Robust Vehicle Stability Control Using Disturbance Observer

Jin-Oh Hahn, Kyongsu Yi, Soojoon Kang and Kyo Il Lee

Key Words: Vehicle Stability Control(차량 안정성 제어), Disturbance Observer(외란 관측기), Anti-Lock Braking System(브레이크 잡김 방지 시스템), Nonlinear Damping(비선형 감쇠), Lyapunov Redesign(리아프노프 재설계)

Abstract

A disturbance observer-based vehicle stability controller is proposed in this paper. The lumped disturbance to the vehicle yaw rate dynamics caused by the uncertain factors such as uncertain tire forces and parameters is estimated by the disturbance observer, which is utilized by the robust controller to stabilize the lateral dynamics of the vehicle. The dynamics of the hydraulic actuator is incorporated in the vehicle stability controller design using the model reduction technique. Modular control design methodology is adopted to effectively deal with the mismatched uncertainty. Simulation results indicate that the proposed disturbance observer-based vehicle stability controller can achieve the desired reference tracking performance as well as sufficient level of robustness.

1. 서 론

최근 들어 차량의 능동 안전성(Active safety) 개념이 강조되면서 차량 안정성 제어시스템(vehicle stability control system)에 대한 연구가 활발히 진행되고 있으며, 1-14 일부 국내 자동차 업계들은 현재 양산되고 있는 승용차에 기본적인 알고리즘을 적용하고 있다. 국내 학계와 업계들도 이러한 추세에 따라 요 모멘트 제어시스템(yaw moment control system), 브레이크 압력 분배(brake pressure distribution) 및 차량 안정성 제어시스템에 관한 해석, 제어 알고리즘 개발 및 이론적 해석 등의 다양한 연구를 수행하고 있다. 15-24

전륜 조향(front wheel steering) 차량에서 차량 안정 제어, 즉 차량의 요어 제어(yaw rate control)는 통상 ABS 브레이크를 통해 이루어지는데, 이는 운전자의 조향입력에 따라 차량의 회전방향 참조 제어에 기여하기 때문에 조향입력만을 이용하여 동시에 두 가지 제어목적(위치 제어 및 안정성 제어)을 달성하기가 어렵기 때문이다. 전자통 조향 및 지능형 차량(intelligent vehicles)을 위한 조향 제어에 관한 연구 25-28는 제어, 상태관측, 그리고 고정관련의 문제에 대한 깊이를 확보해 이루어져 왔지만, ABS 브레이크에 기초한 차량의 안정성 제어에 관한 심도 있는 연구는 아직 미흡한 상태이다.

차량의 조향 동역학(steering dynamics)은 차량 상태 방정식으로 표현이 가능하지만 차량의 종방향 속도에 따라 그 동작특성이 변하는 선형 파라미터 변동 시스템(linear parametric varying system; LPV system)이므로, 정교한 조향을 가능하게 설계한 고정 이득 제어기(fixed gain controller)의 실제 적용은 매우 비현실적이다. 또한 조향 동역학을 포함한 차량 동역학에서 가장 중요한 요소인 타이어 힘은 모델의 수렴이 낮은 뿐만 아니라 매우 불확실한
특성을 지니다. 이러한 관점에서 차량 안정성 제어는 차속의 변화에 의한 차량 성능의 변화 및 저하를 최소화할 수 있도록 설계되어야 하며, 또한 타이어 힘 및 차량의 질량 등과 같은 여러 구성 요소의 불확실성(structured uncertainty)에 대하여 높은 수준의 견실성을 보장할 수 있어야 한다.

본 논문에서는 이론 관측기를 이용한 전술한 차량 안정성 제어기를 제안한다. 제안된 차량 안정성 제어기는 라이아노프 재설계 방법(Lyapunov redesign method)과 비선형 감쇠(nonlinear damping)를 이용하여 설계한 특성을 갖고 설계되었으며, 요율 동력학에 내재된 타이어 힘과 같은 크고목의 불확실성을 고려하기 위하여 불확실성에 대한 확률을 공정 시스템에 대한 뒤집(lumped disturbance)으로 간주하여 이를 관측한 관측기를 이용하여 추정함으로써 전술 지능 제어기의 고이득화 문제를 극복하고 고지하였다. 제어기 설계시에 중요한 차량 안정성 제어기의 요율 제어능 및 불확실성에 대한 견실성을 검증하였다.

