Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator

Jin Wan Kim, Dong Ji Xuan and Young Bae Kim

Key Words: MIMO(다중입출력), QFT(정량적 피드백 이론), Hydraulic Road Simulator(유압 도로 시뮬레이터), Robust Control(강안 제어), Uncertain Plant(불확실한 플랜트)

Abstract

This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration’s data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^2$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder’s fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function $G(s)$ and pre-filter $F(s)$ having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments.

1. 서 론

자동차의 도로 주행 중에 발생하는 피로는 차체, 현가 장치 및 각 부품들의 강성, 진동과 승차감에 직접적인 관련이 있다. 차량의 동특성과 내구성에 대한 신속한 연구를 위해 극단 도로조건을 실험실에서 다축 유압 도로 시뮬레이터로 재현하는 시험이 보편화 되고 있다. 이것은 시간과 비용을 절감하고 다양한 조건의 제어입력과 반복 재현 실험이 우수한 효과를 얻을 수 있기 때문이다. 많은 장점은 갖고 있는 유압 도로 시뮬레이터 실험에서 중요한 것은 실제 도로 데이터를 얼마나 정확히 재현시키는가에 있다. 하드웨어적으로는, 각 축의 움직임이 다른 축에 거의 영향을 주지 않아야 하며 (decoupled motion) 극한 진동과 부분 하중에 관할 수 있는 구조를 가져야 한다. 소프트웨어적으로는, 도로 데이터를 정확하게 재현하는 장치 제어 알고리즘 설계가 필요하다.

1980년대부터 많이 사용되는 강안 제어 연구는 LQG/LTR 기법, $H_\infty$ 기법, $\mu$ 기법 및 정량적 피드백 이론(Quantitative Feedback Theory)이다.
1972년, Horowitz는 플랜트 불확실성과 외부의
의란들을 강화하게 되는 QFT를 개
정하였다고.1,2) 1976년, Shaked는 불확실성 다수원 플
랜트를 대각화 형태로 변형하는 이론을 정립하였
다.3,4) 1982년, Horowitz는 다중입출력(MIMO) 제어
시스템을 고정점 이론(schauder fixed point theory)
을 이용하여 다중입력다중 출력(MISO) 선형 시 문제
시스템의 분리 설계를 QFT로 보완하였다.5,6) 1986
년, Yaniv는 화성 간단하고 반복 설계를 줄일 수
있는 방법을 제시하였다.6,7) 1988년, D’Azzo, Houpis
와 1990년, Chait, Y.는 QFT 해석과 설계조건에 근
접하는 제어 설계를 정립하였다.8,9) 1993년, Borghesani
는 MatLab Toolbox 제작 목적적으로 종래의
QFT를 컴퓨터 프로그램으로 만들었다.10,11) 1998년,
박 병수는 루프 전달함수의 역 변환 없이 적절히
다수원 정량적 피드백 이론의 안정성 및 성능의
경계조건들을 계산하는 방법을 제안하였다.12,13) 정량적
피드백 이론에서 가장 중요한게 강조되는
것은 플랜트에 존재하는 불확실성과 외란에 대해
안정성을 보장할 수 있는 피드백 제어계의 주파수
영역에서 실제적인 설계 기법이다. 결국, QFT 기
법은 초기에 MISO 제어 시스템으로 개발한 후로
MIMO 제어 시스템으로까지 가능하게 되었다.

유압 도로 시뮬레이터가 불확실한 플랜트를 가
지게 되는 주요 요소는 차량의 방향제와, 유압 시로 밸브의 변위 변화와 부하 질량의 변화
에 있다. 따라서, PID 제어기와 주파수 응답 함수
(FRF) 가진 신호 제어 방법(14)은 실제 상황에 유리
사용되지만, 비선형 특성이 많은 복잡한 시스템
파라미터 변화에도 강화된 도로 데이터를 계산할
수 있는 정량적 피드백 제어계 설계가 필요하다.
이 제어계의 특징은 높은 제어급과 외란을 가지
는 플랜트 전달함수에서 낮은 대역폭을 가지는 저
차수의 강한 제어계를 설계하고, 그리고 외란을
함께 고려한 니로스 전도와 연계하여 그래프적
고 수치적인 방법을 사용하는 것이다. 이 과정에
서 강한 외란이나 외란 조건을 만족하는 고효
플랜트와 제어계의 전달함수가 결정된다.

