Effect of Drainage Culvert Spacing on Forage Crops Production in Poorly Drained Paddy Field Converted to Upland Crop Cultivation

Jae Soon Shin, Jong Gil Jeon*, Sang Bong Lee*, Won Ho Kim, Sei Hyung Yoon, Joung kyong Lee, Jong Guen Kim, Min Woong Jung, Sung Seo and Young Cheol Lim

ABSTRACT

This experiment was conducted to compare the agronomic characteristics, productivity of silage corn and barley cropping, forage sorghum and barley cropping in accordance with Drainage Culvert Spacing at poorly drained paddy field in National Institute of Animal Science, at Seonghwan in Korea, March 2006 to May 2007. The emergency and flowering date were no different among treatments. Emergency rate and flowering date were 90% and July 26 in silage corn, 91% and July 21 in forage sorghum, 92% and April 27 in barley, respectively. Dry matter yield was high in line with 3 m drainage culvert spacing (24,389 kg/ha) > 5 m (23,543 kg/ha) > 7 m (21,527 kg/ha) > 0 m (14,132 kg/ha). In cropping systems, dry matter yield of forage sorghum and barley (22,111 kg/ha) was higher than silage corn and barley (19,684 kg/ha). Crude protein and TDN yield were high in line with 3 m (2,365 and 15,394 kg/ha) > 5 m (2,255 and 14,513 kg/ha) > 7 m (1,884 and 13,747 kg/ha) > 0 m (995 and 8,682 kg/ha). In cropping systems, crude protein and TDN (total digestible nutrients) yield of forage sorghum and barley cropping system (2,165 and 13,582 kg/ha) was higher than silage corn and barley cropping system (1,576 kg/ha and 12,482 kg/ha), respectively. Consequently proper drainage culvert Spacing at poorly drained paddy field was 5 m with forage sorghum and barley cropping system.

(Key words: Poorly drainage paddy field, Culvert spacing, Forage crops cultivation)
간 조사료 소요량은 420~430만 톤으로 그중 약 절 조사료가 30~33%로, 벼밀이 50~55% 그리고 해외에 의존하는 수입조사료가 17~18% 수준으로 2007년의 경우 999천 톤이 수입되었다.

본 시험에서는 배수가 불량한 논에서 사료작 물제배를 위해 양계배수 간격의 처리효과와 그에 따른 2개의 작물체계간의 수량성의 차이를 비교하기 위해 2006년 3월부터 2007년 5월까지 수행되었다.

II. 재료 및 방법

시험포장은 친안시 성황을 신방리에 위치한 배수 불량 논 (30 x 100m)에 플라스틱 홀수관 (유공주름관 Ø50 mm)을 지중 50cm 깊이에 수평으로 설치하고, 앞 봉에는 소수제로 왕계를 20 cm 깊이하였다. 처리내용으로는 무처리, 3, 5, 7 m 간격 등 4처리로 하였다. 처리구방 시험구면적은 400 m2로 하여 그중에 절반인 200 m2는 옥수수 + 청보리 작물체계, 나머지 절반인 200 m2는 수수 × 수수교잡종 + 청보리 작물체계로 재배하였다.

처리 내 시험구는 임의배치 하였으며 수량 등은 처리구 안에서 3반씩으로 조사하였다. 공 사작물은 품종 사료작물로 옥수수 (‘광평옥’)와 수수 × 수수 교잡종 (‘SS405’)을, 겨울 사료작물 로 청보리 (‘영양’)를 하였다. 옥수수는 옥수수 파종기를 이용하여 70 cm x 20 cm 간격으로 2006년 5월 21일에 정부령하였고, 수수 × 수수 교잡종은 40 kg/ha를 40 cm 간격으로 2006년 5월 21일에 파종하였다. 수수 × 수수 교잡종은 채수기인 8월 28일에 수확하였으며, 옥수수는 채수기인 8월 20일에 수확하였다. 청보리는 160 kg/ha를 40 cm 간격으로 2006년 10월 25일에 파종하였고 이듬해 수확기인 5월 14일에 수확하였다. 시비량은 각 작물 공기 질소, 인산, 칼 리미용을 연간 ha당 200-150-150 kg를 기초 50%, 추비로 50%를 시용하였다.

