Transgenic Rice Expressing Snowdrop Lectin (Galanthus nivalis agglutinin; GNA) Shows Resistance to Rice Brown Planthopper (Nilaparvata lugens Stål)

Soo In Lee*, In Sun Yoon, Joon Ki Hong, Jin A Kim, Beom-Seok Park and Yeon-Hee Lee

Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), RDA, Suwon 441-707, Korea

Received November 12, 2012 / Revised November 16, 2012 / Accepted November 16, 2012

Transgenic rice plants with increased resistance to rice brown planthopper (Nilaparvata lugens Stål) were generated by particle bombardment-mediated transformation of plants with a gene encoding snowdrop lectin (Galanthus nivalis agglutinin; GNA) under control of the rice Rubisco small subunit (rbsS) promoter. A large number of transgenic rice plants containing the GNA gene were generated. The integration, expression, and inheritance of this gene in the R₁ and R₂ generations were demonstrated by Southern and western blot analyses. The plants contained one to five copies of the transgene. The GNA protein comprised approximately 0.01-2.0% of total soluble protein in the R₁ and R₂ transgenic plants. Insect bioassays and feeding studies showed that the GNA protein expressed in the R₂ transgenic rice plants reduced the survival of brown planthoppers. The introduction of GNA into rice plants therefore can help to control insect pests.

Key words: Brown planthopper, Galanthus nivalis agglutinin (GNA), insect resistance, particle bombardment, transgenic rice plants

Introduction

Rice, one of the most important food crops worldwide, grows in diverse soils and climates and is best adapted to warm, humid environments in which insects proliferate. Rice grain yields are often reduced due to direct damage by insects. Additionally, several devastating viral diseases, including rice tungro and yellow dwarf disease, are transmitted by insects [17]. Brown planthopper (BP1, Nilaparvata lugens Stål) is a serious rice insect pest that causes severe physiological damage by feeding on the plant. BP1 is also a vector for viruses such as grassy stunt virus and ragged stunt virus [17]. BP1 reduces rice yields by 53.8 kg per hectare in Southeast Asia, an estimated annual loss of 248.5 million USD [10]. Conventional methods used to control insects that feed on rice primarily involve the use of chemical insecticides, which are currently under public scrutiny due to food safety and environmental concerns. Thus, plant breeders have sought new techniques to minimize yield loss, including introgression and molecular tagging of genes from Oryza australiensis into cultivated rice (O. sativa), to increase resistance to BP1 [12]. In addition, extensive research has focused on identifying potential entomotoxic proteins, which could be genetically engineered into rice plants to control pests, thereby replacing chemical pesticides [21]. Indeed, genetically modified crops have been produced that express entomotoxic proteins of either bacterial or plant origin [7]. Two major groups of plant-derived genes, inhibitors of digestive enzymes (protease and amylase) and lectins, have been used to confer resistance to homopteran insect pests [26]. Recently, bioassay studies of protease/amylase inhibitor-expressing plants show that these genes can affect plant-feeding insects [8,15]. Other studies have used bioassays based on an artificial diet feeding system [21] to show that carbohydrate-binding plant lectins are highly antinutritional and/or toxic to various phloem-feeding insect pests. A mannose-specific lectin derived from the snowdrop (Galanthus nivalis agglutinin; GNA) is toxic to a number of important insect pests, including homopterans, coleopterans, and lepidopterans, when incorporated into artificial diets. This tetrameric protein, comprising identical subunits of approximately 12 kDa, specifically binds to α-1,3- or 1,6-linked D-mannose residues on carbohydrates [32]. Although GNA is toxic to insects, it is non-toxic to mammals [22]. Because of the potent entomotoxic properties exhibited by GNA, the GNA gene has been introduced into a number of plants, including tobacco [11], potato [1,6], tomato [33], wheat [18,28].

*Corresponding author

Tel: +82-31-299-1677, Fax: +82-31-299-1672
E-mail: silee@korea.kr

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
and maize [34]. GNA has also been introduced into rice [25,20,23,27,29,30], and transgenic rice plants containing this gene show increased resistance to BPH in bioassays and feeding tests [5,23,29]. This gene has negligible effects on the development, survival, and fecundity of beneficial insects [4]. Here, we report the generation of transgenic rice plants expressing GNA using the method of particle bombardment. The protein was expressed in a tissue-specific manner, and the transgenic plants were resistant to BPH. The production of transgenic plants using insecticidal genes such as GNA, combined with integrated pest management, is a promising technique for the control of damaging rice pests.