본 논문에서는 다수원고정 3 축 유압
도로 시뮬레이터의 종, 횡 그리고 수직방향으로 3
계의 입력과 3 계의 출력을 갖는 3 자유도 3*3 재
루프 다중입출력(MIMO) 피드백 제어 시스템이다.
이 시스템 구조는 Fig. 1, 과 같이 복잡한시스템
으로 표현하였다. m×m MIMO 정량적 피드백 제어
시스템 설계는 m2 MISO 동향한 시스템으로 분리
설계가 가능하다. 이러한 결과는 수학적인 분산

\[
F = \begin{bmatrix}
 f_{11} & f_{12} & f_{13} \\
 f_{21} & f_{22} & f_{23} \\
 f_{31} & f_{32} & f_{33}
\end{bmatrix},
G = \begin{bmatrix}
 g_{11} & g_{12} & g_{13} \\
 g_{21} & g_{22} & g_{23} \\
 g_{31} & g_{32} & g_{33}
\end{bmatrix},
P = \begin{bmatrix}
 p_{11} & p_{12} & p_{13} \\
 p_{21} & p_{22} & p_{23} \\
 p_{31} & p_{32} & p_{33}
\end{bmatrix}
\]

\[m \text{ 개의 입력 } r_i(s) \text{에 } 3 \text{ 개의 출력 } y_j(s) \text{의 관계로,}
\]

m² 개의 케프루드 시스템 전달 함수 \( t_{ij}(s) \)의 요소로
된 \( T \) 행렬은 제어 감도(control ratio) 행렬이다. 시
스템이 매우 작은 커플링(coupling)과 독립적으
로 제어가 가능하고 m 개의 입력에 m 개의 출력이
된다면, 제어 행렬 \( G \) 는 대각행렬이 가능하다.
식 (1)에서와 같이 플랜트 \( P \) 의 역행렬이 존재하
며, 플랜트 \( P \) 의 역 행렬을 \( Q \) 행렬로 표현한다.

\[
T = \begin{bmatrix}
 t_{11} & t_{12} & t_{13} \\
 t_{21} & t_{22} & t_{23} \\
 t_{31} & t_{32} & t_{33}
\end{bmatrix},
G = \begin{bmatrix}
 g_{11} & 0 & 0 \\
 0 & g_{22} & 0 \\
 0 & 0 & g_{33}
\end{bmatrix},
Q = \begin{bmatrix}
 q_{11} & q_{12} & q_{13} \\
 q_{21} & q_{22} & q_{23} \\
 q_{31} & q_{32} & q_{33}
\end{bmatrix}
\]

\[\text{Fig. 1에서 출력방정식 } y(t) \text{는 다음과 같다.}
\]

\[y = [I + PG]^T PG F r
\]

제어 감도(Control Ratio) \( T \) 는,

\[T = y/r = [I + PG]^T PG F
\]

(1)
Fig. 2는 Fig. 1의 신호 호름을 상세하게 표현한 것이다.

2.2 \( m \times m \) MIMO 제어 시스템을 동등한 \( m^2 \) 개의 MISO 제어 시스템으로 분리한 효과

식 (1)을 전개하면,
\[
T = \text{adj}(I + PG)PGF / \text{det}(I + PG) \tag{2}
\]

식 (2)에서 시스템 제어 전달함수 \( t_{ij} \)를 설계하는 문제는 매우 복잡하고 어려움. 그러므로, 단위 임펄스 함수에 기초하는 Schauder 고정점 이론 (Fixed point theory)을 이용하여, 식 (4) - 식 (7)와 같이, MIMO 제어 시스템을 동등한 MISO 제어 시스템으로 유동하게 수학적으로 분리하여 정량적 피드백 제어 시스템을 설계할 수 있다. 이것은 제어 설계에 있어서 유용한 설계가 가능하다.