2. 차량 조향 제어시스템

2.1 차량 조향 동력학

Fig. 1에 제조 조향 제어시스템의 개념도를 도시하였 다. 조향 제어시스템의 상태변수는 축방 슬립 β와 요율 r이며, 운전자의 조향각 δ_f와 ABS 유압 액추에이터의 입력 β_s가 입력으로 작용한다. 축방 슬립 β는 차체의 방향 벡터와 차량의 속도 벡터 사이의 각도로 정의되며, 요율 r은 차체의 회전율이다. 조향각 δ_f는 차체와 바퀴의 각으로 정의한다. Fig. 1에 I_f, I_r은 각각 차량의 무게중심에서 전륜과 후륜까지의 거리이다.

\[
\begin{align*}
\frac{d\theta}{dt} &= \frac{2C_\mu g\mu}{\mu_r} \left(-1 + \frac{C_\mu g\mu}{\mu_r} \right) \tau + \frac{C_\mu g\mu}{\mu_r} \delta_f, \\
\frac{dr}{dt} &= \frac{1}{J} \left(\delta_f - \frac{\tau}{\mu_r} \right) - \frac{C_\mu g\mu}{\mu_r} \left(-\beta + \frac{\tau}{\mu_r} \right) - \frac{T}{2J} k_s \beta_s \\
&= \frac{C_\mu g\mu}{\mu_r} \left(\frac{g}{J} \right) r + \frac{C_\mu g\mu}{\mu_r} \left(\frac{g}{J} \right) \beta_f - \frac{T}{2J} k_s \beta_s \tag{2b}
\end{align*}
\]

전술한 조향 제어시스템 모델 (2)는 실제 차량 조향 동력학을 충분한 정확성을 가지고 모사할 수 있으며, 이는 Zhu(11)의 연구에서 실험적으로 검증되었다.

2.2 ABS 유압 액추에이터

본 논문에서는 Bosch사에서 제조한 솔로노이드 밸브를 ABS 유압 액추에이터로 고려하였다. 시스템 식별은 이를 이용하면 다음과 같은 유압 액추에이터의 경정적 모델을 얻는다. 여기서 s는 Laplace 연산자이며, σ는 각각 모델의 극점과 영점이다.
외란 관측기를 이용한 건설장 차량 안정성 제어

\[A(s) = \frac{p_1 p_2 p_3 p_4 (s - z_1) / z_2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

(3)

(3)과 같은 고차의 액추에이터 모델은 효과적인 제어기에 설계에 적합하지 않으므로, 모델의 정확성을 크게 저하시키지 않는 범위 내에서 축소차수 모델을 유도하는 것이 바람직하다. 유압 액추에이터에 대한 저차의 모델을 유도하기 위해 balanced model reduction\(^{(13)}\)을 이용하면 다음과 같은 축소차수 모델을 얻을 수 있다.

\[A(s) = -\alpha s + \kappa \]

\[s^2 + 2\zeta\omega_n s + \omega_n^2 \]

(4)

액추에이터 모델 (4)에서 \(\zeta \)과 \(\kappa \)는 양수이며, 따라서 이는 비소실성(non-minimum phase) 시스템이다. 비소실성 시스템에 입출력 선형화 기법 (input-output linearization)을 적용하여 비선형 제어기를 설계할 경우에 그 내부 동역학이 불안정한 시스템으로 나타난다는 것을 잘 알여져 있으므로 (14,15) 선형 제어기를 적용할 경우에는 대역폭에 제한을 받으므로 (4)와 같은 모델은 제어기 설계에 적합하지 못하다. 그러나 (4)의 \(A(s) \)에서 고주진동수는 \(\omega_1 = \omega_n \approx 10.174 \) [Hz]이며, 불안정한 영점을 \(\omega_2 = \sqrt{\zeta / \kappa} \approx 650.310 \) [Hz]에 나타난다는 사실에 주목할 때, 불안정한 영점이 \(A(s) \)의 주파수 응답(frequency response)에 영향을 미치는 주파수 대역은 고주진동수보다 훨씬 크며, 또한 설계적으로 유압 액추에이터가 제어되는 주파수 대역폭은 이보다는 훨씬 작으려라 예상된다. 따라서 이 불안정한 영점을 무시하면 다음과 같은 근사화된 액추에이터 모델을 얻는다.

