Phospholipase A₂(PLA₂) 薬鈎이 中大腦動脈閉塞으로\n誘發된 致命的 神經損傷 保護 效果에 미치는 영향

김성민 1 · 정태영 1 · 임성철 1 · 서정철 1 · 김미려 2 · 양재하 3 · 한상원 1

대구한의대학교 원의과대학 1 침구학교실, 2생리학교실, 3생리학교실

The Protective Effect of Phospholipase A₂(PLA₂) Herbal-acupuncture against the Neuronal Damage Induced by Middle Cerebral Artery Occlusion(MCAO) in Rats.

Sung-Min Kim 1, Tae-Young Jung 1, Seong-Cheol Leem 1, Jeong-Chul Seo 1, Mi-Ryeo Kim 2, Chae-Ha Yang 3, Sang-Won Han 1

Dept. of 1Acupuncture & Moxibustion, 2Physiology, 3Pharmacology,
College of Oriental Medicine, DaeguHany University

Abstract

Objectives : In order to prove the effect of Phospholipase A₂(PLA₂) Herbal-acupuncture, this experimental studies were performed by using rats that had neuronal damage due to the Middle Cerebral Artery Occlusion(MCAO).

Methods : Microdialysis probes were implanted into the coordinate of striatum of anesthetized rats which consist of sham-operated 8 rats, MCAO-operated 8 rats and PLA₂ Herbal-acupuncture administrated 8 rats before MCAO operating. The PLA₂ Herbal-acupuncture(0.5mg/kg) was administrated to rats 30 minutes before having an operation causing the MCAO. The surgical excision lead the cross resected brain to the acute ischemic state. The brain was sliced in 2mm thickness and stained with cresyl violet buffer for the measurement of cerebral infarcted area and volume.

Results : Based on the result of the tissue inspection for the cerebral ischemic cell, PLA₂ Herbal-acupuncture significantly protect neurocytes.

Conclusions : We suggest PLA₂ Herbal-acupuncture produces protective effects against the neuronal damage induced by MCAO. Therefore, PLA₂ Herbal-acupuncture may prevent delayed neuronal death(DND) in selectively vulnerable focal areas of the brain effectively.

Key words : Phospholipase A₂(PLA₂), Herbal-acupuncture, Middle Cerebral Artery Occlusion(MCAO), Neuronal Damage

Ⅰ. 서 론

腦血管疾患(cerebrovascular disease)은 腦血

*교신저자: 홍성현, 대구광역시 수성구 상동 165 대구한의대학교 부속 대구한방병원 의과, Tel. 053-770-2129, E-mail: harsw@dhu.ac.kr

管的 病理學的 異常에 依해 일어나는 意識障礙
와 神經學의 損傷으로 因한 運動 및 感覚障礙
 등을 隨伴하는 症候群을 總稱하는 것으로), 食
生活의 西歐化, stress, 運動不足 그리고 高血壓
의 積極的인 治療로 因해 出血性 腦血管疾患보
다는 虛血性 腦血管疾患의 發生比率이 漸次 增
加하고 있는 틀Strike-through"이다.

血行障害로 인해 뇌虚血이 발생하는 부분의
세포는 수 초내에 면역체가 오고, 수 분이 경
過去한 후에는 비례적 손실을 입게 된다. 그러나
뇌虚血 주변부(ischemia region)의 세포는 약
간의 대謝체가 있다가 일정시간이 경과한 후
에는 유전체 뇌神経細胞死(delayed neuronal dea-
th, DND)가 발생하기로 배른 시기에 치료를 하
여야 한다.

現在, 全世界的으로 뇌虚性 뇌神経
細胞 損傷 機轉에 관하여 활발하게 연구가 진행
되고 있으며, 神経伝達物質들에 대한 많은 부분
이 논의되고 있다. 이러한 연구결과를 土壌로
神経細胞 損傷을 억제하는 새로운 藥物 開発을
為해 多角的인 치료方法를 探索하고 있다.

虚血性 뇌虚血疾患은 中風의 範疇에 屬하여
中風 急性期는 大部分 本虛標實과 上盛下虛標이
므로, 治療는 本虛標이 있어도 標實標을 爲主로
治癒한다. 急部治其標의 原則에 따라 大肝熄風,
清熱驅痰, 化痰通絡, 活血通絡 등의 治療를 多用
하는데, 이 때에는 邪氣가 盛하고 症候가 實하기
때문에 手리 病邪를 除去하기 爲한 治療로, 清心
開竇 蘿醒神志, 凍解熱毒の 效能이 있는 藥物를
많이 使用하고 있다.