MISO 제어 시스템 집합으로 MIMO 제어 시스템 해석과 설계가 허용되는 방법은 사상(mapping)을 찾아, 각 측간의 크로스 커스터링 효과에 관한 출력들이 최소화하여 기준 입력을 추정하는 각각의 피드백 시스템을 만드는 것이 목적이다.

식 (1)의 \([I + PG]\)를 양변에 곱하여 정리하면,
\[
[I + PG]T = PGF, \quad [P^{-1} + G]T = GF \tag{3}
\]

이가시, \(P\)는 nonsingular, \(P^{-1} = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}, \quad P^T = \begin{bmatrix} 1/p_{11} & 1/p_{21} & 1/p_{31} \\ 1/p_{12} & 1/p_{22} & 1/p_{32} \\ 1/p_{13} & 1/p_{23} & 1/p_{33} \end{bmatrix} = \text{det}(P)A_{adj}(P) \tag{4}
\]

\(P^{-1}\) 행렬은 식 (5)와 같이 분리할 수 있다.
\[
P^{-1} = \begin{bmatrix} 1/q_{11} & 1/q_{12} & 1/q_{13} \\ 1/q_{21} & 1/q_{22} & 1/q_{23} \\ 1/q_{31} & 1/q_{32} & 1/q_{33} \end{bmatrix} = \Lambda + \beta \tag{5}
\]

\[
\begin{align*}
\Lambda : \text{diagonal part, } B : \text{balance part of } P^{-1} \text{ for } (i \neq j)
\end{align*}
\]

식 (5)를 식 (3)에 대입하면 식 (6)과 같이 된다.
\[
\begin{align*}
\Lambda + B + GF & = \Lambda + GF - B - T, \\
\end{align*}
\]

MIMO 피드백 제어 시스템 설계에 만족되는 개별 적인 MISO 제어 시스템은 식 (7)과 같다.
\[
\begin{align*}
\Lambda + [G + B]T & = \Lambda + GTF-BT, \\
\end{align*}
\]

Fig. 3에서, 각 9개의 레포트 구조들은 식 (6), (7)의 \(Y(T)\)의 요소들을 각 각의 요소에 대응된다. 이것은 \(m^2(3^2)\) MISO 레포트 시스템의 변환 결과를 보여준다. 식 (7)을 식 (8)과 같은 형태로 다시 쓸 수 있다.
\[
Y_{ij} = w_{ij}(v_{ij} + c_{ij}) = T_{ij} \tag{8}
\]

where, \(w_{ij} = \frac{q_{ij}}{1 + g_{ij}}, \quad v_{ij} = g_{ij}f_{ij}, \quad c_{ij} = -\sum_{k = 1,2,\ldots,m} \frac{q_{ik}}{q_{ij}}, \quad k = 1,2,\ldots,m \)

식 (8)에 의해 \(j^m\) 입력에 \(i^m\) 출력이 관계되는 제어 감도를 계산하면 식 (9)와 같이 된다, 일부만 나타낸 것이다.
\[
\begin{align*}
\eta_{ii} & = \frac{q_{ii}}{1 + g_{ii}} \left[ g_{ii}f_{ii} - \frac{g_{i1}f_{1i}}{q_{1i}/q_{ii}} \right] \\
\eta_{ij} & = \frac{g_{ij}f_{ij}}{1 + g_{ij}} \left[ g_{ij}f_{ij} - \frac{g_{i1}f_{1i}}{q_{1i}/q_{ij}} \right], \quad (i,j,k = 1,2,3) \tag{9}
\end{align*}
\]

Fig. 17을 보면, 커스터링 관계(cross coupling effect)는 거의 0에 가까운 미소한 관계이기 때문에 우리는 Fig. 3의 9개의 레포트 중에서 대각화만 취할 수 있다. Fig. 4는 Fig. 3에서 대각화된 향상 것이다. 또한 \(c_{ij}\)를 0으로 근사화하였고 이것을 완료로 간주한다.
3. 유압 서보 시스템의 수학적 모델링(16)

