Robust Controller Design for Hydraulic Dipod Platform Based on 2-DOF H_∞ Controller Synthesis Framework

Young-Hoon Lee* and Taik-Dong Cho**

* Agency for Defense Development, ** Dept. of Mechanical Engineering, Chungnam Nat’l Univ.

(Received October 25, 2012 ; Revised March 13, 2013 ; Accepted March 20, 2013)

Abstract: A hydraulic dipod platform is used for tracking and stabilizing an antenna system to designate a satellite on a moving vehicle. The 2-DOF controller is very well suited to this controller design object because it is more flexible than the 1-DOF controller when the design object is not only the consideration between stabilizing and tracking but also the trade-off between performance and robustness. The 2-DOF controller synthesis based on the H_∞ framework is divided into two design procedures. In this hydraulic dipod platform example, the single-step method shows better performance whereas the two-step method shows better robustness. The difference between these two synthesis results is compared using the structural property of the interconnection system matrix.

Key Words: 2-DOF(TDF) Robust Control(2 자유도 강인제어), Dipod Platform(2축 플랫폼), H_∞-LSDP(H_∞ 루프성형), Feedback Controller(되먹임제어기), Feedforward Compensator(선보상기)
1. 서론

플랫폼의 2축 방향 운동특성을 갖는 유압식 Dipod 플랫폼은 선박이나 차량에 설치되어 특정 고각 방향에 대한 지향추적 및 안정화 목적에 사용된다. 이러한 플랫폼의 제어기 설계에는 PID를 비롯하여 LQG/LTR 뿐 아니라 H_{∞} 프레임웍에 기반한 강인설계 기법이 적용되어 왔다.\(^1\)

프레임웍에서 모델링 오차나 불확실성을 고려하여 안정성과 성능목표를 동시에 향상하기 위한 강인설계 방법에는 안정성을 보장하는 제어기 설계를 통해 안정성을 보장하는 선 보상기를 따로 분리 구성하는 2차유도 제어기법이 있으며 이러한 2차 유도 제어기법에는 H_{∞}-높에 기반한 성능과 H_{∞}-높에 기반한 안정성들을 결합한 H_{∞}/H_{∞} 혼합프레임웍 방법\(^2\)과 성능과 안정성 모두를 만일 H_{∞}-높에 기반한 H_{∞} 단일프레임웍 방법\(^3\)이 있다.

H_{∞} 단일프레임웍에 기반한 2차유도 강인제어 기법은 다시 되먹임 제어기와 선 보상기를 한 번에 일괄종합하는 방법과 먼저 안정성 보장을 위한 제어기 설계를 실패한 후 성능 보장을 위한 선 보상기를 따로 설계하는 2단계 분리종합 방법이 제시\(^4\)되었으며 이 연구에 따르면 H_{∞} 단일 프레임웍에 기반한 2단계 분리종합에서는 일관종합 방법에 비해 제어기 초기 채수 증가에 따른 안정성 향상 효과가 약간 작으나 제어기 설계방법에 따른 성능이나 안정성에 차이가 발생한 원인에 대해서는 이후 연구에서 구체적으로 다루어지지 않고 있다.

본 연구에서는 유압식 Dipod 플랫폼에 대해 지향추적 성능과 페루프의 안정성 및 외장 십동 제거 성능뿐 아니라 모델링 오차와 플랫폼 불확실성을 고려한 강인제어기 설계를 위해 단일 H_{∞} 프레임웍에 기반한 2차유도 H_{∞} 강인제어기 설계 프레임웍을 일관종합과 분리종합 두 가지 방식으로 나누어 구현하고 종합방식에 따른 페루프가 서로 다른 성능을 보이는 원리를 시스템 정합행렬의 H_{∞} 높 크기와 관련한 특이값(Singular Value, σ)과 구조특이값(Structural Singular Value, μ)의 특성을 통해 비교 및 고찰해 본다.