Materials and Methods

Plasmid

The gene construct containing the GNA coding sequence from pLECGNA2 was previously described [31]. To achieve tissue-specific expression of GNA in the photosynthetic tissue of rice plants, the GNA coding sequence was fused to the rice Rubisco small subunit (rbcS) promoter and nos terminator in pBluescript-SK. The resulting plasmid was designated pIP840 (Fig. 1). The pDM302 vector contains the phosphinothricin acetyltransferase (bar) gene to enable selection on medium containing phosphinothricin (Fig. 1). Both constructs were used for co-transformation of rice.

Rice transformation

Transformation of rice microcalli using particle bombardment, and the recovery of transgenic rice plants, was performed as described by Lee et al. [16]. Callus was initiated from mature seeds of the japonica cultivar, Nagdongbyeo. The microcalli were subjected to microprojectile bombardment using a Biolistic Particle Delivery PDS-1000/He system (Bio-Rad). The bombarded microcalli and transformants were selected on medium containing phosphinothricin (15 μg ml-1) [14]. Actively proliferating calli were transferred to regeneration medium for 4-8 weeks, followed by transfer to 1/2MS medium [19]. Regenerated plants were grown to maturity in a greenhouse.

Southern blot analysis

Genomic DNA was extracted from leaf and stem tissues of transformed rice plants based on Dellaporta et al [3] with modification. Five μg of genomic DNA from each sample was digested with either HindIII/XhoI or ClaI (Fig. 1), fractionated on a 0.8% agarose gel, denatured, and transferred onto a nylon membrane. The membrane was pre-hybridized for 1 hr at 65°C in a solution containing 0.25 M sodium phosphate (pH 7.4), 1 mM EDTA, 1% BSA and 7% SDS, and hybridized in the same solution with 32P-labeled GNA probe. Then the membrane was washed twice with 2x SSC solution at room temperature and once with 0.1 x SSC solution containing 0.1% SDS at 60°C for 15 min each time [24].

Western blot analysis

Protein was extracted from leaves of R1 and R2 transgenic rice plants. The soluble fraction (20 μg) was separated on duplicate 12% SDS-polyacrylamide gels [13]. One gel was stained with Coomasie blue, while the proteins on the other gel were transferred to a nitrocellulose membrane by electroblotting. The nitrocellulose membrane was treated with blocking solution [Tris-buffered saline (TBS) containing 0.1% (v/v) Tween 20 and 6% (w/v) nonfat dry milk] in order to reduce non-specific binding. The membrane was incubated for 1 hr with a 500-fold dilution of anti-GNA antibody. After washing with TBS solution containing 0.1% (v/v) Tween 20, the membrane was incubated with a 1/1000 dilution of the peroxidase-labeled secondary antibody (Sigma) for 1 hr. Membrane was washed again in TBS and developed with enhanced chemiluminescence (ECL) Western blotting kit (Amersham).

Insect bioassay

The insecticidal activity of the transgenic plants toward BPH was assayed using a feeding chamber as previously described [9]. Two-month-old R1 plants, homozygous for the
GNA4 gene, which strongly expressed GNA (as determined by western blot analysis) were used in this assay. R₀ plants derived from a non-transgenic R₀ plant, which had lost the GNA4 gene due to Mendelian segregation, were used as a negative control. The plants were transferred to a feeding chamber into which 12 second-instar nymphs were released. The insects fed continuously for 8 days at 28°C under a 14/10 hr light/dark regime. The number of surviving insects was recorded daily. To determine the effects of BPH on transgenic and control plants, control plants and high GNA-expressing R₀ plants were transferred to wood-net chambers (60×45×30 cm), and 100 second- and third-instar nymphs were released onto the plants. The amount of damage to each plant was determined 4 weeks after infestation.