유압 서보 시스템은 전류를 입력 받아 서보 밸브를 개폐하여 유압액을 가해진 작동유의 상기 압력으로 유압 작동기를 구동하여 시편에 의한 변위를 발생시킨다. 시험은 중, 소형차 1/4에 해당한다. 유압 서보 시스템의 수학적 모델링은 다음과 같다.

$$ P(s) = \frac{Y(s)}{I(s)} = \frac{C_{K_r} \cdot \frac{C_{K_b} \cdot (s^2 + b \cdot s + c \cdot s + d)}{s^3 + b \cdot s^2 + c \cdot s + d}}{s^3 + b \cdot s^2 + c \cdot s + d} $$

Where,

$$ a = \frac{V_M}{K_p \cdot n_i \cdot A} \quad b = \frac{V_B}{K_p \cdot n_i \cdot A} \quad c = \frac{K}{n_r \cdot A} \quad d = \frac{K}{n_r \cdot A} (L + C_r) $$
Table 2 Varying range of parameter set of plant

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range</th>
<th>Parameters</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{12}$</td>
<td>1.175e-8 ~ 4.7e-8</td>
<td>$b_{11}$</td>
<td>5.233e-4 ~ 2.114e-3</td>
</tr>
<tr>
<td>$c_{11}$</td>
<td>4.257e-3 ~ 5.856e-3</td>
<td>$d_{11}$</td>
<td>0.05233 ~ 0.1057</td>
</tr>
<tr>
<td>$a_{22}$</td>
<td>2.626e-8 ~ 1.05e-7</td>
<td>$b_{22}$</td>
<td>2.533e-4 ~ 1.038e-3</td>
</tr>
<tr>
<td>$c_{22}$</td>
<td>6.811e-3 ~ 7.606e-3</td>
<td>$d_{22}$</td>
<td>0.02533 ~ 0.0518</td>
</tr>
<tr>
<td>$a_{33}$</td>
<td>5.573e-8 ~ 1.393e-8</td>
<td>$b_{33}$</td>
<td>8.073e-4 ~ 1.999e-4</td>
</tr>
<tr>
<td>$c_{33}$</td>
<td>9.391e-3 ~ 8.781e-3</td>
<td>$d_{33}$</td>
<td>0.02018 ~ 0.0199</td>
</tr>
<tr>
<td>$e_{11}$</td>
<td>0.3281</td>
<td>$e_{22}$</td>
<td>0.1989</td>
</tr>
<tr>
<td>$e_{33}$</td>
<td>0.1681</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$a, b, c, d$ 의 파라미터들은 유압의 압축성, 두수, 전기유압보, 메커니즘, 오리피스의 비선형 요소를 포함한 불확실한 설린더 특성을 나타낸다. 이러한 파라미터들은 특정한 상수값으로 표현할 수 없기 때문에 변화하는 파라미터의 하한치와 상한치를 결정해야만 한다.

4. 제어기 설계

Horowitz(1963)에 의해 처음 제안된 QFT는 플랜트 $P(s)$에 존재하는 불확실성과 외란에 대해서 요구된 제어의 제어 성능을 보장하기 위한 주파수 영역에서의 강한 제어기 설계 이론이다. 요구되는 특성상 얕은 제어의 설계 사양으로 주어지는 장인 안정, 최적 사양과 외란 제어 사양에 의해 조합된 경계 조건들과 푸시트의 파라미터에 포함된 불확실성 경계에 의해서 조정된다. 이 세 가지 특성들은 전폭과 위상을 포함한 복소 평면에서 독립한 경계들로 가진다. 플랜트의 파라미터 변화에 따라 형성된 템플릿이 구성되어있는 불확실한 푸시트는 니콜스선도(Nichols chart)에서 루프 형성(Loop shaping)을 통하여 루프 전달함수의 주파수 응답의 크기가 설정된 허용 범위 내에 만족하는 설계가 제어가 되어야 한다. QFT는 이러한 제어기 설계 목적인 주어진 제어성능을 만족하는 제어기 $G(s)$와 입력 필터 $F(s)$를 설계하는 것이며, 설계 과정은 다음과 같다.