2. 본론

2.1 유압식 Dipod 플랫폼 모델링

해상 및 지상 운동체에 탑재된 위성수신 안테나의 지향추적(tracking)과 안정화(stabilizing)의 두 가지 성능을 목표로 하는 2축 구동 유압 플랫폼의 기구구조는 Fig. 1과 같다.\(^1\)

Dipod 플랫폼은 두 축 방향의 운동특성을 상호 간에 약하게 연관된 약연성(Loosely coupled) 시스템으로 다변수 시스템(MIMO)이나 미소 변위 가정하에 두 방향의 성능특성을 각각 협동하여 각 방향에 대해 독립적인 시스템으로 나눌 수 있고 대신 모델링 오차는 안정성 설계를 통해 모델 불확실성을 대해 어느 정도 안정성을 보장해 주는 설계전략을 고려해볼 수 있다.\(^1\)

2.1.1 플랫폼 기구 모델링

Fig. 1은 대상 플랫폼의 기구구조를, 식 (1)은 유압구동기를 포함한 기구부의 운동방정식을 각각 나타낸다.\(^1\)

\[
\theta = \frac{A_{\theta}}{J_{\theta}} P_{i} \tag{1}
\]

2.1.2 플랫폼 구동부 모델링

플랫폼 유압구동기는 전력으로 구동되는 서보밸브가 사용되며 서보밸브의 솔레노이드 특성은 전류에 대한 서보밸브의 스피드변위를 1차독특성으로 하여 식 (2)로 나타낸다.\(^1\)

\[
X_{v}(s) = \frac{K_{sv}}{\tau_{v}s + 1} I(s) \tag{2}
\]

서보밸브의 스피드변위와 유압구동기 페루프의 유압과 유량의 연속방정식으로부터 구동실린더 부하유량(Q_L)은 식 (3)으로 나타낼 수 있다.\(^{1,4}\)

![Fig. 1 Schematic diagram of hydraulic dipod platform](image-url)
2 자유도 H_∞ 제어기 종합 프레임워크에 기반한 유압식 Dipod 플랫폼의 강인제어기 설계

$$Q_L = C_{tp} P_1 + A_{mc} x_p + \frac{V_e}{4\beta_e} \dot{P}_1$$

(3)

구동 실린더 유량식 $Q_L = K_e x_e - K_p P_1$를 대입하고 정리하면 서보밸브 스플릴법에 의한 유압계의 동특성은 식 (4)로 나타낼 수 있다.

$$\dot{P}_1 = -\frac{1}{\alpha} K_e x_e P_1 - \frac{1}{\alpha} A_{mc} x_p + \frac{1}{\alpha} K_p x_v$$

(4)

여기서 여기서 $K_e = K_p + C_{tp}$, $\alpha = V_e/4\beta_e$ 이며 구동속도는 $\dot{x}_p \approx \dot{\theta} - \phi$로 선형화 하였다.

2.1.3 플랫폼 지배방정식 앞 2.1.2절에서 유도된 서보밸브 구동부 (Svo) 식 (2)와 유압구동기 (Act)의 동특성 식 (4)을 결합하고 다시 2.1.1절에서 유도한 기구부 (Kin) 동특성 식 (1)을 합하고 여기에 설계하려는 2 자유도 제어기 구조를 추가한 유압식 Dipod 플랫폼의 전체 동특성은 Fig. 2의 블록모델로 나타낼 수 있다.

이 플랫폼의 제어를 Fig. 2에서와 같이 각변위 (θ) 제어로 하면 시스템 동특성 맨앞에 1개의 적분기가 존재하므로 루프형성(Loop Shaping)식 적분기 추가가 불필요한 특징이 있다.

공정 플랫폼의 두 가지 성능 지표인 지향추종 동특성 (tracking, θ/θ)과 외인성 각변위 외란 제거 능력인 안정화 동특성 (stabilizing, θ/ϕ)은 각각 Fig. 3 (a) 및 (b)와 같이 나타낼 수 있다.

Fig. 2 The block diagram of dipod platform for TDF controller synthesis

2 자유도 H_∞ 강인제어 이론 Limebeer가 제안한 2 자유도 제어기 종합 기본 프레임워크 (3)은 Fig. 4와 같이 나타낼 수 있다.