Results and Discussion

Production of fertile transgenic rice plants

Transgenic rice plants were produced by co-transformation with plasmids pDM302 (containing the bar gene, which encodes a selectable marker) and pIP840 (containing the rbcS promoter fused to the GNA4 coding sequence) by particle bombardment. These plasmids were introduced into embryogenic calli of the japonica rice variety ‘Nagdongbyeo’. Several independent transformation experiments were performed, both with and without plasmid (control). Calli bombarded with recombinant plasmids were selected for 4 weeks on culture medium containing 15 μg/ml phosphinothricin. A total of 53 independent transgenic plants were generated. Most of these plants were derived from independent calli. Forty-six plants were fertile, whereas the remaining plants were sterile.

Integration of GNA4 gene in transgenic rice plants

The presence of the GNA4 gene in the transgenic plants was confirmed by Southern blot analysis (Fig. 2). Total genomic DNA was isolated from the leaves of seven randomly-chosen phosphinothricin-resistant plants, and one untransformed plant. The genomic DNA was then digested with ClaI (A lanes) or HindIII/XbaI (B lanes) and probed with a 0.53-kb HindIII/XbaI fragment containing the entire GNA4 expression cassette (rbcS promoter, GNA4 gene and nos terminator). ClaI degrades the intact plasmid, pIP840, at a single site to generate a 6.0-kb linear molecule. The size of the GNA4-hybridizing fragment should indicate the distance from the ClaI site of the integrated plasmid to the nearest

ChI site in the rice genome. HindIII/XbaI digestion should produce intact GNA4 fragments. All seven phosphinothricin-resistant plants showed a 0.53-kb hybridization signal corresponding to the size of the intact GNA4 coding sequence (Fig. 2, lanes 2-8, B), while no signal was detected in DNA isolated from the untransformed plant (lane 1). The phosphinothricin-resistant phenotype, therefore, corresponded to the presence of the intact GNA4 gene. In addition to the 0.53-kb fragment, two additional bands in lanes 3B, 4B and 5B, which suggest that the DNA in these lanes may have come from plants that were regenerated from the same transformed callus. After hybridization with the 0.53-kb GNA4 probe, DNA from the untransformed control plant did not produce any detectable signal (Fig. 2, lane 1).

Inheritance of the GNA4 gene in transgenic rice plants

Inheritance of the introduced GNA4 gene [from primary (R₀) transgenic plants] by the next (R₁) generation was examined by immunoblot analysis of selfed progeny derived from transgenic lines (Table 1). When the R₀ plants were crossed with untransformed plants, the GNA4 gene was inherited by
Table 1. R_i inheritance of the GNA gene

<table>
<thead>
<tr>
<th>Plant lines</th>
<th>No. of seedlings</th>
<th>GNA<sup>+</sup> (%)</th>
<th>GNA<sup>−</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>GNA-3</td>
<td>30</td>
<td>22(73.3)</td>
<td>8</td>
</tr>
<tr>
<td>GNA-13</td>
<td>27</td>
<td>22(81.5)</td>
<td>5</td>
</tr>
<tr>
<td>GNA-63</td>
<td>28</td>
<td>21(75.0)</td>
<td>7</td>
</tr>
<tr>
<td>GNA-592</td>
<td>30</td>
<td>21(70.0)</td>
<td>9</td>
</tr>
<tr>
<td>GNA-614</td>
<td>25</td>
<td>23(92.0)</td>
<td>2</td>
</tr>
</tbody>
</table>

Expression of GNA gene was determined by western blot analysis. GNA⁺ indicates R_i progeny plants expressing the GNA gene. GNA[−] indicates plant without the GNA gene.

R_i lines GNA-3, GNA-63 and GNA-592 in a 1:1 segregation ratio, whereas a 3:1 segregation ratio was observed when the R_o plants were selfed. This observation, along with the Southern blot analysis data, indicates that these lines carried a functional GNA gene at a single locus (data not shown). However, lines GNA-13 and GNA-614 contained three and five copies of the GNA gene, respectively.

