부산지역에서 분리한 레지오넬라균에 대한 PFGE를 이용한 molecular typing

박은희*, 김미희, 김정아, 현남숙, 이주현, 민상기, 박연경, 진성현, 정구영, 변재훈
부산광역시 보건환경연구원

Received November 1, 2004 / Accepted November 29, 2004

Molecular Typing of Legionella pneumophila Isolated in Busan, Using PFGE. Eun-Hee Park*, Mi-Hee Kim, Jong-A Kim, Nan-Sook Han, Ju Hyeoun Lee, Sang Gi Min, Yon Koung Park, Seong Hyun Jin, Gyu Young Jeong and Jae Hun Bin. Busan Metropolitan City Institute of Health & Environment, 1276-1, Kwangan 4-dong, Suoyang-gu, Busan 613-806, Korea – In this study, we did the molecular typing of 39 environmental Legionella pneumophila serogroup 1 isolates collected from 2001-2003 in Busan using the pulsed-field gel electrophoresis (PFGE). PFGE of SfiI fragments were divided into 10 pulsotypes (A ~ J), corresponding to < 65% similarity and a subtype within each pulsotype was characterized by > 84% similarity. The major cluster was pulsotype E (46.2%), which included 18 isolates and was divided into 4 subtypes (E1 ~ E4). PFGE of NotI fragments were divided into 8 pulsotypes (a ~ h), corresponding to < 60% similarity and a subtype within each pulsotype was characterized by 100% similarity. The major cluster was pulsotype f (38.5%), which included 15 isolates. The ATCC type strain L. pneumophila serogroup 1 was identified as a different molecular pulsotype compare to the Busan isolates. It is possible that L. pneumophila serogroup 1 isolated in Busan with specific DNA pattern is comparable with those isolation in other cities in Korea.

Key words – Legionella pneumophila serogroup 1, PFGE, Busan

Legionella 속은 박막주수, 중량발생 문제, 온수 탱크 등의 인공환경에서 증식하면서 바람과 사무시 발생하는 aerosol에 포함되어져 호흡기 홍염으로 사람에게 감염을 일으키며[11]. 지금까지 알려진 42중류에서 대부분의 레지오넬라균이 사람 에게 발생성이 있는 것으로 보고되고 있다[1,4]. 레지오넬라증 발병의 90%이상이 Legionella pneumophila에 의하며, 현재까지 밝혀진 15종류의 L. pneumophila 종에서도 혈청형 1이 레지오 넬라증의 주원인으로 알려져 있다[16].

*Corresponding author
Tel: +82-51-757-7502, Fax: +82-51-757-2879
E-mail: peh316@ise21.net

본 연구에서는 2001년부터 2003년까지 부산지역의 냉각수에서 분리된 레지오넬라균 중에서 L. pneumophila serogroup 1으로 동정된 39균주 및표준균주 L. pneumophila ATCC 33152 (serogroup 1, Philadelphia)에 대한 PFGE를 실시하여 유전적인 양상을 지역별로 분류하여 지역적인 특성을 파악하 고, D/B형 환자 환자 하였다.
재료 및 방법

사용 균주
본 연구에 사용한 균주는 2001년부터 2003년까지 부산지역의 닭가락수에서 분리한 레지오넬라균 중에서 L. pneumophila serogroup 1으로 동정된 것으로 Table 1과 같으며, 표준균주는 L. pneumophila ATCC 33152 (serogroup 1)를 사용하였으며, 기타 경남 마산 및 전주 지역의 닭가락수에서 분리된 L. pneumophila serogroup 1을 함께 사용하였다. Pulsed-field gel electrophoresis 실험은 Lee 등[8]의 방법으로 실시하였다.