안정화는 주파수역 특성을 반영한 되먹임 제어기 K_2를 통해 수행하고 지향추종은 시간역 특성을 반영한 기술모델 M_e와 일치시키기 위한 선보상기 K_1을 사용하여 선동플랜트 G_p로 구성된 선동폐루프에 대한 성능등식 (5)을 최소화하는 2 자유도 강인제어기 $K = [K_1 \ K_2]$ 구현을 목표로 하며 이에 대한 제어법칙 (Control Law)은 식 (6)과 같이 설정한다.

$$\| (I - G_p K_2)^{-1} G_p K_1 - M_e \|_\infty \leq \gamma$$

(5)
2.2.1 소인수 섭동 기반 2자유도 제어기 종합

플랜트 불확실성으로 식 (7)의 소인수 섭동을 고려하면 Fig. 5의 블록선도로부터 섭동페어
\(N \equiv T_s \)은 \(N = F_i(M, \Delta) \)으로 불확실 섭동 \(\Delta \)와 정합행렬 \(M = F_i(P, K) \)으로 식 (8)과 같이 LFT (Linear Fractional Transformation) 분리하여 나타낼 수 있다. 여기서, \(M_F \)와 \(N \)은 \(G_s = M_F^{-1}N \)로 성형플랜트 \(G_s \)의 정규 좌소인수 분해이다.

\[
 G_p = (M_F - \Delta_M)^{-1}N_F + \Delta_N
\]

(7)

\[
 \|F_i(M, \Delta)\|_\infty \leq \gamma
\]

\[
 \|F_i \left[\frac{(I - G_{K_2})^{-1}G_{K_2} - M_p}{(I - G_{K_2})^{-1}M_p} \right] \|_\infty \leq \gamma
\]

(8)

정리(Theorem 2.1) Redheffer(5)

만약 \(F_i(M, \Delta) \leq \gamma \) 이면

\[
 \| M \|_\infty \leq \gamma
\]

\[
 \| \Delta \|_\infty \leq \frac{1}{\gamma}
\]

정리 2.1을 추가로 적용하면 소인수 섭동에 대한 감정성능 부등식은 식 (9) 그리고 제어기종합 문제로는 식 (10)과 같이 나타낼 수 있다.

\[
 \left\| \begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - M_p \\
 (I - G_{K_2})^{-1}M_p
 \end{bmatrix}
 \begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - K_1 \\
 (I - G_{K_2})^{-1}K_1
 \end{bmatrix}
 \right\|_\infty \leq \gamma
\]

(9)

\[
 \| \Delta_m \|_\infty \leq \frac{1}{\gamma}
\]

\[
 \left\| \begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - M_p \\
 (I - G_{K_2})^{-1}M_p
 \end{bmatrix}
 \begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - K_1 \\
 (I - G_{K_2})^{-1}K_1
 \end{bmatrix}
 \right\|_\infty \leq \gamma_{\text{min}}
\]

(10)

따라서 제어기 설계를 위한 정합행렬 \(M \)은 식 (11)과 같이 나타낼 수 있다.

\[
 M = F_i(P, K)
\]

\[
 = \left[\begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - M_p \\
 (I - G_{K_2})^{-1}M_p
 \end{bmatrix}
 \begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - K_1 \\
 (I - G_{K_2})^{-1}K_1
 \end{bmatrix}
 \right]_\infty
\]

(11)

2.2.2 입력측 과 섭동 기반 2자유도 제어기 종합

2.2.1절의 소인수 섭동과 동일한 방법으로 플랜트 불확실성으로 식 (12)의 입력측 과의 섭동을 고려하면 Fig. 6의 블록선도로 나타낼 수 있다.

\[
 G_p = G(1 + \Delta_m)
\]

(12)

섭동페어 \(N = F_i(G_p, K) \)은 \(M = F_i(M, \Delta) \)으로 정합행렬 \(M = F_i(G, K) \)와 불확실 섭동 \(\Delta \)로 식 (13)과 같이 LFT 분리하여 나타낼 수 있다.

\[
 \|F_i(M, \Delta)\|_\infty \leq \gamma
\]

\[
 \|F_i \left[\frac{(I - G_{K_2})^{-1}G_{K_2} - M_p}{(I - G_{K_2})^{-1}G_{K_2} - K_1} \right] \|_\infty \leq \gamma
\]

(13)

정리 2.1을 추가로 적용하면 입력측 과의 섭동에 대한 감정성능 부등식과 제어기 문제는 각각 식 (14)와 식 (15)과 같이 나타낼 수 있다.

\[
 \|F_i \left[\frac{(I - G_{K_2})^{-1}G_{K_2} - M_p}{(I - G_{K_2})^{-1}G_{K_2} - K_1} \right] \|_\infty \leq \gamma
\]