Expression levels of GNA protein in transgenic rice plants

The presence of GNA protein in leaves of transgenic rice plants was analyzed by western blotting. Six independent R_i (Fig. 3A) and R_o (Fig. 3B) transgenic plants were assessed. A single band at 12 kDa, which co-migrated with the standard, was detected in plants transformed with GNA (Fig. 3, Lanes 3 to 8). Although two additional bands can be seen in lanes 7 and 8 in Fig. 3B; these bands are thought to be due to protein degradation. However, no 12 kDa band was observed in the protein extract from untransformed rice plants (Fig. 3, lane 2). The amount of GNA protein detected in the leaves of 8-week-old transgenic rice plants varied from plant to plant, generally ranging from 0.05% to 1.0% of total protein, with a maximum of 2.0%. Levels of GNA expression were estimated semi-quantitatively from the western blots. Variations in GNA gene expression were detected among both the R_i and R_o plants. Similar observations were made with transgenic rice plants expressing the GUS reporter gene under the control of the CaMV 35S promoter, in which variations in expression levels within a single genotype were frequently observed (data not shown).

Effect of GNA on the survival of BPH

Bioassays of 2-month-old R_i plants were performed using BPH. The number of BPH nymphs that fed on the transgenic rice plants declined significantly, beginning on the third day after infestation and continuing throughout the 8-day bioassay period (Fig. 4). For line GNA-592, the number of insects declined from 12 per plant (initial inoculum) to an average of six (50% of the control) on Day 8. The BPH survival rate on line GNA-592 decreased by 40% compared with that on the control. This result corresponds with the levels of GNA protein in these transgenic rice plants.

The effect of BPH on transgenic rice plants

We investigated the effects of BPH on transgenic rice plants to determine whether GNA gene expression conferred protection against insect predation. To assess the effectiveness of the GNA protein in whole transgenic plants,
Fig. 5. BPH resistance of an R$_3$ transgenic plant expressing GNA. A resistant transgenic plant showing healthy growth (right) and a susceptible control plant showing severe symptoms of BPH infestation (left) after 4 weeks of infestation.

2-month-old R$_3$ GNA-592 transgenic plants (which contained 2.0% GNA protein) and non-transgenic plants were infested with BPH for 4 weeks. Both transgenic and control rice plants were infested with second- and third-instar nymphs (100 per plant). Non-transgenic plants were severely damaged by BPH after 4 weeks (Fig. 5, left), whereas plants expressing GNA showed only minor leaf damage (Fig. 5, right). After 4 weeks, both egg production and the number of nymphs produced by the adults feeding on transgenic rice plants were reduced by approximately 6-fold compared to the control. The results of this bioassay provide further evidence that GNA can reduce insect attacks on rice, and that GNA has insecticidal activity against BPH. We hope to conduct further large-scale experiments under field conditions. As tissue-specific expression of a single GNA gene in transgenic plants induced insect resistance, we are currently investigating the use of other tissue-specific promoters (RSeI, which is a phloem-specific promoter) to further increase resistance to insect pests.

Acknowledgement

This work was supported by grant from the National Academy of Agricultural Science (PJ0070492011), Rural Development Administration (RDA), Republic of Korea.

References

ance and earliness introgressed from *Oryza australiensis* into cultivated rice, *O. sativa* Genome 37, 217-221.

초록: Snowdrop lectin (Galanthus nivalis agglutinin; GNA) 유전자 도입에 의한 벼멸구 저항성 형질전환 벼 개발

이수인· 윤인선· 김진아· 홍준기· 박범석· 이연희
(국립농업과학원 농업생명자원부)

유전자총(Particle bombardment) 방법에 의해 snowdrop lectin (Galanthus nivalis agglutinin; GNA) 유전자가 도입된 해충저항성 형질전환 벼를 개발하였다. GNA 유전자가 도입된 많은 형질전환 식물체가 재분화되었으며, 형질전환 벼의 GNA 유전자 및 integration, expression 및 inheritance는 Southern 및 western analysis 분석 방법에 의해 증명되었다. 벼 genome 내 도입 유전자 수는 one 혹은 five copies이었다. 형질전환 R1과 R2 식물체의 GNA 단백질 발현 분석 결과, 함량은 종 단백질 중 0.01%부터 2.0%까지 포함하고 있었다. 형질전환 식물체 중 GNA 과발현 형질전환 벼를 이용한 생물 양성 결과, 대조군과 비교하여 벼의 주요 해충인 벼멸구 (Nilaparvata lugens Stål)에 저항성을 나타내었다. 위의 실험 결과를 통해, 해충저항성 유전자의 GNA가 도입된 형질전환 벼는 해충의 증식을 억제하는데 이용될 수 있을 것이다.