Development of Assessment Methodology for Locally Corroded Pipe Using Reference Stress Concept

Hwan Lim, Do-Jun Shim, Yun-Jae Kim and Young-Jin Kim

Key Words: Locally Corroded Pipe(국부감유배관), Reference Stress Approach(참조응력법), Finite Element Analysis(유한요소해석)

Abstract

In this paper, a unified methodology based on the local stress concept to estimate residual strength of locally thinned pipes. An underlying idea of proposed methodology is that the local stress in the minimum section for locally thinned pipe is related to the reference stress, popularly used in creep problems. Then the problem remains how to define the reference stress, that is the reference load. Extensive three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Based on these FE results, the reference load is proposed, which is independent of materials. A natural outcome of this method is the maximum load capacity. By comparing with existing test results, it is shown that the reference stress is related to the fracture stress, which in turn can be posed as the fracture criterion of locally thinned pipes. The proposed method is powerful as it can be easily generalized to more complex problems, such as pipe bends and tee-joints.

1. 서론

가스산업 및 원자력발전소등의 많은 배관산업계에서는 감유배관에 대한 잔여강도 평가가 중요하다. 감유배관에 대한 평가를 수행하기 위해 다양한 평가기준이 제정되었다.(1-6) 하지만 기존의 평가기준은 잔여강도 예측의 측면에서 매우 큰 보수성을 내포하고 있다. 또한 대부분의 기존 평가기준은 배관에 내압이 작용하는 경우만을 고려하고 있다. 하지만, 대부분의 배관, 특히 원자력 배관은 내압과 자중에 의한 굴림모멘트를 동시에 받고 있기 때문에 복합하중을 받는 감유배관에 대한 평가법이 필요하다.(7-9) 내압만을 고려한 기존의 평가기준을 복합하중이 작용하는 경우에 적용하면 경우에 따라 비보수적인 결과를 나타낼 수도 있다.2) 따라서, 실제 문제에 적용이 가능한 복합하중이 작용하는 감유배관에 대한 평가기준이 필요하다.

저자들은 복합하중이 작용하는 원전 감유배관에 대해 수행된 실험결과(3)에 대한 3차원 유한요소해석을 수행하여 감유강도를 계산한 결과, 강도, 강도의 감유형상감유배관의 잔여강도에 미치는 영향에 대한 연구를 수행한 바 있다.3) 참고문헌(10)에서 취급하고 있는 경우에 감유배관의 감유요소로서의 동등한 잔여강도의 중요성과 잔여강도의 중요성을 보여준 내용이다. 참고문헌(3)에서는 복합하중이 작용하는 사례에 대해 동일한 접근방법을 적용한 바 있다.

이와 같이 감유배관에 대한 잔여강도를 평가하기 위해 3차원 유한요소해석은 유용한 방법으로 검증되었지만, 모든 경우에 대해 유한요소해석을 수행하는 것은 어려운 일이다. 따라서, 실제 문제
Table 1 Descriptions of experimental data for pipes with local wall thinning, under internal pressure loading

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Material</th>
<th>Geometry</th>
<th>(P_{\text{inj}}) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case28</td>
<td>418.9</td>
<td>520</td>
<td>762</td>
</tr>
<tr>
<td>Case51</td>
<td>379.6</td>
<td>520.9</td>
<td>508</td>
</tr>
<tr>
<td>Case73</td>
<td>438.9</td>
<td>520</td>
<td>762</td>
</tr>
<tr>
<td>Case78</td>
<td>405.8</td>
<td>520</td>
<td>762</td>
</tr>
<tr>
<td>Case84</td>
<td>505.8</td>
<td>614</td>
<td>914.4</td>
</tr>
<tr>
<td>Case97</td>
<td>443.4</td>
<td>598.1</td>
<td>508</td>
</tr>
<tr>
<td>Case99</td>
<td>437.1</td>
<td>570.5</td>
<td>508</td>
</tr>
<tr>
<td>Case19</td>
<td>429.6</td>
<td>570</td>
<td>508</td>
</tr>
<tr>
<td>Case124</td>
<td>434.8</td>
<td>570</td>
<td>508</td>
</tr>
</tbody>
</table>

* Defect has a rectangular shape. For other data, defect has a semi-elliptical shape.