蜂毒은 곤벌의 毒囊에 들어있는 約40여 가지
의 有效成分으로 構成된 物質로 蜂毒의 性味는
苦, 辛, 平, 有毒, 臨床에서는 鎮痛, 解熱, 消
炎, 鐵痕, 免疫 增強 및 抗癌效果 等의 效能이
있는 것으로 알려져 있다.

蜂毒의 分成 중 phospholipase A2(PLA2)에 대하여 tumor의 起
作하는 데 相關이 있다고 報告하였으나
아직까지 中大腦動脈を 閉塞시킨 動物모델을 利用하
여 뇌虚血過程에서 PLA2가 神経傳達物質에 미
치는 영향에 關한 研究가 부족한 실정이다.

이에 著者は 뇌虚血 誘發時 脳組織細胞 保護
效果에 따른 腦卒中 治療機轉을 實驗的으로 研
究하기 爲해 人為로 中大腦動脈 閉塞術으로
脳虚血을 誘發시킨 훈쥐에게 PLA2 藥液을 合
谷에 注入한 後, 腦梗塞部位의 容積を 測定하여
有意한 結果를 얻었기에 報告하는 바이다.

Ⅱ. 재료 및 방법

1. 動物 및 材料

1) 動物

動物은 重體 240-260g의 Sprague-Dawley系
雄性 훈쥐(大韓實験動物센터)를 使用하였고,
골 毛髪飼料(제일사료)를 自由飼育
하여, 飼育寬容의 温度는 21-24℃, 温度는 40
30%로 堆積하였으며, 낡과 밤의 遊期은 各各 12
時間으로 하였으며, 實験室 環境에 2週間 適應
시킨 後 實験로 사용하였다.

2) 材料

藥液은 Sigma社의 phospholipase A2를 구
입하여 사용하였다.

2. 方法

1) 試薬의 調製

본 實験에 사용된 PLAs는 주사용 略簡水
(normal saline)를 가하여 調製하였다.

2) 藥剤群

환쥐 8마리를 1群으로 하여 control group은
脳虚血만 誘發시켰고, sham group은 腦虚血
을 誘發시키지 않고, 마취 상태에서 같은 部位에
編輯 幣하였다.

그리고 銀시(Li)에 相應하는 實験動物의 體表
上的 各側 腦穴에 saline group은 주사용 略簡水
(normal saline)를, sample group은 PLA2 藥
Phospholipase A2 (PLA2) 콧물이 중대뇌동맥 혈전 수용 포유류의 신경손상 보호 효과에 미치는 영향

3. 결 과

Ⅲ. 결 과

1. 뇌梗塞 부위의 容積 測定

Control 그룹의 striatum과 cortex의 梗塞 容積은 각각 146.3 ± 11.2 mm³, 286.4 ± 29.9 mm³였고, saline 그룹의 striatum과 cortex의 梗塞 容積은 각각 103.3 ± 10.9, 276.4 ± 17.2 mm³였으며, tail 그룹의 striatum과 cortex의 梗塞 容積은 각각 151.1 ± 15.2, 287.8 ± 11.3 mm³로 이 중 saline 그룹의 striatum의 梗塞 容積만 control 그룹에 비하여有意性(P<0.05)을 갖고 있었다.

Sample 그룹의 striatum의 梗塞 容積은 49.4±6.3 mm³로 control 그룹과 saline 그룹에 비하여 모두 매우有意性(P<0.001)을 갖고 있었으며, cortex의 梗塞 容積은 146.5±24.4 mm³로 control 그룹과 saline 그룹에 비하여 모두有意性(P<0.01)을 갖고 있었다(Table 1, Figure 1).