(14)

\[
 \| \Delta_m \|_\infty \leq \frac{1}{\gamma}
\]

\[
 \left\| \begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - M_p \\
 (I - G_{K_2})^{-1}M_p
 \end{bmatrix}
 \begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - K_1 \\
 (I - G_{K_2})^{-1}K_1
 \end{bmatrix}
 \right\|_\infty \leq \gamma_{\text{min}}
\]

(15)

따라서, 제어기 설계를 위한 정합행렬 \(M \)은 식 (16)과 같이 나타낼 수 있다.

\[
 M = F_i(P, K)
\]

\[
 = \left[\begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - M_p \\
 (I - G_{K_2})^{-1}M_p
 \end{bmatrix}
 \begin{bmatrix}
 (I - G_{K_2})^{-1}G_{K_2} - K_1 \\
 (I - G_{K_2})^{-1}K_1
 \end{bmatrix}
 \right]_\infty
\]

(16)
2.3 2자유도 강인제어기 종합 프레임워크

2.3.1 1단계 일괄종합

제어기 종합 프레임워크에 기반한 유압식 플랫폼의 강인제어기 설계 요구조건인 안정과 성능간의 상대적 중요도를 절충하기 위해 절충 비율변수 β를 사용하여 제어기 종합 문제는 식 (10)으로부터 확장하여 식 (17)에 같이 나타낼 수 있다.

$$\begin{array}{c}
\text{Find} \quad \kappa \\
\min \left\{ \frac{\rho I}{\rho I - G} \right\}
\end{array}$$

(17)

따라서 2자유도 제어기 1단계 일괄종합을 위한 프레임워크는 Fig. 7와 같이 나타낼 수 있으며 이를 다시 표준 H_{∞} 조종기 프레임워크의 DPM(Design Plant Model)으로 구성하면 일반화 정합행렬 P는 식 (18)과 같이 나타낼 수 있다.

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} = \begin{bmatrix}
-\beta^2 M_0 & \rho M_0^{-1} \\
0 & M_0^{-1}
\end{bmatrix} \begin{bmatrix}
\rho G_1 \\
I
\end{bmatrix}$$

(18)

이 프레임워크는 소인수 섭동을 사용함에도 불구하고 최적화 프레임워크의 H_{∞}-LSDP(Loop Shaping Design Procedure) 프레임워크의 섭동 H_{∞}-LSDP를 사용하므로 조종기 프레임워크를 사용함으로써 절충적이라는 제한이 따른다.

같은 방법으로 곱의 섭동을 고려한 경우에도 성능과 안정의 절충 비율변수 ρ를 추가하면 2자유도 제어기 종합문제는 식 (15)로부터 식 (19) 및 Fig. 8의 프레임워크와 같이 나타낼 수 있고 DPM으로 구성한 일반화 정합행렬 P는 식 (20)과 같이 나타낼 수 있다.

$$\begin{array}{c}
\text{Find} \quad \kappa \\
\min \left\{ \frac{\rho I}{\rho I - G} \right\}
\end{array}$$

(19)

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} = \begin{bmatrix}
-\beta^2 M_0 & \rho G_1 \\
0 & G_1
\end{bmatrix}$$

(20)

2.3.2 2단계 분리종합

2자유도 제어기 2단계 분리종합 방법으로는 1 단계 강인안정은 최적화 절차인 소인수섭동 $\Delta M_{\omega} \Delta_{\infty} \leq \gamma_2^{-1}$ 조건에서 H_{∞}-LSDP 프레임워크에 기반하여 뒤임영제기 K_0를 통해 보증하고, 2단계 강인안정은 종합적 절차인 음성축 곡물 섭동 $\Delta M_{\omega} \Delta_{\infty} \leq \gamma_1^{-1}$ 조건에서 기준모델 (M_0) 일치 H_{∞} 조종기 프레임워크에 기반하여 선보상기 K_0를 통해 각각 보증하는 설계방법을 사용한다.

