Effect of Main Operating Conditions on Cathode Flooding Characteristics in a PEM Unit Fuel Cell

Han-Sang Kim and Kyoungdoug Min

Key Words: PEM(고분자전해질 막), Water Management(물 관리), Flooding(플러딩), Water Droplets (액체 물방울), Flow Channel(유로), Two-phase Flow(2 상 유동)

Abstract

Proton exchange membrane (PEM) should be sufficiently hydrated with a careful consideration of heat and water management. Water management has been a critical operation issue for better understanding the operation and optimizing the performance of a PEM fuel cell. The flooding on cathode side resulting from excess water can limit the fuel cell performance. In this study, the visual cell was designed and fabricated for the visualization of liquid water droplet dynamics related to cathode flooding in flow channels. The experiment was carried out to observe the formation, growth and removal of water droplets using CCD imaging system. Effects of operating conditions such as cell temperature, air flow rate and air relative humidity on cathode flooding characteristics were mainly investigated. Based on this study, we can get the basic insight into flooding phenomena and its two-phase flow nature. It is expected that data obtained can be effectively used for the setup and validation of two-phase PEM fuel cell models considering cathode flooding.
연료전지 내의 질량 전달(mass transfer limitation)이다. 이를 개선하기 위하여 전기화학 반응에서 생성되는 물을 적절히 제어, 관리하는 물 관리(water management)가 연료전지의 성능 및 내구성을 유지하기 위한 매우 중요한 과제로 인식되고 있다.

특히 고분자전해성형 연료전지의 경우 비교적 낮은 온도(< 90°C)에서 작동한다. 그리고, 전해질 막으로 주로 사용되고 있는 Nafton®은 효과적인 이온 전도도의 유지를 위해 적절한 수분량을 필요로 한다. 만약 충분한 수분이 공급되지 않으면 전해질 막은 마르게(dry) 되어 이온 전도 저항이 증대되어 오염 손실(ohmic loss)에 의한 성능 저하가 나타나고, 반대로 전기화학 반응에 의하여 생성된 물이 연료전지 밖으로 배출되는 공기에 의하여 적절한 수도로 제거되지 못하면 공기극에서 촉촉해지고, 응축된 물이 기체 확산층(gas diffusion layer (GDL))의 빈 다공성 공간(open pore)을 막게 되면 공유물 산소의 기체 확산층으로 전달되는 온도가 증가하여 연료전지 성능을 저하시키는 문제를 야기한다. 이와 같은 현상을 플러딩(flooding)이라 한다.

플러딩 현상은 높은 전류 밀도와 높은 작동 온도에서 연료전지 성능 저하의 주요 요인이 되므로, 이에 대한 체계적인 연구가 여러 기관에서 진행되어 왔으며, 관련한 다양한 연구 결과가 제시되고 있다. 그럼에도 불구하고, 플러딩에 대한 근본적인 물리적 이해 및 제어가 필요한 2상 유동 측면의 실험적 연구 결과를 아직 부족한 실정이다.(6)

따라서, 본 연구에서는 공극극 플러딩 현상 및 관련된 2상 유동 특성에 대한 물리적인 이해를 위하여 가시화용 단위 연료전지를 자체 설계, 제작하여 공극극 유로 내에서 발생하는 2상 유동 현상을 포함한 플러딩 현상을 가시화하여 보았다. 이를 기초로 연료전지의 성능에 직접적인 영향을 미치는 주요 작동 인자를(작동 온도, 공급 공기 유량, 공급 공기 상대 습도)의 변화에 따른 2상 유동을 포함한 액체 물동량의 변화 과정과 이와 관련된 플러딩 특성을 비교, 분석하였다.

2. 실험 장치

2.1 고분자전해성형 연료전지 내 물의 이동
고분자전해성형 연료전지에서 물은 크게 두 가지 요인에 의하여 연료전지 내에 존재하게 된다.

첫째는 연료전지 외부에서 공급되는 물로 가습된 공기와 수소에 의하여 함께 공급된다. 둘째는, 연료전지 작동 시 전기화학 반응에 의해 생성되는 물이다. 이에 따라 연료전지 내에 존재하는 물은 염, 유체, 물질 전달, 전기화학 반응의 영향을 받아 그 공간적, 시간적 분포가 변화한다.