균의 분리 및 동정
닭가락수에서 레지오넬라균의 분리 및 동정은 Park[12] 등의 방법에 따라다. 닭가락수 1L을 체취하여 0.2 μm 멜균 여과지를 통과시킨 후 여과물을 집단하여 약 20 ml에 부어서 50℃에 30분간 열처리하였다. 열처리한 샘플 100 μl을 항생 물질[polymyxin B sulfate 79,200 unit/L, vancomycin (5 g/l), cyclohexamide (80 g/l), glycine (3 g/l)]과 희양물질[L-cysteine · HCl (0.4 g/l), ferric pyrophosphate (0.25 g/l)]이 첨가된 buffered charcoal yeast extract (BCYE, Difco) 한천배지에 접종하여 90% 습도를 유지한 35℃ 배양기에서 10일간 배양하였다. 균의 동정은 4일 후부터 서리나운 희백색의 덩어리를 BCYE 한천배지에 희석한 배양자에 동시에 접종하여 BCYE 한천배지에서는 서리나 희백색한반배지에서는 서리가 동반하는 군 (L-cysteine 요구주)을 대상으로 무표지의 그룹 응성 금군을 Legionella 속으로 추정하여, 혈청학적으로 동정하였다. 혈청형 의 확인은 Legionella antisera (Denka Seiken, Japan)을 사용하여 슬라임 응집법으로 실시하여, Legionella pneumophila serogroup 1에 응집된 군은 PFGE 분석에 사용하였다.

Table 1. L. pneumophila ATCC 33152 and 39 isolates used in this study

<table>
<thead>
<tr>
<th>Year</th>
<th>Isolates</th>
<th>Area of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>BJ 0101</td>
<td>Busanjin-gu</td>
</tr>
<tr>
<td></td>
<td>BJ 0102</td>
<td>Busanjin-gu</td>
</tr>
<tr>
<td></td>
<td>BJ 0103</td>
<td>Busanjin-gu</td>
</tr>
<tr>
<td></td>
<td>JG 0106</td>
<td>Jung-gu</td>
</tr>
<tr>
<td></td>
<td>BJ 0107</td>
<td>Busanjin-gu</td>
</tr>
<tr>
<td></td>
<td>KS 0109</td>
<td>Gangseo-gu</td>
</tr>
<tr>
<td></td>
<td>DL 0118</td>
<td>Dongnae-gu</td>
</tr>
<tr>
<td></td>
<td>HW 0145</td>
<td>Haeundae-gu</td>
</tr>
<tr>
<td></td>
<td>DG 0152</td>
<td>Dong-gu</td>
</tr>
<tr>
<td></td>
<td>SG 0154</td>
<td>Sea-gu</td>
</tr>
<tr>
<td></td>
<td>YD 0156</td>
<td>Yeonse-gu</td>
</tr>
<tr>
<td></td>
<td>HW 0157</td>
<td>Haeundae-gu</td>
</tr>
<tr>
<td></td>
<td>HW 0158</td>
<td>Haeundae-gu</td>
</tr>
<tr>
<td></td>
<td>HW 0159</td>
<td>Haeundae-gu</td>
</tr>
<tr>
<td></td>
<td>DG 0160</td>
<td>Dong-gu</td>
</tr>
<tr>
<td>2002</td>
<td>JG 0203</td>
<td>Jung-gu</td>
</tr>
<tr>
<td></td>
<td>JG 0209</td>
<td>Jung-gu</td>
</tr>
<tr>
<td></td>
<td>BJ 0210</td>
<td>Busanjin-gu</td>
</tr>
<tr>
<td></td>
<td>JG 0211</td>
<td>Jung-gu</td>
</tr>
<tr>
<td></td>
<td>SH 0214</td>
<td>Saha-gu</td>
</tr>
<tr>
<td></td>
<td>BJ 0221</td>
<td>Busanjin-gu</td>
</tr>
<tr>
<td></td>
<td>KJ 0223</td>
<td>Kiumjung-gu</td>
</tr>
<tr>
<td></td>
<td>KJ 0224</td>
<td>Kiumjung-gu</td>
</tr>
<tr>
<td></td>
<td>SS 0227</td>
<td>Sasang-gu</td>
</tr>
<tr>
<td></td>
<td>YJ 0228</td>
<td>Yeonje-gu</td>
</tr>
<tr>
<td></td>
<td>SS 0234</td>
<td>Sasang-gu</td>
</tr>
<tr>
<td></td>
<td>JG 0237</td>
<td>Jung-gu</td>
</tr>
<tr>
<td></td>
<td>YJ 0239</td>
<td>Yeonje-gu</td>
</tr>
<tr>
<td></td>
<td>JJ 0240</td>
<td>Jinju</td>
</tr>
<tr>
<td></td>
<td>MS 0241</td>
<td>Masan</td>
</tr>
<tr>
<td></td>
<td>HW 0260</td>
<td>Haeundae-gu</td>
</tr>
<tr>
<td></td>
<td>HW 0261</td>
<td>Haeundae-gu</td>
</tr>
<tr>
<td></td>
<td>DL 0303</td>
<td>Dongnae-gu</td>
</tr>
<tr>
<td></td>
<td>DL 0304</td>
<td>Dongnae-gu</td>
</tr>
<tr>
<td></td>
<td>DL 0306</td>
<td>Dongnae-gu</td>
</tr>
<tr>
<td></td>
<td>DL 0310</td>
<td>Dongnae-gu</td>
</tr>
<tr>
<td></td>
<td>JG 0322</td>
<td>Jung-gu</td>
</tr>
<tr>
<td></td>
<td>HW 0325</td>
<td>Haeundae-gu</td>
</tr>
<tr>
<td></td>
<td>DG 0326</td>
<td>Dong-gu</td>
</tr>
</tbody>
</table>