먼저 소인수 섭동 $\Delta M_{\omega} \Delta_{\infty} \leq \gamma_2^{-1}$에 대한 강인안정 조건 분보식 (21)로부터

$$\begin{align*}
\left\| (I - G K_0) G_1 M_0^{-1} \right\|_\omega &< \gamma_2 \\
\left\| K_0 (I - G K_0) G_1 M_0^{-1} \right\|_\omega &< \gamma_2
\end{align*}$$

(21)

위 강인조건 분보식 유형에 co-inner function K_0를 곱하더라도 H_{∞} 값을 불변하므로 식 (22)와 같이 확장할 수 있다.

$$\begin{align*}
\left\| (I - G K_0) G_1 M_0^{-1} (I - G K_0) G_1 M_0^{-1} \right\|_\omega &< \gamma_2 \\
\left\| K_0 (I - G K_0) G_1 M_0^{-1} (I - G K_0) G_1 M_0^{-1} \right\|_\omega &< \gamma_2
\end{align*}$$

(22)
프레임워크는 소인수 섭동에 대한 기본 구조를 그대로 유지하므로 수치적인 반복 없이 두 개의 입력측 곱의 섭동 한 강인성능 부등식의 좌열은 식 810 추출하면 이는 소인수 섭동에 대한 강인안정 조어기 단계 분리종합과 관련한 기본 프레임워크를 사용하여 최적 해를 구한다. 이

\[(I - G K_1 K_2)^{-1} G K_2 (I - G K_1 K_2)^{-1} G < \gamma_2 \] \hspace{1cm} (23)

\[(I - G K_1 K_2)^{-1} G K_2 K_1 (I - G K_1 K_2)^{-1} G < \gamma_1 \] \hspace{1cm} (24)

따라서 제어기 종합 문제로는 식 (23), (24)를 식 (25), (26)과 같이 나타낼 수 있다.

\[\text{Find} \ k_i \left\| (I - G K_1 K_2)^{-1} G K_2 (I - G K_1 K_2)^{-1} G \right\|_\infty = \gamma_i \min \] \hspace{1cm} (25)

\[\text{Find} \ k_i \left\| (I - G K_1 K_2)^{-1} G K_2 K_1 (I - G K_1 K_2)^{-1} G \right\|_\infty = \gamma_i \min \] \hspace{1cm} (26)

보조정리 (Lemma) 2.1

\[\left\| P_2 \right\| \leq \gamma_1 \text{ 이고 } \left\| P_1 \right\| \leq \gamma_2 \] \text{이면}

\[F \left\| P_{21}, P_{22}, \Delta \right\|_\infty \leq \sqrt{\gamma_1^2 + \gamma_2^2} \] \text{가 성립한다.}

보조정리 2.1을 추가로 적용하면 금형성 섭동에 대한 강인성능 부등식 (14)로부터 2차유도 제어기 2단계 분리종합과 관련한 기본 프레임워크는 식 (27)로 나타낼 수 있다.

\[\left\| (I - G K_1 K_2)^{-1} G K_2 (I - G K_1 K_2)^{-1} G \right\|_\infty + (I - G K_2 G_2)^{-1} G (I - K_2 G_2) K_2 (I - G K_2 G_2)^{-1} G < \gamma \] \hspace{1cm} (27)

여기서, \(\gamma = \sqrt{\gamma_1^2 + \gamma_2^2} \)로 하고 \(\gamma_2 \)와 \(\gamma_1 \)은 각각 식 (23)와 (24)에 따른다.

따라서 2차유도 제어기 2단계 분리종합의 첫 번째 단계에서는 강안정 데미익 제어기 \(K_2 \)를 구하는 단계로 Fig. 9과 같이 표준 \(H_\infty \)-LSDP 최적화 프레임워크를 사용하여 최적 해를 구한다. 이 프레임워크는 소인수 섭동에 대한 기본 구조를 그대로 유지하므로 수치적인 반복 없이 두 개의

\[P_2 = P_{11} P_{12} P_{21} P_{22} = \begin{bmatrix} M^{-1} G \end{bmatrix} \begin{bmatrix} M^{-1} G \end{bmatrix} \] \hspace{1cm} (29)

2단계 분리종합의 두 번째 단계는 안정화를 위한 데미익 제어기 \(K_2 \)를 고정한 상태에서 지향추 종을 위한 선 보상기 \(K_1 \)을 구하는 단계로 여기에는 다시 다음과 같이 두 가지 프레임워크가 사용된다.