Fig. 2 Comparisons of actuator models

\[A(s) = \frac{\kappa}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

(5)

Fig. 2 에 전술한 ABS 유압 액추에이터 모델 (3)-(5)을 주파수 영역에서 비교한 결과를 도시하였다. 약 50[Hz]까지 각각의 모델들이 거의 동일한 특성을 보이며, 전술한 바와 같이 붕괴행렬의 영점이 액추에이터 모델의 동역학에 영향을 미치는 영역은 현실 주파수 대역 밖이므로, 본 논문에서 유도된 최소위상 축소차수 모델 (5)이 관측기 및 제어기 설계에 효과적으로 적용될 수 있으려라 판단된다.

3. 외란 관측기 설계

연속시간 영역(continuous-time domain)에서 관측기를 설계하기 위하여 주파수 영역에서 기술된 ABS 유압 액추에이터 모델 (5)의 상태변수(state variable)를 \(x_2 \) 및 \(x_3 \)으로 가정하고 이를 가페어 정렬형(controllable canonical form)으로 표현하면 다음과 같은 상태공간 표현을 얻는다. 여기서 \(u \)는 입력 벡터이고 \(P_0 \)는 ABS 브레이크에 작용하는 실제 압력이다.

\[\frac{dx_2}{dt} = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} u \]

(6a)

\[P_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

(6b)

본 논문은 차량 안정성 제어, 즉 요음 제어를 목적으로 하므로 주요 제어시스템 동역학에서 요음 동역학 모델 (2b)와 액추에이터 모델 (6)을 통합하면 다음과 같은 상태공간 표현 (state space representation)을 얻는다.

\[\frac{dx}{dt} = \begin{bmatrix} k_1 & k_2 & 0 \\ 0 & 0 & 1 \\ 0 & -\omega_n^2 & -2\zeta\omega_n \end{bmatrix} \begin{bmatrix} x \\ 0 \\ u \end{bmatrix} + \begin{bmatrix} k_3 \beta + k_4 \rho + u \\ 0 \\ 0 \end{bmatrix}

(7)

전술한 바와 같이 (7)에 나타나는 외란 \(w \)는 주로 마찰배수나 회전 강성 등과 같은 타이어의 특성과 차량의 지향, 회전 관성 등의 부정확한 파라 메터들에 의하여 발생하므로 주로 저주파 성분으로 구성되어 있으려라 판단된다. 따라서 외란 \(w \)의 동역학이 충분히 느리다고 가정하고 상태변수
에 포함시키면 다음과 같은 4차의 상태공간 표현을 유도할 수 있다.

\[
x = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ x_4 \end{bmatrix} = [A] [x] + [B] [u] + [C] [y] + [D] \] (8)

\[
\frac{d}{dt} [x] = [A] [x] + [B] [u] + [C] [y] + [D] \] (9a)

\[
y = [1 \\ 0 \\ 0 \\ 0] [x] \] (9b)

차량의 측방 슬립과 조향각은 측정이 가능하므로 \(\Phi(\beta, \delta_f) \)은 소자가 가능하다. 다음과 같은 외란 관측기를 고려하자.

\[
\frac{d}{dt} \hat{x} = [A] \hat{x} + [B] u + [C] [y - C] \] (10)

그러면 관측기의 오차 동력학은 다음과 같이 표현되며, 이는 관측기 이득 행렬 \(L \)의 적절한 선택을 통해 직접적으로 안정화시킬 수 있으므로, 외란 관측기 (10)을 이용하면 시스템의 상태 변수와 미지의 파라미터들에 의한 불확실성을 동시에 추정할 수가 있다.