Fig. 1은 고분자전해성형 연료전지의 구성 요소와 연료전지 내 물의 이동을 나타낸 것이다. 작동 중인 연료전지에서는 전기 삼투 항력(electro-osmotic drag)에 의하여 전해질 막을 통하여 움직이는 양전자(proton)에 의해 물은 수소극에서 공극극 쪽으로 이동한다. 반면 전기화학 반응에 의하여 물은 공극극에서 생성되므로, 공극극에서 공극극 쪽의 수소극보다 높게 형성되고 전해질 막 내에서 증가된 물 농도 구조로 인하여 공극극에서 수소극 쪽으로의 역확산(back diffusion) 현상이 일어난다. 이와 같은 현상은 공극극에서의 압력 증가에 의한 수 첨두(hydraulic permeation) 현상에 의해 보다 강화된다. 이러한 수증 메커니즘은 모두 복합적으로 연관되면서 물은 전극에서 가스 채널로 이동한다.

2.2 플러딩 가시화용 연료전지

Fig. 2는 가시화 실험에 사용된 단위 연료전지를 나타낸 것이다. 공극극 유로 내 플러딩 현상을 관찰하기 위하여 채널은 두께 1 mm의 단소 복합 채재로 제작하였으며, 공극극 플러딩과 관련된 2상 유동의 가시화를 위하여 아크릴 재질의 화합물로 제작하여 이용하였다. 전기적인 연결을 위하여 금으로 도금한 집전관(current collector)을 공극극과 수소극의 양쪽에 이용하였다.

Fig. 1 PEM fuel cell components and water movement
유로 형상은 변형된 형태의 사형(serpentine) 유로이며, 공기극과 수소극에 동일한 형상을 채택하였다. 공기와 수소의 공급 방향은 서로 대향이(counter flow)를 유지하도록 하였다. 본 연구에서 사용된 전해질막은 Nafion® 112이며, 유 효 반응 면적은 25cm²이고, 두께는 약 50µm 이다.

Fig. 3은 공기극 풀링던가시화를 위한 연료전지 실험 장치를 나타내고 있다. 연료전지 성능 실험 장치는 가스 공급 장치, 가습 장치, 단위 연료전지, 부하기(electric loader), 각종 센서, 데이터 처리 장치 및 분석을 위한 PC, 가시화용으로 사용된 CCD 이미지 시스템으로 구성되어 있다. 공기극에는 고온도(99.99%)의 전공기와 수소극에는 고온도(99.999%)의 수소가 각각 가스 비블러(bubbler) 형태의 가습기에 의하여 가습된 후 단위 전지로 공급된다.

3. 공기극 풀링던가시화 결과

3.1 실험 조건
공기극 풀링던가시화를 위하여 부하시온을 이용하여 상온 상태의 실정 전압(0.4 V) 조건에서 연료전지를 작동시키면서 실험을 수행하였다. 관련한 실험 조건은 Table 1에 정리하여 나타내었다. 연료전지의 주요 작동 조건이 풀링던 현상에 미치는 영향을 정성적으로 분석하기 위하여 각 작동 조건의 다른 물리적인 변수들은 모두 동일하게 하였다.

본 조건의 Case 1에서 발생되는 평균 전류 밀도를 기준으로 수소의 Stoichiometry는 1.25로 지정하였다. 공기극 환매는 유량 변경 조건(Case 4, Case 5) 이외의 경우에는 전류 밀도에 따라 변화시키지 않았다. 본 연구의 경우 주요 실험 조건마다 유량과 작동 온도 등이 변경되므로 일정 조건 하의 전류 밀도는 변화한다. 또한, 시간에 따라서도 전류 밀도를 달라지므로, 평균 전류 밀도는 Table 2에 정리하여 나타내었다.