Reference strain L. pneumophila ATCC 33152

Gel plug의 준비
레지오넬라균을 BCYE 한천배지에 접종하여 35℃에서 48시간 배양한 후 TES buffer (10 mM Tris-HCl, 1 mM EDTA, 100 mM NaCl, pH 8.0) 3 ml에 균을 현란하여 bioMerieux Vitek colorimeter 10%의 두염도로 균 농도를 조절하였다. 균 현란액을 12,000 rpm에서 10분간 2회 세척한 후, 균 첨전물을 TES buffer 300 μl로 재 부유한 후, 1.2% Seakem gold agarose (FMC Bio Products, USA) 300 μl을 첨가하여 plug를 만들어 4℃에서 5분간 굽혔다. Plug의 lysis는 lysis buffer (50 mM Tris-HCl (pH 8.0), 50 mM EDTA (pH 8.0), 1% Sarcosyl, 1 mg proteinase K, 1 mg lysozyme, 20 μg RNase A)를 1 ml씩 첨가하여 50℃에서 48시간 처리하였고, 상온에서 머진중류수로 5분간 1회, TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)로 5분간 2회 세척한 후 TE buffer를 첨가하여 사용할 때까지 널방 보관하였다.

Restriction enzyme 처리
세체이 결합 plug를 1 mM 투체료로 절단한 후 1.5 ml microcentrifuge에 올겨 제한효소 SfiI와 NotI (NEB, England) 각각의 반응혼합액(10× restriction enzyme buffer 10 μl, 10×
Gel Running

제한효소 처리가 끝난 plug을 gel comb에 올려놓고 물기를 제거한 다음 물에 넣어 고정한 후 1% Seakem gold agarose를 부어 만들었다. agarose solution을 조금 넣어 30℃로 꼭 해준 수조에 보관하였다가, gel이 굳으면 comb을 제거하고 이때 생긴 빈 well에 넣어 두었던 agarose solution으로 채웠다. 이로써 만들어진 gel은 CHEF Mapper PFGE (Bio-Rad, USA)를 사용하여 0.5X TBE buffer로 SfiI를 이용한 경우 2.2 s, second sec. 35.1 s, 6 Volt/cm (200 V), 14℃, 25시간 실시하였으며, NotI를 이용한 경우 2.2 s, second sec. 5.0 s, second sec. 100 s, 6 Volt/cm (200 V), 14℃, 25시간 실시하였다. 경기열등이 끝난 후 etidium bromide (0.5 μg/ml)에서 30분간 염색하고 중류수로 30분간 탈색하여 Image Visualizer (Vilber Lourmat, France)로 관찰하였다.