\[
\frac{d}{dt} [e] = (A - LC) [e] \] (11)

실제 차량에서는 자이로(gyro)를 통해 측정되는 요율과 더하여 ABS 액추에이터의 입력 \(P_k \)도 측정이 가능하므로 외란을 상태변수로 가정한 관측기 설계 모델 (9)가 요율 정보만으로도 관측가능(observable)하기 때문에 외란 관측기 (10)의 설계시에는 요율 파드백만을 이용하였다.

외란 관측기의 설계 과정에서 유압 액추에이터의 불확실성에 상응하는 외란은 고려하지 않았으나, 기존 연구 결과로 미루어 볼 때 경험적으로 유도된 유압 액추에이터 모델의 불확실한 파라미터로 인한 외란 효과는 요율 동력학 모델의 불확실성에 기인하는 외란 효과에 비하여 상대적으로 미미하다고 판단된다.

관측기의 제공하는 외란 정보는 요율 동력학에 가해진 불확실성의 크기를 나타내며, 이는 4 장에서 논의되는 바와 같이 전설 제어기의 설계 과정에서 외란에 대한 추정값으로 이용될 수 있다.

4. 전체 제어기 설계

4.1 내부 동력학의 안정성 해석

전설 제어기의 설계에 있어서 내부 동력학의 안정성을 고려할 필요가 있다. 전체 조향 제어시스템의 동력학이 측방 슬립과 요율에 의하여 표현되는 전을 주목할 때 본 논문과 같이 요율 제어 없을 경우에 대해서는 다음과 같은 측방 슬립에 대한 내부 동력학이 존재하게 된다. 여기서 조향각 \(\delta_f \)는 운전자의 관점에서는 입력이지만 차량 안정성 제어기의 관점에서는 조향각이 아닌 ABS 유압 액추에이터의 입력만을 입력으로 간주하기 때문에 조향각 입력은 기저의 외란(known disturbance)으로 취급한다.

\[
\frac{d}{dt} \beta = -\frac{2 C_{\mu}}{m v_x} \dot{\beta} + \left(\frac{C_{\mu}(\dot{\beta} - \Delta \dot{\beta})}{m v_x^2} \right) \] (12)

측방 슬립에 대한 영 동력학(zero dynamics)은 요율이 0인 경우의 내부 동력학이며 (12)에 의하여 영 동력학은 다음과 같이 점근적으로 안정한 선형 시스템으로 나타난다.

\[
\frac{d}{dt} \beta = -\frac{2 C_{\mu}}{m v_x} \dot{\beta} + \frac{C_{\mu}}{m v_x} \delta_f \] (13)

따라서 측방 슬립에 대한 내부 동력학은 최소위상(minimum phase)이므로, 입출력 신호가 입력에 의한 차량 안정성 제어기 설계가 가능하다.

4.2 상위 제어기(Upper level controller) 설계

대상 요율 동력학에는 외란으로 인한 부정합불확실성(mismatched uncertainty)이 존재하므로 본 논문에서는 모델 제어 설계법(modular control design methodology)에 근거하여 설계한 차량 안정성 제어기를 설계하고자 하였다. 차량 안정성 제어의 궁극적인 목적은 차량의 요율 \(\dot{y} \)가 기존 요율 \(\dot{y}_0 \)를 추정하도록 하는 것이므로 우선 (2b)에 기술된 다음과 같은 요율 동력학을 고려한다.

\[
\dot{y} = \dot{x}_1 + \dot{k}_1 y + \dot{k}_2 x_2 + \dot{k}_3 \beta + \dot{k}_4 \delta_f + w \] (14)

ABS 브레이크 입력 \(x_2 \)을 가상의 제어(virtual control)로 가정하고 출력 추종오차(output tracking
의관 관계를 이용한 전설형 차량 안정성 제어

\[x_{2d} = k_4^{-1}(\dot{\omega}_d - \theta_0 \omega_d - k_6 \delta_d - \delta_f - \omega) \] \hspace{1cm} (15)

