Numerical Analysis on Cascade Performance of Double-Circular-Arc Hydrofoil

Jae Min Oh, Ki Seok Paeng, Jae Wook Song and Myung Kyoong Chung

Key Words: DCA(이중원호), Correlation(상관식), Cascade(익렬), Axial Pump(축류펌프)

Abstract

In order to design and analyze the performance of an axial-flow pump it is necessary to know the flow deviation, deflection angle and pressure loss coefficient as a function of the angle of incidence for the hydrofoil section in use. Because such functions are unique to the particular section, however, general correlation formulae are not available for the multitude of hydrofoil profiles, and such functions must be generated by either experiment or numerical simulation for the given or selected hydrofoil section. The purpose of present study is to generate design correlations for hydrofoils with double circular arc (DCA) camber by numerical analysis using a commercial code, FLUENT. The cascade configuration is determined by a combination of the inlet blade angle, blade thickness, camber angle, and cascade solidity, and a total of 90 cascade configurations are analyzed in this study. The inlet Reynolds number based on the chord and the inlet absolute velocity is fixed at 5×10^4. Design correlations are formulated, based on the data at the incidence angle of minimum total pressure loss. The correlations obtained in this way show good agreement with the experiment data collected at NASA with DCA hydrofoils.
고려한 방법을 제시하였다.
위와 같은 음직의 성능예측에 대한 연구결과에
도 불구하고 아직까지 일반적으로 적용할 수 있는
원의 성능 관계는 아직까지는 없는 상태다. 따라서,
기법에 의한 음직 성능 관계를 실험이나 수치해석 방법을 통하여 안에서야 한다.
본 연구의 목표는 통계적으로 많이 쓰이는 이중
원형(Double Circular Arc or DCA)날개의 음직 성능
관련을 제시하는 것이다. 연구방법은 상용 코드
FLUENT 를 이용하여 DCA 음직의 90 가치 형상
에 대한 수치해석을 수행하였다. 수치해석 결과를
바탕으로 DCA 음직의 성능관련을 도출하였다.
그리고 본 연구에서 얻은 성능관련을 NASA(6)
에 서 수행한 DCA 음직 실험 결과와 비교하였다.

2. 수치해석

2.1 작동유체 및 유동모델
작동유체는 NASA(6) 실험과 같은 물을 사용하였 다.
Fig. 1에는 음직의 형상과, 그리고 Fig. 2에는
날개의 기하학적 형상과 기호에 대해서 나타내었다.
NASA(6) 실험과 같이, 음직의 거리는 3m 로 하였고
음직입구속은 22N/s 로 설정하였다. 음직의
류 구조를 기준으로 한 Reynolds 수는 약 5x10^6
이다. 기존의 음직 실험결과에 따르면(6), 5x10^6
 정도의 Reynolds 수 정도에서는 쌍방 박리로 인한 영향을
 거의 받지 않으며, Reynolds 수에 의한 음직 성능변
화는 크지 않은 것으로 나타나 있다.
음직 내부의 유동은 난류 형상을 모니하시기 위
해 Direct Numerical Simulation(DNS)를 적용하기에
는 현재의 컴퓨터의 성능과 알고리즘으로는 어려
운 설정이다. 지금까지 여러 가지 난류 모델의 개
발이 이루어져 왔으며, 음직의 수치 모사 연구에
서는(5-11) 완벽하지만 않지만 k-ε 모델을 가장 보
편적으로 쓰고 있다. 이를ighest에서 난류로
의 초입에 대한 정확한 예측은 어려운 설정이
다.(12) 따라서 기존의 연구(5-11)는 전체를 난류 경
계층으로 생각하고 수치모사를 수행하였다. 본 연
 연구에서도 전이의 효과는 고려하지 않았고 전체를
난류 경계층으로 모사하였다. 음직의 형상은
NASA(6) 실험 조건과 같은 경우였으나, Table 1 에

| Table 1 Calculated cascade geometries |
|-----------------|--------|
| u/c | 0.06 |
| | 0.1 |
| c/8 | 0.75 |
| | 1.0 |
| | 1.5 |
| δ/β | 50 |
| | 60 |
| | 70 |
| θ | 0 |
| | 10 |
| | 20 |
| | 30 |
| | 40 |
정리한 바와 같이 큰 $2\times3\times3\times5 = 90$ 가지이다. 이 약령 행성에 대한 계산 결과를 가지고 성능상관성을 도출하였다.

