표준사양체계 확립 및 사슴전용 환경표준 개발에 관한 연구. 농림부 현장예로기술개발사업 연구과제 최종결과 보고서.

35. 한국양육협회. 1999. 한국양육협회. 1호.