Fig. 1 Schematic illustration of a pipe with idealized local wall thinning, under internal pressure \(P \) or global moment \(M \)

2. 새로운 방법론 제시

2.1 기존 평가 방법과 단점

Fig. 1은 내압 또는 금형모멘트가 작용하는 감육 배관을 도시한 것으로, \(D_c \)는 배관 내경, \(R_{\text{e}} \)는 배관의 폐쇄반경, \(t \)는 배관두께이다. 감육의 주요 변수로 \(\dot{x} \)는 최대감육길이, \(\dot{L} \)는 감육길이, \(\dot{B} \)는 감육각도(원주방향감육각도)이다. 국부감육배관의 잔여강도를 평가하는 기존의 평가법에서는 일반적으로 한계하중분석(Limit load analysis)을 사용한다. 감육 배관에 금형모멘트가 작용하는 경우에 적용되는 한계모멘트식은 Kanninen\(^{(4,10)}\)와 같이 제시되었다.

식 (2)는 내압이 작용하는 국면배관에 대한 소성한계하세식으로서 적용된다. 한편, FOCRRC 소성통계기준\(^{(8,12)}\)은 다음과 같다.

\[
P_L = \sigma_y - 2\frac{\sigma_y}{\sigma_x} \left[\frac{1 - 0.85(d/t)}{1 - 0.85(d/t)F^{-1/2}} \right]
\]

\[
P_f = \left\{ \begin{array}{ll} 1 + 0.6275 \frac{t^2}{D_c t} + 0.03375 \frac{t^4}{D_c^2 t} & \text{for } \frac{t^2}{D_c} \leq 50 \\ 0.032 \frac{t^2}{D_c t} + 3.3 & \text{for } \frac{t^2}{D_c} > 50 \end{array} \right.
\]

식 (1)은 내압이 작용하는 국면배관에 대한 소성한계하세식으로서 유효론 한계하중이다. 한편, FOCRRC 소성통계기준\(^{(8,12)}\)은 다음과 같다.

\[
P_L = \sigma_y - 2\frac{\sigma_y}{\sigma_x} \left[\frac{1 - d}{t} \left(1 - \exp \left(-0.157 \frac{t}{\sqrt{R(t-d)}} \right) \right) \right]
\]

식 (2)는 소성한계하세식을 통해 유효된 것이다. 식 (1)과 (2)에서 \(\sigma_f \)와 \(\sigma_y \)는 부재강도의 항복응력과 안전강도이다.
Table 3 Descriptions of experimental data for pipes with local wall thinning, under global bending

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Geometry</th>
<th>M_{ext} (kN-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-1</td>
<td>$d=1.7$</td>
<td>π</td>
</tr>
<tr>
<td>TP-2</td>
<td>$d=4.3$</td>
<td>π</td>
</tr>
<tr>
<td>TP-3</td>
<td>$d=6.9$</td>
<td>π</td>
</tr>
<tr>
<td>TP-4</td>
<td>$d=6.9$</td>
<td>$\pi/2$</td>
</tr>
<tr>
<td>TP-5</td>
<td>$d=3$</td>
<td>π</td>
</tr>
<tr>
<td>TP-6</td>
<td>$d=4.3$</td>
<td>$\pi/2$</td>
</tr>
<tr>
<td>TP-7</td>
<td>$d=4.3$</td>
<td>$\pi/3$</td>
</tr>
<tr>
<td>TP-8</td>
<td>$d=6.9$</td>
<td>$\pi/3$</td>
</tr>
<tr>
<td>LWT-09*</td>
<td>$d=4$</td>
<td>25</td>
</tr>
<tr>
<td>LWT-10*</td>
<td>$d=6$</td>
<td>102</td>
</tr>
<tr>
<td>LWT-17**</td>
<td>$d=5$</td>
<td>37.5</td>
</tr>
<tr>
<td>LWT-18**</td>
<td>$d=6$</td>
<td>41</td>
</tr>
<tr>
<td>LWT-19**</td>
<td>$d=7$</td>
<td>44</td>
</tr>
</tbody>
</table>

The defect is located in the tensile stressed region.
* External rectangular shape
** External semi-elliptical shape

TP-X: $\sigma_s=326\text{MPa}$, $\sigma_y=490\text{MPa}$, $D_e=114.3$, $t=8.6$
LWT-X: $\sigma_s=227\text{MPa}$, $\sigma_y=406\text{MPa}$, $D_e=102$, $t=8.1$