출현용과 원동용 등 생육조사는 농촌진흥청 (2003) 농사시험 조사기준에 준하여 실시하였 다. 생장수량은 전 채후를 예취하여 ha당 수량 으로 환산하였다. 건물수량은 각 처리구별로 전장을 예취한 후 약 300~500g의 시료를 취하 여 생장량을 정량화하고, 65℃의 열동분한 건조기에 72시간이상 진조 후 건물량을 산출한 다음 ha당 수량으로 환산하였다.

III. 결과 및 고찰

1. 작목별 생육특성

시험이 본 배수량 양호하고 품종은 보통인 식량철제 토양(토양산도 6.0, 유기물 함량 1.2%)에서 배수간격별 공시작목의 출현율, 출수일과 수확시 초장은 Table 1과 같다. 배수간
격 처리에 따른 옥수수, 수수×수수 교잡종 그
리고 정조리의 출현율은 차이가 없었으며, 공
시초장 모두 90% 이상의 출현율을 나타냈다.
배수간격 처리에 따른 작목별 출수일 역시 차
이가 없었다.

옥수수의 출수일은 7월 26일이었으며, 수수×수수 교잡종은 7월 21일 그리고 정조리는 4월
27일로 조사되었다. 수확시 초장은 무처리군에
비해 배수처리군에서 높았는데, 배수처리(0m, 3
m, 5m 및 7m)구간 간에는 차이가 크지 않았
다. 작목별로는 옥수수 잡종의 옥수수와 수수×수수교잡종의 무처리와 배수간격처리 간의
차이는 없으며 겨울 사료작물인 정조리의 무처
리(0m)와 배수간격처리 간의 차이는 크지 않
았는데 배수처리의 효과는 생육기간중의 강우
량에 영향을 받지 않나 사료된다. 여름작물의
생육이 양호한 7월의 강수량은 535 mm, 강수일
수는 26일로 무처리는 과_EMIT의 영향으로 처리구
보다 생육이 불량한 것으로 사료되며, 동작물
의 경우는 1월 평균기온이 -2.4℃로 온화하여
활동하는데 좋은 조건이었으며 생육기간 동안
의 강수량(3월 108 mm, 4월 59 mm, 5월 126
mm)이 많지 않아 과_EMIT에 의한 영향이 거의 나
타나지 않아서 생각된다.

2. 생초 및 건물수량

배수간격별 생초수량은 Table 2와 같다. 여름
사료작물의 경우 수량은 3 m군 > 7 m군 > 5 m군
> 무처리군 순으로 높게 나타났으며 겨울 사료
작물의 경우 수량은 3 m군 > 5 m군 > 7 m군 >
무처리군 순으로 높게 나타났다. 배수처리군들

| Table 1. Fresh and dry matter yield in accordance with drainage culvert spacing |
|-----------------------------|-----------------------------|-----------------------------|
| Drainage culvert spacing | Emergency (%) | Heading date | Height (cm) |
| | Corn Sorghum Barley | Corn Sorghum Barley | Corn Sorghum Barley |
| 0 m | 90 91 92 | 26 July 21 July 27 April | 85 195 95 |
| 3 m | 90 91 92 | 26 July 21 July 27 April | 250 245 110 |
| 5 m | 90 91 92 | 26 July 21 July 27 April | 215 210 108 |
| 7 m | 90 91 92 | 26 July 21 July 27 April | 220 253 110 |