첫 번째가 입력측 금의 섭동에 기반한 식 (27)
제어기 종합 프레임워크에 기반한 유압식 Dipod 플랫폼의 강인제어기 설계

2자유도 제어기 종합 프레임워크에 기반한 유압식 Dipod 플랫폼의 강인제어기 설계

![Fig. 11 The framework of the 2nd. step for TDF controller synthesis based on coprime factor uncertainty](image)

의 좌열로부터 추출된 Fig. 10의 프레임워크를 사용하는 방법으로 이때 DPM1을 구성하는 일반화 정합행렬 P_1의 구조는 식 (30)으로 한다.

$$P_1 = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} -\beta^2 \mathcal{M} & \rho \mathcal{G}_1 \\ 0 & \rho \mathcal{I} \end{bmatrix}$$ (30)

두 번째가 소인수 섭동에 기반한 식 (11)의 좌열로부터 추출한 Fig. 11의 프레임워크를 사용하는 방법인데 이때 DPM1을 구성하는 일반화 정합행렬 P_1의 구조는 식 (31)로 한다.

$$P_1 = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} -\beta^2 \mathcal{M} & \rho \mathcal{G}_1 \\ 0 & \rho \mathcal{I} \end{bmatrix}$$ (31)

2.4 2자유도 강인제어기 종합

유압식 Dipod 플랫폼의 2자유도 제어기 종합을 위한 루프성이형 가중함수 W_1은 시스템 자체가 적분기를 포함하고 있어 단순이득을, 성능매칭을 위한 기준모델 M_o는 플랫폼의 운용 대역폭을 고려한 시동저수, 미볼문수 ρ는 안정과 성능간의 절충을 고려하여 식 (32)와 같이 각각 설정한다.

$$\left\{ \begin{array}{l} W_1 = 100 \\ M_o = \frac{1}{0.001s + 1} \\ \rho = 1.1 \end{array} \right\}$$ (32)

![Fig. 12 TDF controller synthesized from single step method](image)

Fig. 12 TDF controller synthesized from single step method

(a) Feedforward controller (b) Feedback controller

![Fig. 13 The unit step response of the close loop, bold solid line is nominal response](image)

Fig. 13 The unit step response of the close loop, bold solid line is nominal response

(a) Tracking(θ_ϕ) (b) Stabilizing(θ_ϕ)

![Fig. 14 The mixed frequency(0.1~1Hz) sinusoidal response of the close loop, (a) e is thin solid, θ_ϕ is thick solid, (b) ϕ is thin solid, θ is thick bold](image)

Fig. 14 The mixed frequency(0.1~1Hz) sinusoidal response of the close loop, (a) e is thin solid, θ_ϕ is thick solid, (b) ϕ is thin solid, θ is thick bold

과 2자유도 제어기의 주파수 응답 특성은 Fig. 12와 같다.

또한 추종 기준신호(θ_ϕ) 및 외부신호의 변화($\Delta\theta_\phi$)에 대한 피드백의 단위계단의 동형성과 서응답 특성은 각각 Figs. 13 및 14와 같다.

여기서, Fig. 13은 공정 피드포드 뿐 아니라 서보 밸브 이득(K_{sv}), 서보밸브 시정수(τ_v), 유량이득 (K_v) 그리고 플랫폼 관성량(J_p)에 50, 10, 10, 50%의 매개변수 불확실성이 각각 포함 되었을 때 폐루프의 단위계단 응답특성을 포함해 나타냈다.

2.4.2 2단계 분리종합

Figs. 9 및 10 또는 Fig. 11의 2단계 분리종합 프레임워크에 따라 종합한 2자유도 제어기의 주파수 응답

![Fig. 7 1단계 일괄종합 프레임워크에 따라 유압식 Dipod 플랫폼의 2자유도 제어기 종합의 결과](image)

Fig. 7 1단계 일괄종합 프레임워크에 따라 유압식 Dipod 플랫폼의 2자유도 제어기 종합의 결과
수응답특성은 Fig. 15와 같다.

유압식 Dipod 플랫폼에서는 소인수 섭동 크기의 입력측 면의 섭동에 기반한 Fig. 10의 프레임 획과 소인수 섭동에 기반한 Fig. 11 프레임획에 따른 제어기 종합 결과가 동일하게 나타났다.

추종 기준신호(θs) 및 외인성 외란(φ)에 대한 폐루프의 단위계단 및 복합 정현과 서응답 특성은 각각 Figs. 16 및 17과 같다.