Table 4 Descriptions of experimental data for pipes with local wall thinning, under global bending

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Geometry</th>
<th>M_{ext} (kN-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-9</td>
<td>$d=4.5$</td>
<td>π</td>
</tr>
<tr>
<td>TP-11</td>
<td>$d=6.9$</td>
<td>π</td>
</tr>
<tr>
<td>LWT-11*</td>
<td>$d=4$</td>
<td>102</td>
</tr>
<tr>
<td>LWT-12*</td>
<td>$d=6$</td>
<td>102</td>
</tr>
<tr>
<td>LWT-14**</td>
<td>$d=5$</td>
<td>37.5</td>
</tr>
<tr>
<td>LWT-15**</td>
<td>$d=6$</td>
<td>41</td>
</tr>
<tr>
<td>LWT-16**</td>
<td>$d=7$</td>
<td>44</td>
</tr>
</tbody>
</table>

The defect is located in the compressive stressed region.
* External rectangular shape
** External semi-elliptical shape

TP-X: $\sigma_s=326\text{MPa}$, $\sigma_y=490\text{MPa}$, $D_e=114.3$, $t=8.6$
LWT-X: $\sigma_s=227\text{MPa}$, $\sigma_y=406\text{MPa}$, $D_e=102$, $t=8.1$

$$M_f = \frac{1}{2} \frac{(\sigma_y + \sigma_s)}{R_m} \left[2 \sin \left(\frac{1}{2} \pi - \frac{d}{t} \theta \right) \right] \left[\frac{d}{t} \sin \theta \right]$$

Table 1, 2는 참고문헌 (14)과 (15)에서 내용이 적용하는 감속배관에 대해 수행한 과정설계에 대한 내용을 정리한 것이며, Fig. 2는 과정설계로부터 얻은 접촉압력을 식 (1), (2)와 비교한 것이다. RSTRENG 0.85배근은 감속값이 d/t와 관계없이 보수성이 매우 큰 반면 PCORRC기근은 (1) 보다 보수성이 작았으며, 특히 d/t가 큰 경우에 보수성이 더욱 작았다. Table 3, 4는 참고문헌 (4)에서 수행한 실험 결과를 정리한 것이

Fig. 2 Comparison of failure pressure from test data with those from two existing estimation schemes for pipes under internal pressure (Detailed test data is given in Tables 1 and 2)

다. Table 3은 금형모트가 감속부에 인장력으로 작용하는 경우이고, Table 4는 금형모트가 감속부에 압축력으로 작용하는 경우에 대한 결과를 정리한 것이다. Fig. 3은 실험결과 얻은 최적접촉모트를 식 (3)과 비교한 것으로, 식 (3)에 의해 예측된 최적접촉모트가 모두 보수적인 결과를 나타냈다.

2.2 감속부 최심점의 응력에 기초한 접근법

앞서 서술한 단계형법에 기초한 접근법은 행

방법적 접근법(global approach)으로 볼 수 있다. 이와 다른 접근법으로 국부적인 접근법(local approach)이 있다. 예를 들면, 감속부 최심점에서의 등가응력이 재료의 일계응력과 같다고 가정하는 시점에서 배관의 파손이 발생한다고 정의할 수 있음. 참고문헌 (4)에서는 재료의 일계응력의 진단장 도로 정의하여 실험 결과와 유한요소해석 결과를 비교하여, 두 결과가 잘 일치하는 것을 입

증하였다. 하지만 이와 같은 방법에서 가장 중요한 것은 최심점에서의 등가응력을 정확히 예측하는 것으로, 유한요소해석이 아닌 다른 방법을 이용하여 사용하는 단계로 나타낼 수 있어야 한다.