여기서 \(\omega \)는 관리기에 의해 추정된 외력이며, \(\omega = \dot{w} - \dot{\omega} \)는 정의하면 이상적인 ABS 브레이크 압력 (15)에 의한 페루프 요율 오차 동역학은 다음과 같이 표현된다.

\[\dot{\hat{e}}_1 = -c_0 \dot{e}_1 - \eta_1 \dot{e}_1 + \omega \] \hspace{1cm} (16)

다음의 라이프나프 함수 (Lyapunov function)를 고려하자.

\[V_1(\dot{e}_1) = \frac{1}{2} \dot{e}_1^2 \] \hspace{1cm} (17)

그러면 \(V_1(\dot{e}_1) \)의 시간 미분은 \((18) \)과 같다.

\[\begin{align*}
\dot{V}_1(\dot{e}_1) &= \dot{e}_1 \dot{e}_1 = \dot{e}_1(-c_0 \dot{e}_1 - \eta_1 \dot{e}_1 + \omega) \\
&= -c_0 \dot{e}_1^2 - \eta_1 \left(\dot{e}_1 - \frac{\dot{\omega}}{2\eta} \right)^2 + \frac{\dot{\omega}^2}{4\eta} \\
&\leq -c_0 \dot{e}_1^2 + \frac{\dot{\omega}^2}{4\eta} \hspace{1cm} (18)
\end{align*} \]

그러므로 요율 추증오차는 다음과 같이 한계 (bounded)되며, 이 한계의 크기는 제어의 이득 \(c_1 \), \(\eta_1 \)의 적절한 설정에 의하여 조정이 가능하다. 외란 정보가 없는 경우에는 요율 추증오차가 (20)와 같은 형태를 띤다. 이는 같은 제어 이득에 대하여 (19)보다 한계값이 일반적으로 크기 때문에 추증오차에 대한 동일한 크기의 한계값을 얻으려면 큰 제어 이득을 사용해야 한다.

\[|\dot{e}_1| \leq \frac{\dot{\omega}}{2c_0 \eta_1} \] \hspace{1cm} (19)

\[|\dot{\omega}| \leq \frac{\dot{\omega}}{2c_0 \eta_1} \] \hspace{1cm} (20)

4.3 하위 제어기 (Lower level controller) 설계

앞 절에서는 ABS 브레이크 압력이 이상적인 목표 압력 \(x_{2d} \)와 동일하다는 가정 하에서 상위 제어기를 설계하였으나 실제 상황에서는 ABS 브레이크 압력이 목표 압력 (15)을 완벽하게 추종할 수 없으므로 ABS 유압 액추에이터에 대한 하위 제어기를 설계할 필요가 있다. 다음과 같이 시간 영역에서 표현된 유압 액추에이터 모델 (5)을 고려하자.

\[\ddot{x}_1 + 2\zeta_\omega \omega u + \omega^2 x_1 = ku \] \hspace{1cm} (21)

압력 추증오차 \(\dot{e}_2 = e_2 - x_2 - x_{2d} \)를 정의하면 실제 ABS 브레이크 압력 \(x_2 \)가 목표 압력 \(x_{2d} \) 를 추종할 수 있도록 하는 압력 명령 \(u \)는 다음과 같이 선정할 수 있다.

\[u = \frac{1}{k} \left(x_2 - \dot{x}_1 + 2\zeta_\omega \omega \dot{x}_1 + \omega^2 x_2 - x_{2d} - \lambda_1 \dot{e}_2 - \lambda_2 e_2 \right) \] \hspace{1cm} (22)

압력 명령 (22)에 의한 ABS 유압 액추에이터 (21)의 페루프 요율 오차 동역학은 다음과 같은 알맞게로 표현된다.

\[\ddot{\hat{e}}_2 + \lambda_1 \dot{e}_2 + \lambda_2 e_2 = 0 \] \hspace{1cm} (23)