여기서, Fig. 16은 Fig. 13과 마찬가지로 공정 폐루프 빼 아내 서보밸브 이득(Ksv), 서보밸브 시정수(τs), 유량이득(Ke) 그리고 플랜드 관성량(Jp)의 50, 10, 10, 50%의 매개변수 불확실성이 각각 포함되었을 때 불확실 폐루프의 단위계단 응답특성을 포함해 나타냈다.

2.5 2차유도 강인제어기 종합결과 비교
유압식 Dipod 플랫폼에 대한 2차유도 제어기 종합 결과 Table 1과 같이 2단계 분리종합의 경우에 1단계 일괄종합 대비 제어기 차수가 더 높게 나타났다.

폐루프 단위 계단응답 특성 비교에서는 Table 2 그리고 Figs. 13 및 14와 같이 안정화 성능 응답 특성은 두 종합 방법의 결과가 동일하였으나 지향추종 성능 응답특성에서는 1단계 일괄종합이 더 우수한 결과를 보였다.

반대로 비(非)강인성 지수 γ는 Table. 3과 같이 2단계 분리종합의 경우가 작으므로 강인성이 더 우수함을 알 수 있다. 이러한 강인성 차이는 서보밸브 이득(Ksv), 서보밸브 시정수(τs), 유량이득(Ke) 그리고 플랜드 관성량(Jp)의 각각 50, 10, 10, 50%의 매개변수 불확실성을 가정했을 때 추종성능에 대한 단위계단 응답결과인 Fig. 13(a)의 경우가 Fig. 16(a)에 비해 동일 불확실성 조건하에서 Over Shoot가 높게 나타나 불확실성의 증가에 따른 시스템의 강인성이 쉽게 영향 받을

<table>
<thead>
<tr>
<th>구분</th>
<th>K₁</th>
<th>K₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1단계 일괄종합</td>
<td>5차</td>
<td>4차</td>
</tr>
<tr>
<td>2단계 분리종합</td>
<td>입력곱 섭동</td>
<td>8차</td>
</tr>
<tr>
<td></td>
<td>소인수 섭동</td>
<td>3차</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>추종성능 (상승시간)</th>
<th>안정화성능 (정착시간)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1단계 일괄종합</td>
<td>0.01초</td>
<td>0.04초</td>
</tr>
<tr>
<td>2단계 분리종합</td>
<td>입력곱 섭동</td>
<td>0.05초</td>
</tr>
<tr>
<td></td>
<td>소인수 섭동</td>
<td>0.05초</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>γ₀</th>
<th>γ₁</th>
<th>γ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1단계 일괄종합</td>
<td>-</td>
<td>-</td>
<td>2.5505</td>
</tr>
<tr>
<td>2단계 분리종합</td>
<td>1.8521</td>
<td>1.2109</td>
<td>2.2128</td>
</tr>
</tbody>
</table>

(a) Feedforward controller (b) Feedback controller

Fig. 15 TDF controller synthesized from two step method

(a) Tracking(θ/θs) (b) Stabilizing(θ/φ)

Fig. 16 The unit step response of the close loop, bold solid line is nominal response

(a) Tracking(e/θs) (b) Stabilizing(θ/φ)

Fig. 17 The mixed frequency(0.1~1Hz) sinusoidal response of the close loop, (a) θs is thin solid, e = θ - θs is thick solid, (b) φ is thin solid, θ is thick bold

<table>
<thead>
<tr>
<th>구분</th>
<th>γ₀</th>
<th>γ₁</th>
<th>γ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1단계 일괄종합</td>
<td>-</td>
<td>-</td>
<td>2.5505</td>
</tr>
<tr>
<td>2단계 분리종합</td>
<td>1.8521</td>
<td>1.2109</td>
<td>2.2128</td>
</tr>
</tbody>
</table>
제어기 종합 방법에 따른 이러한 강장성 차이의 발생 원인은 다음과 같이 설명할 수 있다.

단계 일괄종합에서는 강인성능 부등식이 소인수 섭동 구조로부터 유도되나 정합행렬 M이 주가적인 성능채널을 내포하므로 McFarlane과 Glover가 제안한 표준 H_{∞}-LSDP의 최적화와 프레임웍에 따라 종합되게 된다. 이에 따라 단계 일괄종합에서 비(非)강장성 지수는 $\gamma > \gamma'$로 준 최적으로 구해지며 이는 결국 강인성 감소를 의미하게 된다.