일반적으로 감속부 최심점에서의 등가응력 σ_{local}

은 다음과 같은 함수로 나타낼 수 있다.

$$\sigma_{local} = \text{단계적 함수}$$
Fig. 3 Comparison of failure moment from test data for pipes under global bending: (a) defective region subject to tensile stresses (b) defective region subject to compressive stresses (Detailed test data is given in Tables 3 and 4)

\[
\sigma_{\text{local}} = \frac{\sigma}{\sigma_y} \left(\frac{R_m}{t} \cdot \frac{\theta}{\pi} \cdot \frac{d}{R_m^t} ; \text{material load} \right) \tag{4}
\]

일반적으로 위와 같은 관계는 비선형적인 수 있도록 명확하게 도출하기가 어렵다. 따라서, 본 논문에서는 참조용해법(B5-18)을 이용하여 다음과 같은 식을 가정하였다.

\[
\sigma_{\text{local}} = \frac{\sigma}{\sigma_y} \left(\frac{R_m}{t} \cdot \frac{\theta}{\pi} \cdot \frac{d}{R_m^t} ; \text{material load} \right) \tag{5}
\]

여기서, \(\sigma_{\text{local}}\)은 압축부 극한점에서의 동등응력이고, \(\sigma_y\)와 \(\sigma_y\)는 각각 무차원화 응력과 무차원화 하중으로, \(\sigma_y\)는 재료의 \(\sigma_y\), \(\sigma_y\)는 \(\sigma_y\)로 표현되는 한계하중으로 사용하는 것이다.(B5-18)

\[
\frac{\sigma_{\text{local}}}{\sigma_y} = \frac{\alpha Q}{Q_x(\sigma_y)} \tag{6}
\]

3. 유한요소해석

3.1 형상과 하중

갑부의 모델에서의 동등응력을 계산하기 위한 식 (6)을 완성하기 위해 범용 해석프로그램인 ABAQUS를 이용하여 갑부에 대한 3차원 유한요소해석을 수행하였다. 해석에 사용된 유한요소모델은 대칭성을 고려하여 1/4모델링하였다. Fig. 1에 도시한 바와 같이 갑부의 형상은 축방향과 원주방향 모두 원형으로 이산화하여 모델링하였다. 축방향 감쇠율(\(\epsilon\))는 다음과 같이 무차원화하여 나타내었다.

\[
\rho = \frac{t}{\sqrt{R_m^t}} \tag{7}
\]

갑부와 갑부의 형상과 관련된 무차원화 변수 (\(d_l, \rho, \theta, R_m^t\))를 계정적으로 고려하여 유한요소해석을 수행하였다. 해석에 사용된 유한요소모델은 참조문헌 (10)의 Fig. 3에 나타난 모델을 사용하였다.

하중형태는 내압과 급물로프트가 각각 작용하는 경우를 가정하였다. 내압의 경우에는 내압에 의해 발생하는 동등응력 응력으로 갑부의 압축률에 작용시켰다. 반면, 급물로프트는 갑부에 안정력이나 압축력으로 작용하는 경우를 고려하였다.

3.2 재료물성

본 논문에서는 재료의 영향을 분석하기 위해 두 가지 재료, ASTM A333 Gr. 6과 API X65을 고려하였다. A333 Gr. 6은 원자리방진소 2차계통에서 널리 사용되며, API X65는 기관산업에서 사용된다. Fig. 4는 두 가지 재료의 절단용유전형별 선도를 타낸 것이, A333 Gr.6은 E=204GPa, \(\sigma_y=300\)
3.3 해석

감독부에서 발생하는 대규모변형을 모사하기 위해 ABAQUS 내의 대규모변형물체(NDGEM)을 사용하였다. 해석은 위해 Fig. 4에 도시한 진동력-진면형률 데이터를 백판의 재료물성으로 입력하였다. 작용하중(내압이나 굴절모멘트)의 크기는 감독부에서의 등가응력이 인장강도보다 크면 수 있도록 충분히 크게 가정하였다. 최심점에서의 등가응력, 즉 von Mises 등의 평균값을 하중의 증가에 따라 측정하였다. 모든 해석 경우에 진단부에 의해의 응력구는 크지 않았고, 진단부에서의 최대응력도 평균응력과 유사하였다.