전술한 바와 같이 상위 제어기의 설계 과정에서는 실제 ABS 브레이크 압력이 목표 압력을 완벽하게 추종한다는 가정 하에서 안정성 해석 (18)을 수행하였기 때문에, 압력 추증오차 \(e_2 \)의 효과는 상위 제어기의 설계에서 무시되었다. 그러나 요율 오차 동역학의 안정성에 대한 \(e_2 \)의 역효과는 다음과 같이 제어 이득 \(\eta_1 \)의 적절한 설정을 통하여 상쇄시킬 수 있다. 하위 제어기의 오차 \(e_2 \)를 고려하면 요율 오차 동역학은 (24)와 같은 형태로 나타나며, 이를 라이프나프 함수 안정성 해석에 적용하면 라이프나프 함수 (17)의 시간 미분은 (25)와 같다.

\[\begin{align*}
\dot{V}_1(\dot{e}_1) &= \dot{e}_1 \dot{e}_1 = \dot{e}_1(-c_0 \dot{e}_1 - \eta_1 \dot{e}_1 + \dot{\omega}e_2 + \dot{\omega}) \\
&= -c_0 \dot{e}_1^2 - \eta_1 \left(\dot{e}_1 - \frac{\dot{\omega}e_2 + \dot{\omega}}{2\eta} \right)^2 + \frac{(\dot{\omega}e_2 + \dot{\omega})^2}{4\eta} \\
&\leq -c_0 \dot{e}_1^2 + \frac{(\dot{\omega}e_2 + \dot{\omega})^2}{4\eta} \hspace{1cm} (25)
\end{align*} \]
그리므로 요용 추종오차는 다음과 같은 방정식을 갖는다.

\[
|e_i| \leq \left[k_i \sigma_x^2 + \sigma_i \right] \frac{t}{2\sqrt{c_1^2 \eta_1}} \quad (26)
\]

하위 제어기는 구현할 때는 \(x_2\)와 \(x_{2,d}\)의 시간 미분값이 필요하다. 이러한 신호들을 취득하는 가장 직접적인 방법은 수치 미분이지만, 일반적으로 수치 미분된 신호는 빠른 동으로 인하여 많은 변동(fluctuation)을 포함하므로 본 논문에서는 관측기를 이용하여 \(x_2\)와 \(x_{2,d}\)의 시간 미분값을 추정하는 방법을 사용하였다. \(x_2\)의 시간 미분 \(\dot{x}_2\)의 변화율이 크지 않다고 가정하면 다음과 같은 관측기의 설계를 통하여 \(x_2\)를 추정할 수 있다.

\[
\frac{d}{dt} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_{2,d} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_{2,d} \end{bmatrix} + L_{x_2} (x_2 - \hat{x}_2) \quad (27)
\]

\(x_{2,d}\)의 경우에는 2차 미분까지 추정해야 하므로 다음과 같은 관측기를 이용한다.

\[
\frac{d}{dt} \begin{bmatrix} \dot{x}_{2,d} \\ \dot{x}_{2,d} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_{2,d} \\ \dot{x}_{2,d} \end{bmatrix} + L_{x_{2,d}} (x_{2,d} - \hat{x}_{2,d}) \quad (28)
\]
중하기 위하여 Fig. 4 와 같은 계산 및 조합된 정형화된 영역의 요용 기준 입력에 대한 폐포의 요용 제어 시스템의 응답을 고찰하였다.

모든 시뮬레이션에서 타이어 림 및 파라미터의 불확실성을 고차 체계시스템에 대한 공정 노동력의 20%까지 고려하였다.

계산 요용 기준 입력에 대한 폐포 제어시스템 및 외란 관측기의 응답을 Fig. 5-6 에 도시하였다. 요용은 약 0.2 초의 시상수(time constant)를 가지고 기준 요용을 추정하는 것을 할 수 있으며, 외란 관측기 또한 급격한 기존 요용 변화시의 초기 과도 상태를 체명하면 근사한 외란 추정능을 보여 준다.