<table>
<thead>
<tr>
<th>Case</th>
<th>Temperature (°C) (Cathode Humid./Cell/Anode Humid.)</th>
<th>Flow rate ((l/min)(Air/H₂) Stoichiometry</th>
<th>Pressure (Cathode/Anode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>30/30/30</td>
<td>0.75/0.15 (2.7/1.25)</td>
<td>Near ambient</td>
</tr>
<tr>
<td>Case 2</td>
<td>40/40/40</td>
<td>0.75/0.16 (2.13/1.08)</td>
<td>Near ambient</td>
</tr>
<tr>
<td>Case 3</td>
<td>50/50/50</td>
<td>0.75/0.19 (1.74/1.05)</td>
<td>Near ambient</td>
</tr>
<tr>
<td>Case 4</td>
<td>30/30/30</td>
<td>0.60/0.15 (2.2/1.3)</td>
<td>Near ambient</td>
</tr>
<tr>
<td>Case 5</td>
<td>30/30/30</td>
<td>1.0/0.15 (3.3/1.2)</td>
<td>Near ambient</td>
</tr>
<tr>
<td>Case 6</td>
<td>30/40/30</td>
<td>0.75/0.15 (2.3/1.1)</td>
<td>Near ambient</td>
</tr>
<tr>
<td>Case 7</td>
<td>50/40/50</td>
<td>0.75/0.15 (2.2/1.06)</td>
<td>Near ambient</td>
</tr>
</tbody>
</table>
이미지는 플러딩이 발생하기 시작하는 시점 (육안으로 물방울이 관찰되기 시작하는 시점)부터 10초 간격으로 촬영하여 PC에 저장하였다. 공기극 유로 내의 물 생성 현상을 2초 유동 측면에서 파악해 보고자 전체 유로 채널 중 플러딩이 주로 관찰되는 부분(Fig. 2에서 직사각형으로 표시된 영역)을 확대, 촬영하여 결과 분석에 이용하였다.

3.2 플러딩 발생 시의 액체 물방울 생성 특성
Fig. 4는 공기극 유로 채널에서 물 생성 현상을

<table>
<thead>
<tr>
<th>Case</th>
<th>Average current density (A/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.61</td>
</tr>
<tr>
<td>Case 2</td>
<td>0.74</td>
</tr>
<tr>
<td>Case 3</td>
<td>0.88</td>
</tr>
<tr>
<td>Case 4</td>
<td>0.6</td>
</tr>
<tr>
<td>Case 5</td>
<td>0.65</td>
</tr>
<tr>
<td>Case 6</td>
<td>0.69</td>
</tr>
<tr>
<td>Case 7</td>
<td>0.71</td>
</tr>
</tbody>
</table>

가시화한 것이다. 유로 채널 내에 관찰된 대표 적인 물방울들을 원으로 표시하여 나타내었다. 이는 단위 전지와 공급 공기 온도가 각각 30°C일 때 유로 채널과 가스 확산층 표면에서 생성되는 액체 물방울들의 시간에 따른 변화 형태를 정성적으로 나타낸다.

초기에는 가스 확산층 내에서 국부적으로 작은 물방울 등이 관찰되지만, 시간이 경과함에 따라 가스 확산층 표면에서 관찰되는 물방울의 반도 수와 그 크기가 점차 증가함을 알 수 있다.

공기극 유로 채널 내 물의 양은 채널 내 온도, 압력, 산소의 분압, 상대 습도 등 다양한 물리적 변수들에 의하여 복합적인 영향을 받는다.

이 중 가시화 실험을 통하여 관찰된 공기극 유로 채널에서 물 생성량 증가에 미치는 요인과 물의 제거 요인을 분석해 보면 다음과 같다.

물 생성량의 증가 요인은 첫째, 본 연구에 적용된 연료전지의 경우 공기와 수소가 서로 대류를 형성하면서 공급되므로, Fig. 4에서 나타낸 공기극 유로 채널은 수소극 임계에 가까우므로 수소(연료)의 분압이 비교적 높은 상태에서 전기화학 반응이 활발히 진행되는 경향을 나타내며, 물체는 전류가 발생될 때 전기화학 반응에 의하여 생성된 물은 공기 유동에

Fig. 4 Snapshots of the evolution of liquid water droplets in cathode flow channels for Case 1
의하여 채널을 따라 유통하게 되고, 공기극 채널 출구에서는 유통 압력 감소로 인한 공기의 육족이 발생하여 채널 내에서 생성된 물이 효과적으로 출구 쪽으로 배출되는 것을 저해하여 채널 출구 쪽에 물이 축적되는 것이다. 반면, 공기극 유로 채널 내 물 생성량의 증가를 완화시키는 요인은 첫째, 공기극 채널에서 물 농도의 증가로 인한 전해질 밀도의 낮아짐을 통한 수소극소로의 역확산 현상은 공기극 채널 밖 농도가 높아지는 것을 완화시키고, 둘째, 전기화학 반응에 의하여 발생되는 반응열에 의하여 채널 내 온도가 상승하여 주위의 물방울을 증발시키는 역할을 하며, 셋째, 물방울의 응축시 발생하는 응축열도 채널 내 온도를 일부 상승시키며 물방울의 증발에 영향을 미친다.