Fig. 1. PFGE analysis of SfiI-digested DNAs for Busan isolates. M, λ DNA ladders size markers; lane 1, BJ 0101; lane 2, BJ 0102; lane 3, BJ 0103; lane 4, BJ 0106; lane 5, BJ 0107; lane 6, KS 0109; lane 7, DL 0118; lane 8, KS 0203; lane 9, JS 0209; lane 10, BJ 0210; lane 11, SH 0214; lane 12, L. pneumophila ATCC 33152; lane 13, JJ 0240; lane 14, MS 0241; lane 15, JC 0211; lane 16, BJ 0221; lane 17, KJ 0223; lane 18, KJ 0224; lane 19, SS 0227; lane 20, YJ 0228; lane 21, SS 0229; lane 22, JS 0237; lane 23, KJ 0239; lane 24, HW 0260; lane 25, HW 0261; lane 26, HW 0145; lane 27, DG 0152; lane 28, SG 0154; lane 29, YD 0156; lane 30, HW 0157; lane 31, HW 0158; lane 32, HW 0159; lane 33, DG 0160; lane 34, DL 0303; lane 35, DL 0304; lane 36, DL 0306; lane 37, DL 0310; lane 38, JC 0322; lane 39, HW 0325; lane 40, DG 0326.

PFGE 결과 분석

PFGE 결과는 Molecular Analyst Fingerprinting Software (Bio-Rad, USA)의 size coefficient를 기호로 dendrogram을 작성하여 비교 분석하였다.

결과 및 고찰

PFGE 결과

2001년부터 2003년까지 부산지역의 낮피담수에서 분리하여 레지오넬라균으로 동정된 95군 중에서 청정학적으로 L. pneumophila serogroup 1로 확인된 39주와 표준군주 L. pneumophila ATCC 33152과 대하여 PFGE를 실시하였다. 제한효소 SfiI 처리한 경우 DNA 가 9.12개의 점바로 점안되었으며 (Fig. 1), 제한효소 NotI 처리한 경우 DNA 가 3~8개의 점바로 점안되었다 (Fig. 2). Lee et al.의 국내에서 분리한 레지오넬라균 99개 군주에 대한 PFGE 패턴 분류의 유사한 결과를 보였으며, 레지오넬라균의 PFGE 패턴 분석에는 NotI를 사용하는 것보다 SfiI를 사용하는 것이 세분화된 분류를 하기에는 더 변별력이 있을 것으로 사료되었다.
PFGE 패턴 분석
Fig. 3과 Fig. 4는 pulg를 SfiI과 NotI으로 각각 처리한 후 실시한 PFGE 결과로 clustering 한 것이다. 제한효소 SfiI 처리에 의한 PFGE 양성은 dice coefficient <65%의 유사성을 가진 band을 A~J로 10개의 pulotype으로 나누었고, 다시 dice coefficient >84%의 유사성을 가진 band을 기준으로 A는 A 1~A3, C는 C1~C3, E는 E1~E4, F는 F1~F3의 subtype으로 각각 분류하였다. 제한효소 NotI 처리에 의한 PFGE 양성은 dice coefficient <60%의 유사성을 가진 band을 a~h로 8개의 pulotype으로 나누었고, 다시 dice coefficient 100%의 유사성을 가진 band을 기준으로 a는 a1~a4, d는 d1~d3, e는 e1~e4의 subtype으로 각각 분류하였다.