조합된 영역과 요용 기준 입력에 대한 시뮬레이션 결과는 Fig. 7-8 에 도시하였다. 기준 입력은 0.5[Hz] 이내의 주파수 대역에서 임의의 10 개의 진폭과 주기를 갖는 정형파들을 조합하여 설계하였다. 계산 기준 입력과 달리 기준 입력의 형태에 급격한 변화가 없기 때문에 폐포 응답과 외란 관측기에 의하여 추정된 외란 모두에 거의 오차가 발생하지 않을음을 알 수 있다.

미분 관측기 (27) 및 (28)의 성능을 정의하고 요용 기준 입력에 대한 응답을 통해 고찰하였으며, 이 들 Fig. 9-10 에 보였다. 1차 및 2차 미분 모두 수치 미분과 유사한 정확성을 보여주며, 특히 2차 미분과 같은 경우 수치 미분에 의한 신호에 비하여 향상된 제어에 용이한 맥동이 적은 미분 정보를 제공할 수 있음을 확인할 수 있다. 본 논문에서 중요하게 다루지 않은 측정 잡음 등의 요소를 고려할 때, 설계한 관측기의 실제 상황에서도 수치 미분에 대한 효과적인 대안으로 사용될 수 있을 것이라고 기대된다.

5. 시뮬레이션

본 논문에서 제안된 외란 관측기를 이용한 건설차량 안정성 제어기의 성능 및 건설성을 검증하기 위하여 Fig. 4 와 같은 계산 및 조합된 정형화된 영역의 요용 기준 입력에 대한 폐포의 요용 제어 시스템의 응답을 고찰하였다.

모든 시뮬레이션에서 타이어 림 및 파라미터의 불확실성을 고차 체계시스템에 대한 공정 노동력의 20%까지 고려하였다.

계산 요용 기준 입력에 대한 폐포 제어시스템 및 외란 관측기의 응답을 Fig. 5-6 에 도시하였다. 요용은 약 0.2 초의 시상수(time constant)를 가지고 기준 요용을 추정하는 것을 할 수 있으며, 외란 관측기 또한 급격한 기존 요용 변화시의 초기 과도 상태를 체명하면 근사한 외란 추정능을 보여 준다.

조합된 영역과 요용 기준 입력에 대한 시뮬레이션 결과는 Fig. 7-8 에 도시하였다. 기준 입력은 0.5[Hz] 이내의 주파수 대역에서 임의의 10 개의 진폭과 주기를 갖는 정형파들을 조합하여 설계하였다. 계산 기준 입력과 달리 기준 입력의 형태에 급격한 변화가 없기 때문에 폐포 응답과 외란 관측기에 의하여 추정된 외란 모두에 거의 오차가 발생하지 않을음을 알 수 있다.

미분 관측기 (27) 및 (28)의 성능을 정의하고 요용 기준 입력에 대한 응답을 통해 고찰하였으며, 이 들 Fig. 9-10 에 보였다. 1차 및 2차 미분 모두 수치 미분과 유사한 정확성을 보여주며, 특히 2차 미분과 같은 경우 수치 미분에 의한 신호에 비하여 향상된 제어에 용이한 맥동이 적은 미분 정보를 제공할 수 있음을 확인할 수 있다. 본 논문에서 중요하게 다루지 않은 측정 잡음 등의 요소를 고려할 때, 설계한 관측기의 실제 상황에서도 수치 미분에 대한 효과적인 대안으로 사용될 수 있을 것이라고 기대된다.

6. 결론

본 논문에서는 외란 관측기를 이용한 건설차량 안정성 제어기법을 제안하였다. 제안한 차량 안정성 제어기는 조합 체계시스템에 분리하기 위해 내재된 타이어 림 및 부정확한 파라미터들로 인한 구조적 불확실성에 전반적으로 설계하였으며, 본 논문에서는 본 논문에서 제안한 외란 관측기를 이용하여 추정된 불확실성에 대한 정보를 차량 안정성 제어기에 이용하였다. 시뮬레이션 결과 제안한 차량 안정성 제어기법의 우수한 요용 제어능력 및 불확실성에 대한 건설성을 확인할 수 있었다.

참고문헌