| Table 2. Fresh and dry matter yield in accordance with drainage culvert spacing |
|-----------------------------|-----------------------------|-----------------------------|
| Drainage culvert spacing | Fresh yield (kg/ha) | Dry matter yield (kg/ha) |
| | Summer crop Winter crop | Total | Summer crop Winter crop | Total |
| 0 m | 31,755 24,878 | 56,633 | 6,880 7,252 | 14,132 |
| 3 m | 58,454 38,780 | 97,234 | 14,380 10,010 | 24,389 |
| 5 m | 53,734 35,947 | 89,680 | 12,767 10,776 | 23,543 |
| 7 m | 54,939 33,032 | 87,971 | 13,272 8,255 | 21,527 |
| LSD (p<0.05) | 5,137 5,035 | 7,964 | 1,679 1,335 | 2,175 |
간의 차이는 없었지만 겨울 사료작물에서는 3 m구와 5 m 구간에는 없었지만 7 m구와는 유의 차가 있었다.

건물수양에서 여름 사료작물의 경우, 3 m구 > 7 m구 > 5 m구 > 무처리구 순으로 높게 나타났으며 배수처리구들간의 차이는 없었다. 그러니 겨울철 사료작물의 건물수양은 3 m구 > 5 m 구 > 무처리구 > 7 m구 순으로 낮아졌다. 김 등 (2001)은 시금치 등 6개작물을 공시하여 시험 한 결과 무처리구보다 암거배수 등 처리 구에서 도양의 물리적 개선효과로 평균 10~20%의 수양 증대효과가 있었다는 결과와 일치한다.

본 시험에서는 배수와 불량한 논에서 총 건물 수양률 높이기 위해서는 암거배수를 3 m-5 m 간격으로 해준 것이 좋은 결과를 얻었다.

Table 3은 작부체계별로 분석한 결과로 생초 수양에서 수수×수수 교잡종과 청보리 조합 (96,776 kg/ha)이 옥수수와 청보리 조합 (68,983 kg/ha)보다 훨씬 높았는데 동작물을 청보리에서 보다는 하자물인 수수×수수 교잡종의 수량 이 옥수수의 수양보다 훨씬 높다는 연구결과 (김 등, 2001; 김 등, 2005; 박과 김 등, 2002; 이, 1988)와 재배환경에 대한 적응성과 습해에 대한 저항성이 옥수수보다는 수수교잡종이 더 높아 생산성이 많다는 보고 (윤 등, 2005; 임, 2008)와 일치하는 것으로 나타났다. 건물수양의 경우도 생초수량과 같은 결과로 조사되었다.

3. 암분수량

배수간격 처리에 따른 조단백질 및 TDN 수량은 Table 4와 같다. 여름 사료작물의 조단백 질 수량은 무처리구 (437 kg/ha)보다 배수처리구 (1,042 kg/ha～1,194 kg/ha)에서 높았는데 배수간 격 처리구들 간에는 차이가 거의 없었다. 겨울 사료작물에서는 3 m구 (1,171 kg/ha)와 5 m구 (1,164 kg/ha)가 가장 좋았으며, 무처리구 (558 kg/ha)나 7 m구 (842 kg/ha)는 상대적으로 수량이 낮았다. 총 단백질수량으로 볼 때 3 m구～5 m구가 좋은 것으로 나타났다. 한편 TDN 수량의 경우에도 여름 사료작물과 겨울 사료작물의 성적은 조단백 질 수량과 같은 경향을 나타내었으며 총 TDN 수량이 가장 낮은 5 m구에서의 수량이 다른 처리군과 비교하여 유의적으로 높았다.
Table 5. CP and TDN yield in accordance with cropping systems

<table>
<thead>
<tr>
<th>Cropping system</th>
<th>CP yield (kg/ha)</th>
<th>TDN yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summer crop</td>
<td>Winter crop</td>
</tr>
<tr>
<td>Corn + Barley</td>
<td>603</td>
<td>973</td>
</tr>
<tr>
<td>Sorghum + Barley</td>
<td>1,305</td>
<td>860</td>
</tr>
<tr>
<td>LSD (p<0.05)</td>
<td>89</td>
<td>92</td>
</tr>
</tbody>
</table>

수량으로 볼 때, 무처리군(8,682 kg/ha)보다 배수처리군(13,747 kg/ha~15,394)가 높은 결과를 얻었는데 배수처리에 있어서 3 m 간격, 5 m 간격 그리고 7 m 간격 간에는 차이가 크지 않았다.