이와 같이 상반되는 인자들이 미치는 영향의 상대적인 중요에 의하여 유로 채널 내 존재하는 물의 양은 결정되며 시간에 따라 그 양이 변화하게 된다. 활성한 시간 동안에는 일정 전압 조건에서 응축을 계속 작동시키면서 전류가 발생됨에 따라 관찰된 공기극 유로 채널 내에서는 시간이 진행됨에 따라 물이 많이 존재함을 알 수 있다.

관찰되는 물방울은 그 크기가 약 0.1-0.8mm로 비교적 크고, 유로의 폭에 제한을 받으며, 유로 채널을 따라 분산되어 불균일하게 나타남을 알 수 있다. 이는 가스 확산층 내에 기공은 매우 불균일하게 존재하기 때문에, 기공의 존재 위치에 따라 유로 채널 쪽으로 선택적으로 물방울 형태로 관찰되기 때문이다.

일반적으로 액체 물방울의 상장은 포화 수증기압, 유임 가스의 속도, 표면 장력 등에 직접적인 영향을 받는 것으로 알려져 있는데, 유로 채널 내 물방울의 크기는 정적적으로 증가하는 것으로 보아 표면 장력의 영향을 주로 받을 수 있다.(9)

4. 연료전지 주요 작동 조건의 영향

4.1 작동 온도가 플러딩 특성에 미치는 영향

Fig. 5는 연료전지의 작동 온도 변화(30-50°C)에 따른 공기극 유로 채널 내 플러딩 현상을 가시화한 결과를 나타낸 것이다. 플러딩 현상은 유로 채널 출구 쪽에서 먼저 발생하고 이후 유로를 따라서 공기 유동 방향과 반대쪽으로 점차 확대됨을 알 수 있다. 이는 공기극 채널 출구에서는 유동 압력 감소로 인하여 포화 수증기 암과 같이 공기의 응축이 발생하게 되고 이러한 응측은 유로 채널 내 생성된 물이 효과적으로 배출되는 것을 방해하고 전기화학 반응에 의해 생성된 물과 더불어 출구 쪽 채널에서 물이 축적되는 효과를 유발한 때로 분석된다.

이미지의 오른쪽 유로 채널(유로 채널 출구가 가까운 쪽)은 전체적으로 매우 작은 크기의 물방울들로 가득 체워져 있음을 볼 수 있다. 물방울 생성으로 유로의 일부가 막힌 영역들은 시간이 경과함에 따라 증가하여 전체 유로의 약 1/2까지 확대된다. 이 영역에서는 생성된 물방울들이 공기극 유로를 따라 효과적으로 진행하는 것을 막아, 가스 확산층으로 원활한 산소의 공급을 방해하여 플러딩이 발생된 영역에 해당하는 유로 채널에서는 전류를 발생하는 역할을 제대로 할 수 없게 된다. 그러나, 전체 유로의 1/2까지 확대된 플러딩 영역은 전류 발생 시 연료전지 내에서 나타나는 발생에 의한 전지 내부의 온도 상승에 의한 물방울 증발 효과로 시간이 지남수록 감소함을 알 수 있다.

연료전지 작동 온도 50°C에서 공기극 유로 채널 내 플러딩 현상의 경우, 30°C의 경우와 플러딩 영역을 비교할 때 크게 줄어든 것을 알 수 있다. 따라서, 출구의 일부 유로 채널을 제외하고는 플러딩 현상을 관찰할 수 없다.

Fig. 5 Images of cathode channel flooding with various fuel cell operating temperatures
이는 단위 연료전지의 온도 및 공급 가스의 온도가 50℃를 넘어서면서 수증기의 포화 증기압이 급격히 증가하는 경향을 나타내며 증발이 보다 활발히 일어나기 때문으로 판단된다. 또한, 앞에서 언급된 바와 같이 전류 생성에 의한 단위 전지 내에서의 발열 현상도 유로 체널 내 온도를 상승시켜 작동 온도 증가와 함께 퓨리딩 현상을 완화시키는 데 기여한 것으로 분석된다.

4.2 공기극 유량이 퓨리딩 특성에 미치는 영향

Fig. 6은 공기극 유량을 0.6, 1.0 L/min으로 각각 변경시킨 경우에 대한 퓨리딩 특성 변화를 나타낸 것이다. 연료전지의 작동 온도는 40℃로 고정하고, 단위 전지 내로 공급되는 가스의 압력은 동일한 상태에서 실험을 수행하였다.