Table 1. Effect of Herbal-acupuncture of PLA2 on Infarction Dimension in the Rat Brain after MCAO

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of Animal</th>
<th>Infarction volume(mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Striatum</td>
</tr>
<tr>
<td>Control</td>
<td>8</td>
<td>$146.3 \pm 11.2^{a)}$</td>
</tr>
<tr>
<td>Saline</td>
<td>8</td>
<td>103.3 ± 10.9^{a}</td>
</tr>
<tr>
<td>Tail</td>
<td>8</td>
<td>151.1 ± 15.2</td>
</tr>
<tr>
<td>PLA2</td>
<td>8</td>
<td>$49.4 \pm 6.3^{***}$</td>
</tr>
</tbody>
</table>

Infarction volume was measured after Herbal-acupuncture at bilateral Hapgok(L1) in rats subjected to permanent focal cerebral ischemia induced by 24 hours of middle cerebral artery occlusion (MCAO). Saline were given at bilateral Hapgok as control material and tail were used as non-specific control point.

*a): Mean± S.E.
P<0.05, **, P<0.01, ***, P<0.001 as compared with the corresponding data of Control group
P<0.05, **, P<0.01, ***, P<0.001 as compared with the corresponding data of Saline group.
Figure 1. The infarction dimension of the rat brain after MCAO. The rats were pretreated with each method. A: control, B: saline, C: Tail, D: PLA₂

Ⅳ. 고찰

이번에 다룬 꿀벌의 독성을 들어있는 약 40여 가지의 효소로 구성된 물질로 국내에서는 꿀벌을 이용한 약제 개발 연구가 활발히 진행되고 있어 중양재18, 내분비19, 면역20 등이 보고되었다.

봉독의 여러 성분 중 PLA₂는 보통 enzymes의 주요 성분으로 세포막 구성물질인 phospholipid의 2nd B부위에 결합하는 지방산을 가수분해하는 촉매효소로서 직접의 분해효소로 작용하여 Phospholipid의 세포막을 분해하고, 다른 세포막 및 섭취효소의 작용을 중단함으로 피로중질과 분해에最初的 조절을 억제하는 물질이 된다. PLA₂의 반응에 의해 형성된 산물은 강력한 세포막 활성물질로서 모든 세포를 휘려싸고 있는 지질의 이충구조에 영향을 미치고 또한 세포상호간의 작용을 가능하게 한다. 이러한 생화학적

세포막구조의 파괴는 PLA₂와 같은 효소에 의해 광범위하게 이루어질 뿐, PLA₂의 작용을 통해 형성된 phosphoglycerides는 계속 파괴되어 새로운 활성분자로 대체되어진다. PLA₂는 세포막의 투과성 증가시키고, 혈소판의 응집을 억제하고 백혈구 및 내피세포의 작용을 변화시킨다. 또한 PLA₂는 몽환작용에서 Melittin과 상호작용적으로 작용하여 서로의 활동성을 증가시켜 준다. 그 외에 Deregnacourt C23에 의하면 PLA₂는 인간혈청의 골수를 조절하는 적혈구의 plasmodium falciparum의 특정단계의 성장을 중지시키고 하였으며, Nethery D24에 의하면 폐혈막의 mitochondria의 ROS(reactive oxygen species)의 형성은 PLA₂의 의지한다고 하였고, Wu YL25에 의하면 TNF(증양괴사인자)에 의한 세포손의 PLA₂의 활성화는 세포를 사망에 이르게 하는 경로에 신호를 보내는 중요한 요소라고 하였다.
Phospholipase A₂ (PLA₂) 중대부동맥세열로 혈전, 중대부동맥결합, 줄기세포, 신경손상, 보호, 효과에 미치는 영향

중풍은 본래의 구사 상태상 혈전의 차이를 할 수 있으므로, 대부분 급명기에는 비록 본래의 구사 차이가 있더라도 본래의 구사 차이가 있는 것으로 간주한다. 급명기의 정의는 크게 두 가지 원리를 따라 산다: 첫째, 혈전이 혈관통증의 원인이라고 해서 간단하고, 혈관통증의 원인에 의한 구사로 간주하는 것이 정확하다고 한다. 두째, 혈관통증의 원인에 의한 구사로 간주하는 방법이며, 이 방법은 혈관통증의 원인에 의한 구사로 간주하는 방법을 사용할 수 있다.

중풍은 주중량이 넓어보이지 않으나 혈관통증의 원인을 찾기 위해 임의의 혈관통증의 원인을 일정하며 30, 이것은 혈관통증의 원인을 찾기 위해 임의의 혈관통증의 원인을 일정하며 30, 이것은 혈관통증의 원인을 일정하며 30, 이...
참 고 문 현

21. Yuan Y et al. An essential role for