2.2 경계조건 및 수치해석기법

입구에서의 난류경계조건은 특성길이와 난류장도를 주어 설정하였다. NASA 실험[8]에는 난류장도에 대한 조건은 나와 있지 않다. 따라서, 난류장도와 특성길이는 입쪽에 주어야 한다. 먼저 특성길이는 Hobson 등[9]이 사용한 익현길との 0.004 배를 본 연구에서도 사용하였다. 난류장도에 따라서 손실계수와 표면마찰계수가 변하기 때문에, 본 연구에서는 입구에서의 난류장도 $\beta = 60^\circ$, $\sigma = 1.0$, $\frac{t}{c} = 0.06$, $\theta = 0^\circ$ 일 때의 실험결과와 가장 잘 일치하는 값을 사용하였고, 그 값은 1%였다. 수치 모사 기법으로는 SIMPLER 알고리즘[11]을 사용하였고 저분류방법은 QUICK 기법[12]을 사용하였다. 유동은 정상상태로 가정하였다. 거자는 정렬격자로 사용하여 25×75 으로 만들었다. 유로 방향으로 75개 그리고 유로에 수직한 방향으로 25개를 주었다. 각각의 외벽 설계상태에 따라서 총 90개의 저자를 만들었다. 그 중 하나를 Fig. 3에 도식하였다.

3. 결과 및 고찰

Fig. 4에 계산결과 중 하나를 나타내었다. Fig. 4의 경우 기준점에서의 입사각이 $\gamma = -90^\circ$ 입을 앞 수 있다. 기준점의 경계는 최소 손실 계수를, 최대 압력/비율은 손실 계수와 최소 손실 계수보다 두 배가 되는 두 입자 사이의 가중치 점들의 다양한 방식으로 정의된다. 본 연구에서 기준점은 중앙 압력 손실이 최소일 때로 설정하였다. NASA[8]보고서도 중앙 압력 손실이 최소일 때로 기준점으로 정의하였다. 표시는 기준점을 의미한 다. 기준점의 정의는 전체 90개의 저자를 생성한 다음, 각각의 저자에 대해서 입구에서의 입사각을 변화시키면서 Fig. 4과 같은 결과를 90개 모두 얻었다. 입사각은 -24°에서 $+24^\circ$ 까지 24씩 변화시키면서 형성손실계수, 전향각에 대한 결과를 계산하였다. 전향각은 입구유동각과 출구유동각간의 차 이를 말하며, 식 (1)의처럼 출구에서도 유동각과 각 각의 차이인 저자가 각각에 전환할 수 있다.

$$\delta = i - \epsilon + \theta$$ (1)
Fig. 5 Calculated incidence angles for minimum total pressure loss coefficient

Fig. 6 Calculated deviation angles for minimum total pressure loss coefficient
변화에 따른 캠프바과 입사각*의 관계를 나타낸 것이다. Fig. 5(c)는 임구각과 현실비는 고정시키고 t/c의 변화에 따른 캠프바과 입사각*의 관계를 나타낸 것이다. 그림에서 입사각*은 캠프바에 따라 선형적인 관계를 가지다는 것을 알 수 있다. 그리고 선형관계에서의 기울기는 임구각, 현실비, 그리고 t/c의 함수가 된다는 것을 알 수 있다. 이런 관계로부터 캠프가과 입사각 사이에는 식 (2)와 같은 선형관계식을 세울 수 있다.

\[I^* = a + b \theta \]
(2)

계수 `a`와 `b`는 입구각, 현실비 그리고 t/c에 관계되는 상수이고 다음과 같이 이차함수로 나타내었다.

\[a = a_0 + a_1 \sigma + a_2 \sigma^2 + a_3 \beta_{1} + a_4 \beta_{1}^2 + a_5 \beta_{1}^3 \]
\[+ a_6 \beta_{1}^4 \sigma + a_7 \beta_{1} \sigma^2 + a_8 \beta_{1}^2 \sigma^2 \]
(3)

\[b = b_0 + b_1 \sigma + b_2 \sigma^2 + b_3 \beta_{1} + b_4 \beta_{1}^2 + b_5 \beta_{1}^3 \]
\[+ b_6 \beta_{1}^4 + b_7 \beta_{1} \sigma^2 + b_8 \beta_{1}^2 \sigma^2 \]
(4)