반면 단계 분리종합의 경우에는 정합행렬 γ^2의 비 강인 특성을 나타내는 $(\gamma')^2$은 단계 일괄종합 과정에서 준최적으로 산출되어 그 값이 최적보다 커지게 됨을 알 수 있고 이는 결국 강인성 감소를 의미하게 된다.

또한 이러한 현상을 정합행렬 M의 구조적 관점에서 살펴보면 소인수 섭동에 대한 강인성능 프레임웍의 입출력 채널 구조가 식 (11)와 같이 3x2로 MIMO 구조이고 마찬가지로 꼴의 섭동을 고려한 경우에도 강인성성능 프레임웍의 입력 채널 구조가 식 (16)과 같이 2x2로 MIMO 형태의 Full Matrix가 되므로 이때의 H_{∞}-등은 정합행렬 M의 완전 비구조화 특성에 따라 식 (33)의 우함과 같이 최대 특이값과 일치하게 된다. 반면 정합행렬 M을 식 (23), (24)와 같이 두 개의 입력을 각각 분리하여 2개 단계 분리종합하는 경우에는 각 입력 열 분리에 따라 SIMO 형태가 되어 정합행렬 M의 구조가 두 개의 적층형 (Stacked) 열 구조로 분리 구조화 된다. 따라서 이 경우에는 두 입력 간에 상호연성(Inter Coupling)이 없는 내부구조(Internal Structure)를 추가로 갖게 되므로 입력분리에 따른 부분 구조화로 정합행렬 M의 비(非)강장성 지수 γ'는 구조특이값(μ, Structural Singular Value)의 기본 특성에 따라 식 (33)의 좌항 부등식과 같이 식 (11)을 프레임웍으로 하는 정합행렬 M의 최대특이값 $\bar{\sigma}(M)$보다 작게 형성 된다.

\[
\gamma' \leq \gamma = \bar{\sigma}(M)
\]

이로 인해 2차유도 제어기 2단계 분리종합을 통해서는 1단계 일괄종합과 비해 전체 비(非)강장성 지수가 줄어 강장 허용섭동이 증가하는 효과가 발생하고 있는 Table 3의 비교에서도 차이에서 뿐만 아니라 매개변수 불확실성 상태에서 페루프 기동을 나타내고 있는 Fig. 13(a)와 Fig. 16(a)의 비교를 통해서도 바로 확인할 수 있다.

3. 결론

본 논문에서는 Limebeer가 제안한 자유도 제어기 종합방법을 단계 일괄종합 방법과 단계 분리종합 두 가지 프레임웍으로 확장하고 유압식 Dipod 플랫폼에 대한 제어기 설계에 적용하여 지향추종 및 안정화 두 가지 성능 목표를 만 아니라 모델 불확실성과 외란에 대한 강인성 간 절충에 유효한 2차유도 제어기를 종합하였다.

두 종합 방식을 통해 얻은 제어기를 통한 폐루프 응답특성 비교에서는 안정화 성능은 두 종합 방식의 결과가 유사하겠으나 지향추종 성능은 단계 일괄종합을 통해 얻은 제어기가 더 빠른 응답 특성 을 보다 지향성을 추종성능에서는 더 효과적인 반면 비(非)강장성 지수를 통한 강인성 비교에서는 2 단계 분리종합의 경우가 비강장성 지수가 더 작아 상대적으로 우수한 강인성을 나타냄을 알 수 있었다.

결과적으로 유압식 Dipod 플랫폼에 대한 2차유도 제어기 구현을 통한 비교에서 1단계 일괄종합 방법은 저차 제어기로 지향추종 성능이 우수하나 안정성이 저하되는 반면 2단계 분리종합에서는 안정성이 우수하나 제어기 차수 증가와 지향추종 성능 저하가 발생함을 알 수 있었고 외란제거 능력의 안정화 성능은 유사함을 알 수 있었다.

이러한 성능과 강인성의 차이는 각 유압식 Dipod 플랫폼에서의 제어기 구현 과정에서 제어기 종합 방법에 따른 시스템 정합행렬의 구조화 차이에 의한 영향임을 알 수 있었다.

참고문헌

(1) Taik-Dong Cho, Sang-Min Yang, 2007, "Robust