가장 밝았던 유형은 SfiI으로 처리한 경우는 E pulotype으로 39주중 18주로 47.2%를 차지하였으며, 그 외 A pulotype 17.9%, C pulotype 15.4%, F pulotype 7.7% 및 B, D, G, H, I, J pulotype가 각각 2.6%로 유전적 다양성이 다양하였다. NotI

Fig. 3. Analysis of PFGE of 39 L. pneumophilia serogroup 1 isolates from cooling towers in Busan. DNAs were cleaved with SfiI. Dendrograms were constructed with Bio-Rad software analysis, Molecular Analyst.
Fig. 4. Analysis of PFGE of 39 L. pneumophila serogroup 1 isolates from cooling towers in Busan. DNAs were cleaved with NotI. Dendrograms were constructed with Bio-Rad software analysis, Molecular Analyst.
Table 2. Geographical distribution of molecular type of 39 isolates and reference stain

<table>
<thead>
<tr>
<th>Area of origin</th>
<th>Isolates and reference strain</th>
<th>PFGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sfi</td>
</tr>
<tr>
<td>Jung-gu</td>
<td>JG 0106</td>
<td>F3</td>
</tr>
<tr>
<td></td>
<td>JG 0203</td>
<td>A3</td>
</tr>
<tr>
<td></td>
<td>JG 0209</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>JG 0211, JG 0237</td>
<td>E1</td>
</tr>
<tr>
<td></td>
<td>JG 0322</td>
<td>C2</td>
</tr>
<tr>
<td>Seo-gu</td>
<td>SG 0154</td>
<td>E1</td>
</tr>
<tr>
<td>Dong-gu</td>
<td>DG 0152</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>DG 0160</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>DG 0336</td>
<td>B</td>
</tr>
<tr>
<td>Yeongdo-gu</td>
<td>YD 0156</td>
<td>E1</td>
</tr>
<tr>
<td>Busanjin-gu</td>
<td>BJ 0101, BJ 0102, BJ 0103, BJ 0107</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>BJ 0210</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td>BJ 0221</td>
<td>D</td>
</tr>
<tr>
<td>Dongnae-gu</td>
<td>DL 0118</td>
<td>F2</td>
</tr>
<tr>
<td></td>
<td>DL 0303</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>DL 0304</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>DL 0306</td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>DL 0310</td>
<td>E2</td>
</tr>
<tr>
<td>Haeundae-gu</td>
<td>HW 0145, HW 0157, HW 0158, HW 0159, HW 0260</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>HW 0261</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>HW 0325</td>
<td>C1</td>
</tr>
<tr>
<td>Saha-gu</td>
<td>SH 0214</td>
<td>H</td>
</tr>
<tr>
<td>Kumjung-gu</td>
<td>KJ 0223</td>
<td>E3</td>
</tr>
<tr>
<td></td>
<td>KJ 0224</td>
<td>C1</td>
</tr>
<tr>
<td>Gangseo-gu</td>
<td>KS 0109</td>
<td>F1</td>
</tr>
<tr>
<td>Yeonje-gu</td>
<td>YJ 0228, YJ 0239</td>
<td>E1</td>
</tr>
<tr>
<td>Sasang-gu</td>
<td>SS 0227, SS 0234</td>
<td>C1</td>
</tr>
<tr>
<td>the others</td>
<td>J* 0240, MS** 0241</td>
<td>E1</td>
</tr>
<tr>
<td>Reference strain</td>
<td>L. pneumophila ATCC 33152</td>
<td>G</td>
</tr>
</tbody>
</table>

1. Jinju city, 2. Masan city

년 B, C, E, I, J의 5 pulsoltype이 분포하였다(Table 3). E pulsoltype은 매년 분리되었으며, 그 외 새로운 유전형이 매년 분리되고 있어 분리균주에 대한 지속적인 PFGE 패턴 분석이 요구되었다.