4.1 설계 사양

상층시간, 피드백값 그리고 정확시간과 같은 특정적인 설계 사양들은 시각영역에서 주파수 영역으로 변환된다. 장인 안정 조건과 최적 경계 조건으로 주어지는 장인 안정성, 최적 사양과 외란 제어 사양을 포함한다.

4.2 플랜트 템플레이트(Plant template)

3 측 유압 도로 시뮬레이터는 Fig. 15에 나타난 것처럼 하나의 부하 정량(설계 사양 1/4 크기의
3 축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계

현가장치 부분에 3 개의 유압 서보 작동기의 직교하게 커플링이 되어 구조이다. 서보 밸브의 스플
변위와 부하 질량의 변화에 따라 \( a, b, c, d \) 과다량려가 변동하는 불확실한 플랜트 체계이며, 이는 식 (13)과
같다.

\[
D = \begin{pmatrix}
\frac{c_y}{a_y s^3 + b_y s^2 + c_y s + d_y} \\
\end{pmatrix} (j = 1, 2, 3) \tag{13}
\]

Fig. 4, Fig. 17의 결과와 같이 각 3 축간의 커플링 효과가 미비함으로 대각성분만 고려한
\( a, b, c, d \)의 불확실한 과다량려 변동 범위는 Table 2와 같다.

유압 도로 시뮬레이터의 최대 작동 주파수는 약
300 rad/sec 이므로 이상 주파수는 다음과 같이
선정한다.

\[ \omega = [0.1, 1, 3, 5, 10, 20, 50, 100, 200, 300] \text{ (rad/sec)} \]

선정된 각각의 주파수에서 불확실한 플랜트의 주파수 응답인 플랜트 테크싶들은 Fig. 7과 같이
나있는 성도위에 나타내었다. 수평축은 위상각, 수직축은 크기(dB)이다. 250 rad/sec 에서 테크쉽는
미소한 위상 변화를 보임으로써 선정한 주파수 대역은 적절함을 알 수 있다.

4.3 경계 조건(Boundary condition)

i) 강한 안정성(Robust Stability Bounds)

\[
\begin{align*}
\left| \frac{PG}{1 + PG}(j\omega) \right| & \leq M_p, \quad \omega \geq 0, \quad P \in P \\
\end{align*}
\]

\( P \): Uncertain plant, \( G \): feedback controller, \( M_p \): Peak response

\( M_p \)는 1.3 으로 설정하였고 크기는 2.3dB 이다.

ii) 추적 사양(Tracking Specification Bounds)

\[
T_j(j\omega) \leq \begin{cases} 
\frac{FPG}{1 + PG}(j\omega) & \leq T_j(j\omega) \tag{15} \\
\end{cases}
\]

\( T_j \): upper bound, \( T_l \): lower bound, \( F \): pre-filter

상한 경계 조건은 \( M_p = 1.3 \) (Overshoot = 30%),
\( t_c = 0.9 \text{sec}, t_r = 0.12 \text{sec}, t_{sc} = 1.5 \text{sec}, t_{sc} = 0.8 \text{sec} \) 으로 하여, Fig. 8 에 나타낸 것과 같이,
시간 영역으로 설계하였다. 각 경계선의 대응되는
부분은 식 (16), (17)처럼 주파수 영역으로 변환할
수 있다.

\[
T_j(j\omega) = \frac{0.7030(j\omega + 198)}{(j\omega)^2 + 8.42(j\omega) + 139.2} \tag{16}
\]

\[
T_j(j\omega) = \frac{20910}{(j\omega + 4.21)(j\omega + 4.21)(j\omega + 11.8)(j\omega + 100)} \tag{17}
\]

iii) 외란 제거 사양(Disturbance Rejection Bounds)

\[
T_d = \frac{Y}{D} \leq P \left( \frac{1}{1 + PG}(j\omega) \right) \leq w_d \tag{18}
\]

\( w_d \): weight of disturbance rejection, 0.01

플랜트 테크쉽에서 의해서 발생하는 경계조건을
계산할 필요가 있다. 이 경계 조건들의 제한을
결정할 공정 무드 전달함수의 주파수 응답인 무드
형성의 한 경계 조건이 나כניס 선도에 의해서 주어진다.