공기극 유량이 증가한 Case 5의 경우, 다른 조건들은 모두 같은 경우임에도 가스 확산층 표면에서 물방울 거의 관찰할수록 가스 확산층 표면에서 발생한 물방울이 가스 확산층 내의 기공을 채우고 체널 측으로 이동할 때, 증가된 유속에 의해 물방울의 유방향성에 의해 물방울의 형태를 제대로 유지하지 못하고 체널을 따라 출구 측으로 퓨리던 때문에 분석할 수 있다.

따라서, 유량이 증가한 경우의 연료전지 작동 조건에서는 퓨리딩 현상의 발생은 상대적으로 작아질 수 있다고 한다.

일반적으로 유로 체널 내에서 퓨리딩이 발생한 경우, 이를 완화시키기 위하여 체널 내의 물방울을 효과적으로 제거하는 일이 매우 중요하겠지만, 공기극 유량을 증가시키는 방법이 대표적으로 많이 적용되는 방법 중 하나이다. 공기극 유량 증가를 통한 체널 내 물방울의 효과적인 제거를 위해서는 유로 체널의 입・출구 간 적절한 압력 차가 유지되어야 하고, 인접한 유로 체널 간에도 높은 압력 차가 존재하여야 하는데, 이를 구현하기 위한 유로의 체널 최적 설계가 요구된다.

4.3 공기극 상대 습도가 퓨리딩 특성에 미치는 영향

Fig. 7은 공기극 상대 습도 조건 변화에 따른 유로 체널 내의 퓨리딩 현상을 가시화한 결과를 나타낸 것이다. 상대 습도 변화의 영향을 파악하기 위하여 단위 연료전지의 온도는 40℃로 고정한 상태에서 습도 공기의 온도를 30, 50℃로 각각 변경하여 실험을 수행하였다.

Fig. 6 Images of cathode channel flooding with different inlet air flow rates

Fig. 7 Images of cathode channel flooding with different inlet air relative humidity conditions
고분자전해질형 단위 연료전지의 주요 작동조건이 공기극 풀리딩 현상에 미치는 영향

Case 6의 경우는 30°C로 가습된 상태의 공기가 단위 전지로 유입되어 습도가 낮아지는 경우이고, Case 7의 경우는 50°C로 가습된 공기가 단위 전지로 유입되어 과포화 상태가 되는 경우이다.

Case 7의 경우, 초기 과포화된 유압 가스가 아크 케일 원도우 밑면에 접촉되면서 순간적인 물의 응축이 관찰되지만, 아주 짧은 순간에 그정이나, 연료전지의 작동에 따라 전류가 발생되기 시작하면서 압축 표면에서의 응축은 없어짐을 알 수 있다. 시간이 지남에 따라 가스 확산층과 유압 케일 사이 경계면에서 물방울이 관찰되기 시작되며, 물방울이 관찰되는 시기는 상대 습도가 낮은 Case 6의 경우보다 짧음을 알 수 있다. 그리고, 관찰되는 물방울의 반도수도 많고, 풀리딩 영역의 크기도 증가함을 알 수 있다. Case 6의 경우는 풀리딩 영역의 크기도 상대적으로 작고, 물방울의 반도 수도 적은 것을 알 수 있다. 이는 유압 상대 습도가 낮으므로 연료전지 내로 공급된 수분의 양이 상대적으로 적고, 이에 따른 전해질 막의 국부적인 마름(drying) 현상이 발생한 때문으로 분석된다.

(4) 단위 전지 및 공급 공기 온도가 증가함에 따라 유압 내 풀리딩 발생 영역은 감소하는 경향을 나타낸다. 특히, 작동 온도가 50°C에 경우 풀리딩 발생 영역은 크게 감소함을 알 수 있다. 이는 이 온도에서의 포화 수증기압의 급격한 증가에 의하여 액체 물방울들의 증발이 활발해지기 때문이 다.

(5) 단위 전지로 공급되는 공기 유량이 적음수록, 상대 습도가 높아질수록 풀리딩이 발생하는 영역은 상대적으로 작고, 액체 물방울의 반도 수도 증가한다.

후기

본 연구는 서울대학교 정밀기계설계공학과연구소 에 의하여 부분적으로 지원되었음.

참고문헌