본 연구를 통하여 부산지역에서 분리되는 레지오넬라균에 대한 유전자 유형분석 결과를 데이터베이스하여, 레지오넬라중의 집단 발생 또는 산발적인 질병 발생이 있을 경우 분자 생물학적 측면에서 사람과 환경에서 분리된 균으로부터 감염 원과 감염경로를 규명하는 역학적인 도구로서 이용 가능한 것으로 사료되었다. 또한 전국의 각 지 역에서 분리되는 레지오넬라균에 대한 PFGE 패턴 분석이 실시되었다면 우리나라에 분포하고 있는 레지오넬라균의 지역별 유형분석도 가능할 것으로 사료되었다.

요 약

2001년부터 2003년까지 부산지역의 낙뢰림수에서 분리한

L. pneumophila (serogroup 1) 39균주에 대해 제한효소 SfiI 처리한 경우 PFGE 양상을 dice coefficient <65%의 유사성을 가진 band를 A~J로 10개의 pulsoltype으로 나누었고, 가장 많은 유형은 E pulsoltype으로 39중 18주로 46.2%를 나타내었으며, 그 외 A pulsoltype 17.9%, C pulsoltype 15.4%, F pulsoltype 7.7% 및 B, D, G, H, I, J pulsoltype가 각각 2.6%로 유전적 양상이 다양하였다. 제한효소 NsiI 처리한 경우 PFGE 양상은 dice coefficient <60%의 유사성을 가진 band를 a~h로 8개의 pulsoltype으로 나누었고, 가장 많은 유형은 f pulsoltype로 38.5%였으며 그 외 d pulsoltype 20.5%, e pulsoltype 17.9%, a pulsoltype 10.3%, h pulsoltype 7.7% 및 b, c, g pulsoltype가 각각 2.6%를 차지하였다.

본 연구를 통하여 부산지역에서 분리되는 레지오넬라균에 대한 유전자 유형분석 결과를 데이터베이스하여, 레지오넬라균 집단 발생 또는 산발적인 질병 발생이 있을 경우 분자 생물학적 측면에서 사람과 환경에서 분리된 균으로부터 감염원과 감염경로를 규명하는 역학적인 도구로서 이용 가능한 것으로 사료되었다.
<table>
<thead>
<tr>
<th>Year</th>
<th>L. pneumophila isolates</th>
<th>PFGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sfi</td>
</tr>
<tr>
<td>2001</td>
<td>BJ 0101, BJ 0102, BJ 0103, BJ 0107</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>JG 0106</td>
<td>F3</td>
</tr>
<tr>
<td></td>
<td>KS 0109</td>
<td>F1</td>
</tr>
<tr>
<td></td>
<td>DL 0118</td>
<td>F2</td>
</tr>
<tr>
<td></td>
<td>HW 0145, DG 0152, HW 0157, HW 0158, HW 0159</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>SG 0154</td>
<td>E1</td>
</tr>
<tr>
<td></td>
<td>YD 0156</td>
<td>E1</td>
</tr>
<tr>
<td></td>
<td>DG 0160</td>
<td>E4</td>
</tr>
<tr>
<td>2002</td>
<td>JG 0203</td>
<td>A3</td>
</tr>
<tr>
<td></td>
<td>JG 0209</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>BJ 0210</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td>JG 0211, JG 0237, YJ 0228, YJ 0239, JJ 0240, MS 0241</td>
<td>E1</td>
</tr>
<tr>
<td></td>
<td>SH 0214</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>BJ 0221</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>KJ 0223</td>
<td>E3</td>
</tr>
<tr>
<td></td>
<td>KJ 0224, SS 0227, SS 0234</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>HW 0260</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>HW 0261</td>
<td>E4</td>
</tr>
<tr>
<td>2003</td>
<td>DL 0303</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DL 0304</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>DL 0306</td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>DL 0310</td>
<td>E2</td>
</tr>
<tr>
<td></td>
<td>JG 0322</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>HW 0325</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>DG 0326</td>
<td>B</td>
</tr>
</tbody>
</table>

참고 문헌