Fig. 6는 기준점에서의 편차각*과 캠프바과를 중심으로 정리한 것을 각각 나타내었다. 편차각*의 계산결과 또한 임사각과 같은 논의를 거쳐식 (5)와 같은 선형관계식으로 나타낼 수 있다.

\[\delta^* = a + b \theta \]
(5)

편차각*과 관계된 계수 `a`와 `b`는 역시 식 (3)과 (4)처럼 이차함수로 나타낼 수 있다. 위와 같이 도출한 임사각과 편차각*의 정적성상관관계계수등을 Table 2에는 정리하였다.

기준점에서의 성능상관관계를 증조하기 위해 NASA의 실험\(^{40}\)과 비교해 보았다. NASA 실험\(^{40}\)의 경우 임사각과의 변화를 임의한 유동각(\(\beta_{1}^N \))을 준 상태에서 편차각을 변화시키면서 주었다. 그러나, 이 과정을 주의가스와 비슷한 각각의 임사각에 따라 각각을 정리해 주어야 하는 데로써의 어려움이 따 른다. 본 연구에서는 이런 어려움을 피하기 위해 임구각과 임동시간 상관상에서 유동각을 조절하여 임사각을 주었다. 이 방법은 하나의 각자에 대해, 임구에서의 유동각 조절로 입사각 변화시킬 수 있는 장점이 있다. 단, 이와 참조로 인해 실험결과와의 비교를 위해서는 제시한 상관관계를 실험조건과 같은 상황으로 전환할 작업이 해수차이 한다.

(1) 먼저 실험조건과 같이 임구, 동강, 캠프바각, t/c, 현실비를 설정하고 기준점에서의 임사각을 가정한다.

(2) 그 다음 식 (6)을 이용하여 임구각을 구한다.

\[\beta^* = \beta - I \]
(6)

(3) (2)에서 구한 임구각과 (1)에서 설정한 캠프바각, t/c, 그리고 현실비를 제시한 상관관계에 대입하여, 기준점에서의 임사각을 새로 얻는다.
수치 보수를 통한 이중원호 익렬의 성능 예측

Fig. 7 Comparison between NASA data values and deduced correlation values at minimum total pressure loss coefficient

(4) (3)에서 주된 새로운 임각값을 가지고 (2)의 과정부터 유형화 예시까지 반복 계산한다.

편차값도 같은 방법을 통해 실험조건과 같은 상황으로 전환한 결과를 얻을 수 있다.

위와 같은 과정을 통해 본 연구에서 제시한 성능상관식과 실험결과와의 비교를 Fig. 7에 나타내었다. \(\beta_1^{\text{IN}} = 50^\circ \) 그리고 \(\nu_c = 0.06 \)인 경우와 \(\beta_1^{\text{IN}} = 70^\circ \) 그리고 \(\nu_c = 0.1 \)인 경우 두 가지를 에시해 놓았다. 임각값의 경우 실험결과의 분산도 크게 없으며 본 연구에서 제시한 성능상관식이 실험결과 잘 예측할 수 있다. 축력각의 경우는 \(\beta_1^{\text{IN}} = 50^\circ \) 그리고 \(\nu_c = 0.06 \)일 때, 처럼 실험결과의 분산이 심히 낮아 정확한 비교는 힘들지만, 비교적 잘 예측하고 있다는 점 알 수 있다.

4. 결 론

본 연구에서는 수치해석을 이용한 익렬의 성능 예측 연구를 수행하였다. Navier-Stokes 방정식을 풀어서 이중원호날개(DCA)를 갖는 익렬의 성능결과를 알아내었다. 수치해석결과를 바탕으로 DCA 익렬에 대해 기존점에서의 임각값, 편차값에 대한 성능상관식을 개발하였다. 임각값에 대한 상관식이 NASA의 실험결과를 잘 예측하는 것을 확인하였다. 본 연구에 제시한 성능상관식은 DCA 날개를 갖는 축류비계제의 설계과정에서 유용하게 쓰일 것이다.

후 기

본 연구는 한국과학특구 과학기술 21 사업의 지원으로 수행되었으며 이에 관계자 여러분께 감사드립니다.

참고문헌

Thermodynamics of Turbomachinery, PERGAMON PRESS.