4.4 무드형성(Loop shaping)

요구되는 경계 조건들을 나脑子 선도에 나타내고,
불확실한 테크쉽은 연급한 경계들을 위해 조건
에 맞는 무드전달함수를 결정할 수 있다. 이러한
것들을 무드형성이라 한다. 경계의 설정을 위해
강한 안정성의 여지를 나타내는 \( U \)-면적에 근거하
고, 합성된 최종 경계 조건들을 만족하는 공정무드
전달함수 \( L_d(s) \)가 결정된다. 무드 형성 기법은
시행 측에 의해서 제어기와 입력 필터 설계를
한다. 설계 방법으로는 먼저 제한을 조절하고, 영
점 그리고 극점을 정가하는 순서로 한다. 이 때,
공정 무드전달함수가 안정도 환경을 취범하지 않
도록 한다. 극점은 고주파에서 roll-off 특성을 주
어 안정성을 향상시킨다.
4.5 제어기 설계

Fig. 9 ~ Fig. 11 는 4.4 절의 루프형성법에 따라서 모든 경계조건들을 만족하는 최종 루프형성 결과를 나타내었다. 루프형성은 U-계의 인터셉트이며, 모든 주파수 범위에서 경계 조건들을 만족하여야 한다. 이때, 제어기 분모 (극점)의 차수는 플랜트 분모의 차수 보다 작아야 하며 제어기 분자차수의 차수는 분모보다 작아야 한다.

\[ G(s) = \frac{40(s/100 + (2 \times 0.58)s/10 + 1)}{s(s/400 + 1)} \]  
(19)

\[ G(s) = \frac{40(s/4.4 + 1)(s/22 + 1)}{s(s/300 + 1)} \]  
(20)

\[ G(s) = \frac{35(s/2.35 + 1)(s/40 + 1)}{s(s/850 + 1)} \]  
(21)
3 축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계

Fig. 15 Adams model of the hydraulic road simulator

Fig. 16 Block diagram of the hydraulic road simulator

루프 형성의 결과로 얻어진 공정 투입 전달함수는 Fig. 9-11 로부터 각각의 \( L(s) = G(s)P(s) \) 이다. \( P(s) \)는 공정 플랜트(Nominal plant)이다. 공정 플랜트 \( P(s) \)는 Table 2에서 변화하는 파라미터 중에서 어느 것이든 선택이 가능하다. 로드 시뮬레이터의 최종 형제여기 \( G(s) \)설계는 2차 전달함수로 식 (19-21)과 같이 저 차수 전달함수를 설계하였다. 이것은 설계자의 노력(trial and error)이 필요로 하는 힘든 과정이다.

4.6 입력 필터(Pre-filter) 설계

주적 시동 조건이 크게 요구될 때에는 조건에 맞는 주파수 대역을 통해 시기하는 입력 필터를 설계한다. Fig. 12-14와 같이 입력 필터는 설립자의 작동하는 범위를 고려하여 루프 형성법에 따라서 설계하였다. 제어기 설계하는 방법과 비슷하다. 입력 필터 \( F(s) \) 설계는 식 (22-24)과 같이 설계하였다.

\[
F(s) = \frac{1}{(s/10 + 1)(s/20 + 1)(s/30 + 1)} \quad (22)
\]

\[
F(s) = \frac{s + 1}{s^2/49 + 1.414s/7 + 1} \quad (23)
\]

\[
F(s) = \frac{1}{(s/5 + 1)(s/13 + 1)(s/120 + 1)} \quad (24)
\]