Table 5는 작물체제별로 분석한 결과로 조단 백질 수량은 수수×수수 교감종과 청보리 조합(2,165 kg/ha)이 옥수수와 청보리 조합(1,576 kg/ha)보다 높았다. 여름 사료작물에서는 수수×수수교감종(1,305 kg/ha)이 옥수수(603 kg/ha)보다 높았으며 겨울 사료작물인 청보리는 옥수수 후작으로 재배한 구(973 kg/ha)가 수수×수수 교감종 후작으로 재배한 구(860 kg/ha)보다 높게 나타났다. TDN 수량에서도 수수×수수 교감종과 청보리 조합(13,581 kg/ha)이 옥수수와 청보리 조합(12,482 kg/ha)보다 높았으며 여름 사료작물에서는 수수×수수 교감종(8,431 kg/ha)이 옥수수(6,654 kg/ha)보다 높았으며 겨울 사료작물인 청보리는 옥수수 후작으로 재배한 구(5,829 kg/ha)가 수수×수수 교감종 후작으로 재배한 구(5,150 kg/ha)보다 높게 나타났는데 두 조합 간에 수량차이는 크지 않았다. 이와 같은 이유는 수수×수수 교감종의 사료가치가 옥수수의 그것보다는 낮다는 연구결과(김 등, 2001; 김 등, 2005)들을 참고할 때 그에 기인된 것으로 사료된다.

IV. 요 약

본 실험은 전반적인 성환율에 위치한 배수가 불량한 논에서 사료작물재배를 위해 올리배수 간격을 3 m, 5 m 그리고 7 m로 처리하고 여름 사료작물로는 옥수수와 수수×수수 교감종, 겨울 사료작물로는 청보리를 조합하여 옥수수와 청보리 조합, 수수×수수 교감종과 청보리 조합 등 2개의 작물체계에 대한 계배효과를 비교하기 위해 2006년 3월부터 2007년 5월까지 수행되었다. 배수간격별 출현율과 출수 시는 차이가 없었다. 출현율은 옥수수가 90%, 수수×수수 교감종이 91%, 청보리가 92%로 조사되었다. 옥수수의 출수시는 7월 26일, 수수×수수교 감종은 7월 21일 그리고 청보리는 4월 27일이었다. 배수처리간격별 전물 수량의 경우, 3m 간격 (24,389 kg/ha) > 5 m 간격 (23,543 kg/ha) > 7 m 간격 (21,527 kg/ha) 순으로 높았는데 3m 간격과 5m 간격 간에는 유의차가 없었다. 작물체계간에는 수수×수수 교감종과 청보리 조합(22,000 kg/ha)이 옥수수와 청보리 조합(19,684 kg/ha)보다 높았다(p<0.05). 배수간격별 조단백질 및 TDN 수량은 3 m 간격 (2,365 kg/ha, 15,394 kg/ha) > 5 m 간격 (2,255 kg/ha, 14,513 kg/ha) > 7 m 간격 (1,884 kg/ha, 13,747 kg/ha) 순으로 높았다. 작물 체계별 조단백질과 TDN 수량은 수수×수수 교감종과 청보리 조합(2,165 kg/ha, 13,582 kg/ha)이 옥수수와 청보리 조합 (1,576 kg/ha, 12,482 kg/ha)보다 높았다. 이상의 결과를 종합해 볼 때 배수불량 논을 활용하여 조사료를 생산하기 위해서는 작물체계는 수수×수수 교감 종과 청보리 조합으로 배수간격은 5m 간격이 적합한 것으로 사료된다.
V. 인용문현