4. 해석결과

4.1 내압이 작용하는 경우

내압이 작용하고 축방향 변형계열이 존재하는 백판에 대한 한계압력식은 다음과 같다.\(^{(20)}\)

$$P_L = \frac{t}{R_m} \left(\frac{1}{1 - \frac{d}{2t}} \right)$$ \hspace{1cm} (8)

여기서,

$$\varphi = \sqrt{1 + \frac{1.61t^2}{R_L}} \hspace{1cm} (9)$$

내압이 작용하는 경우, 소성분은 주로 원주방향 응력(hoop stress)에 의해 발생하며, 식 (8)을 이용하여 감독부 최심점의 원주방향응력 $$\sigma_{\text{hoop}}$$을 다음과 같이 나타낼 수 있다.

$$\sigma_{\text{hoop}} = \frac{P}{t/L}$$ \hspace{1cm} (10)

감독부 최심점의 축방향응력(axial stress) $$\sigma_{\text{local}}$$은 다음과 같이 나타낼 수 있다.

$$\sigma_{\text{local}} = \frac{PR}{2t}$$ \hspace{1cm} (11)

여기서, $$R$$은 백판의 내부 반경이다. 얇은벽관(thin-wall) 가정에서의 주응력요소는 원주방향응력과 축방향응력 뿐이므로, 감독부 최심점에서의 등가응력은 다음과 같이 나타낼 수 있다.

$$\sigma_{\text{local}} = \frac{P}{(P^*_{L}/\sigma_y)}$$ \hspace{1cm} (12)

여기서,

$$P^*_{L} = \frac{t}{\sigma_y} \frac{1}{R_m \sqrt{A^2 - AB + B^2}}$$

$$A = \frac{1}{2R_m} \left(1 - \frac{d}{2t} \right)$$; \hspace{0.5cm} $$B = \frac{R_L}{2R_m}$$; \hspace{0.5cm} $$\varphi = \sqrt{1 + \frac{1.61t^2}{R_L}}$$ \hspace{1cm} (13)

유한요소해석결과와 식 (12)로 계산된 감독부 최심점에서의 등가응력을 비교하여 무차원 변수 $$\alpha$$ 가 변하겠지만, 백판형상, 감독형상과 내압크기에 독립적인 값이며 $$\alpha=1$$이라는 결론을 도출하였다. 따라서, 내압이 작용하는 경우의 등가응력 예측식은 다음과 같이 나타낼 수 있다.

$$\sigma_{\text{local}} = \frac{P}{(P_{\text{ref}}/\sigma_y)}$$ \hspace{1cm} (14)

여기서, $$P_{\text{ref}}=P^*_{L}$$이다.

Fig. 5는 식 (14)에 의해 계산된 $$\sigma_{\text{local}}$$을 유한요소 해석결과와 비교한 것으로서 A333 Gr. 6 백판에 다양한 형상의 감독부가 존재하는 경우를 고려한 것이다. Fig. 5에서 $$\sigma_{\text{local}}$$은 재료의 항복응력으로 무차원하였고, 작용하중 내압 $$P$$는 식 (13)의 $$P_{\text{ref}}$$로 무차원하여 나타내었다. 제시된 예측식 (14)에서 $$\sigma_{\text{local}} \sigma_y$$와 $$P/P_{\text{ref}}$$는 선형적인 관계를 나타내고, 배
Fig. 5 Comparison of σ_{local}, estimated according to Eq. (12), with FE results for pipes with local wall thinning under internal pressure.

Fig. 6 Effect of material on estimated σ_{local}, according to Eq. (12), with FE results for pipes with local wall thinning under internal pressure.
Fig. 7 Comparison of \(\sigma_{\text{local}} \), estimated according to Eq. (17), with FE results for pipes with local wall thinning under global bending (The defect is located in the tensile stressed region).

Fig. 8 Comparison of \(\sigma_{\text{local}} \), estimated according to Eq. (17), with FE results for pipes with local wall thinning under global bending (The defect is located in the compressive stressed region).

Fig. 9 Effect of material on estimated \(\sigma_{\text{local}} \), according to Eq. (17), with FE results for pipes with local wall thinning under global bending: (a) defect subject to tension (b) defect subject to compression.
5. 감속배관의 건전성평가에 적용

앞장에서는 유한요소해석을 통해 결정된 상수 \(\sigma \)를 식 (12)과 (16)에 적용하여 내압이나 금형모멘트가 작용하는 배관의 건전성지표의 동가응력을 예측하는 방법을 제시하였다. 이 평가법은 내압이나 금형모멘트가 작용하는 감속배관의 잔여강도를 예측하는데 사용할 수 있다. 예를 들면, 파손기준을 다음과 같이 정의할 수 있다.

\[
\sigma_{\text{local}} = \sigma_{\text{mat}}
\]

(18)

여기서, \(\sigma_{\text{mat}} \)은 재료의 강도를 나타낸다. 식 (18)에서 \(\sigma_{\text{local}} \)은 배관형상, 감속형상 및 하중크기(내압이나 금형모멘트)에 따라 결정되며, \(\sigma_{\text{mat}} \)은 재료의 저항력(resistance)을 나타낸다. 특히, 고성장 재료의 경우에는 \(\sigma_{\text{mat}} \)을 인장강도 \(\sigma_u \)나 전인장강도 \(\sigma_y \)로 정의할 수 있다.