\( H_2/H_x \) 기법, \( \mu \) 기법과 같은 다른 강한 제어기는 일반적으로 고차 전달 함수의 제어기로 설계되기 때문에 정량적 피드백 제어 시스템의 설계 특성은
5. 시뮬레이션 결과

본 논문에서 나타낸 3 축 유압 도로 시뮬레이터는 Fig. 15와 같이 부하장치는 1/4 설자 크기에 해당하고, 그의 구성을 Fig. 16과 같다. 이 시뮬레이터는 실제 차량과 동일하게 작, 웅직 방향은 힘을 제어하고 수직축 방향은 변위 제어를 한다. 웅직 방향 작동기는 30kN, 수직 방향 작동기는 50kN과 수직축 방향 작동기는 100kN 가지의 부하 힘을 낼 수 있다. 세로 벤브는 126Lpm(63Lpm*2)과 800Lpm (Vertical Axis)까지 작동이 된다. 최대 공급 압력과 유량은 210MPa, 327Lpm이다.

5.1 3축 유압 도로 시뮬레이터 커플링 결과

3 축 유압 도로 시뮬레이터의 각 축 방향간의 연성 작용(Coupling effect) 관계를 알아보기 위해 Matlab simulink와 아담스 모델과 연동하여 시뮬레이션을 했다. 수직 축 음직임에 중, 웅직 방향 축들 이 가장 많은 영향이 있으므로, 수직 축에 스텝 입력을 가하고 나머지 축의 입력은 ‘0’으로 했다. Fig. 17의 그래프들과 같이, 연성 작용의 결과는 거의 간섭이 없는 것으로 판단되어진다. 웅직의 허용치(ε)가 다소 크지만 가해지는 허의 입력보다는 매우 작으므로 무시할 수 있다. 그러므로 MIMO 구조의 시스템을 MISO 구조의 시스템으로 분리가 가능하다. 이때, 축간의 연성작용을 왜곡 입력으로 한다.

5.2 3축 유압 도로 시뮬레이터의 시뮬레이션 결과

Fig. 9와 같이 MISO 페루프 구조에서 설계한 정량적 페드백 제어 시스템을 중, 웅직 방향에 각각 3 개의 제어기와 입력 필터를 사용하고 아담스 모델(유압 성분과 포함된 복합 플랜트)이 복합된 플랜트와 연동하는 Matlab simulink를 구성하여 5초간 시뮬레이션을 하였다.

도로 레이터는 레이터 입력을 사용하였다. 중, 웅직 방향은 힘 제어를 하며, 수직 축 방향은 변위 제어를 하였다. 시뮬레이션 결과는 Fig. 18에 나타내었다. 결과적으로, 아담스 모델과 연동학에서 설계된 제어기가 각 축간의 미소한 커플링 작용과 실제 시간적으로 플랜트가 변화함에도 불구하고 감안하다고 결정할 수 있었다.

6. 결론

유체의 압축성, 유체의 누출, 전자적인 시보 벤브의 구성 요소 그리고 다축의 기계적인 연결의 비선형성과 같은 불확실한 파라미터들을 가진 3축 유압 도로 시뮬레이터의 페루프 정량적 페드백 제어
시스템을 설계하였다. 설계된 제어기는 실시간 제어 방법에서 효율적인 저 차수 전달함수이다.

본 제어 시스템 설계에 있어서, \( m^*m(3\times3) \) MIMO 제어 시스템을 동등한 \( m^3 \) 개의 MISO 제어 시스템으로 분리하여 정량적 피드백 제어 시스템 설계가 가능함을 보여주었다. 또한, MISO 제어 시스템으로 분리 되어 설계된 제어 시스템은 본래의 MIMO 시스템 성능을 만족하였다.

그리므로, MIMO 시스템 구조를 MISO 시스템 구조로 분리하는 방법과 설계한 제어 시스템은 안정성, 추종성, 의란에 대해 만족함을 가져다보고 판단된다.

참고문헌