본 논문에서 제시한 잔여강도 평가법을 검증하기 위해 Table 1~4의 실험 결과를 재해석하였다. 먼저 다음과 같은 기준에 따라 감속배관의 잔여강도를 평가하였다.

\[
\sigma_{\text{local}} = \sigma_u
\]

(19)
RSTRENG 방법에 비해 보수성이 크게 줄어 들었다. 굽힘모멘트가 작용하는 경우에 대해서도 제시된 방법의 기존의 개념과 접근한 범위에 비해 보수성이 줄어들었다.

다른 기준으로는 감수도 최성점에서는 몰동력이 진강장도와 같아지는 경우를 파손기준으로 정의할 수 있다.

\[\sigma_{\text{local}} = \sigma_{\text{oj}} \]

(20)

Fig. 10(b)는 내압이 증대하는 경우의 예측결과를 나타낸 것이고, Fig. 11은 굽힘모멘트가 작용하는 경우의 결과를 나타낸 것이다. Table 1의 실험결과에서는 진강장도를 제공하지 않았기 때문에 진강장도를 제공하고 있는 Table 2의 결과와만 비교하였다. 내압이 작용하는 경우, 제시된 방법은 실험결과보다 파손압력을 크게 예측하여 항상 보수적인 결과를 나타내었다. 반면 굽힘모멘트가 작용하는 경우에는 제시된 방법이 기존의 평가법에 비해 낮은 보수성을 나타내었으며, 시험결과와 잘 일치하였다. 이러한 결과는 하중에 따른 응력 상태를 설명할 수 있다. 굽힘모멘트가 작용하는 경우에는 축방향응력만이 작용하므로 감수도의 응력상태가 단측응력상태(uniaxial stress state)가 된다. 반면, 내압이 작용하는 경우에는 축방향응력과 주 방향응력이 동시에 작용하는 이측응력상태(biaxial stress state)가 되기 때문에 단측응력상태보다 더 낮은 압력에서 파손이 발생하게 된다.

본 논문에서 제시한 방법은 기존의 평가법에 비해 몇 가지 장점이 있다. 첫째, 제시된 방법은 간단한 참조응력계에 기초한 뒤에 복합화 중이 작용하는 경우 또는 다른 재료물성, 다른 형상에도 쉽게 확대하여 적용할 수 있다. 두번째 장점은 베관이 중지인성 강일 경우, 실험을 시험을 수행하지 않고 간단한 노출시험을 통해 \(\sigma_{\text{oj}}\)을 적절히 선택하면 베관의 잔여강도를 평가할 수 있다는 것이다. 또한 제시된 평가법은 목관이나 분지관에 대해서도 적용이 가능하다. 제시된 방법의 더욱 중요한 장점은 평가의 정확성이다. 본 논문에서 제시된 평가법은 간단함에도 불구하고, 그 결과가 감수도 실험관 실험결과와 매우 잘 일치함을 보여주었다.

6. 결론

본 논문에서는 감수도의 잔여강도를 평가할 수 있는 새로운 공학적 평가법을 제시하였다. 제시된 평가법은 감수도 최성점의 몰동력을 이용한 평가법으로 참조응력계를 적용하여 간단한 형식으로 표현된다. 제시된 평가법은 베관형상, 감수도상 및 베관재질에 무관하게 적용이 가능하며 평가법으로부터 압력의 파손하중은 실험값 결과와 잘 일치하였다. 마지막으로, 제시된 평가법은 개별적으로 간단하기 때문에 복잡한 작업을 파악하는 경우와 같은 복잡한 문제에 대해서도 적용이 용이한 것으로 판단된다.

후기

본 논문은 한국과학자재단 산학적 연구소 및 한국과학기술연구원의 지원으로 이루어진 것으로, 이에 감사의 말씀을 드립니다.

참고문헌

