FALLING SUBALGEBRAS AND IDEALS IN BH-ALGEBRAS

Eun Mi Kima and Sun Shin Ahnb,∗

Abstract. Based on the theory of a falling shadow which was first formulated by Wang([14]), a theoretical approach of the ideal structure in BH-algebras is established. The notions of a falling subalgebra, a falling ideal, a falling strong ideal, a falling n-fold strong ideal and a falling translation ideal of a BH-algebra are introduced. Some fundamental properties are investigated. Relations among a falling subalgebra, a falling ideal and a falling strong ideal, a falling n-fold strong ideal are stated. A relation between a fuzzy subalgebra/ideal and a falling subalgebra/ideal is provided.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3,4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. BCK-algebras have some connections with other areas: D. Mundici [8] proved MV-algebras are categorically equivalent to bounded commutative algebra, and J. Meng [9] proved that implicative commutative semigroups are equivalent to a class of BCK-algebras. Y. B. Jun, E. H. Roh, and H. S. Kim [5] introduced the notion of a BH-algebra, which is a generalization of BCK/BCI-algebras. They defined the notions of ideal, maximal ideal and translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [11] estimated the number of BH∗-subalgebras of order i in a transitive BH∗-algebras by using Hao’s method. S. S. Ahn and J. H. Lee ([2]) defined the notion of strong ideals in BH-algebra and studied some properties of it. They considered the notion of a rough set in BH-algebras. S. S. Ahn and E. M. Kim ([1]) introduced the notion of n-fold strong ideal in BH-algebra and gave some related properties of it.

In this paper we introduced the notions of a falling subalgebra, a falling ideal, a falling strong ideal, a falling n-fold strong ideal and a falling translation ideal of a
BH-algebra. We investigate some fundamental properties. Also we give relations among a falling subalgebra, a falling ideal and a falling strong ideal, a falling n-fold strong ideal. We study a relation between a fuzzy subalgebra/ideal and a falling subalgebra/ideal.

2. Preliminaries

By a BH-algebra ([5]), we mean an algebra $(X; *, 0)$ of type (2,0) satisfying the following conditions:

(I) $x * x = 0$,

(II) $x * 0 = x$,

(III) $x * y = 0$ and $y * x = 0$ imply $x = y$, for all $x, y \in X$.

For brevity, we also call X a BH-algebra. In X we can define an order relation “\leq” by $x \leq y$ if and only if $x * y = 0$. A non-empty subset S of a BH-algebra X is called a subalgebra of X if, for any $x, y \in S$, $x * y \in S$, i.e., S is closed under binary operation.

Definition 2.1 ([5]). A non-empty subset A of a BH-algebra X is called an ideal of X if it satisfies:

(I1) $0 \in A$,

(II) $x * y \in A$ and $y \in A$ imply $x \in A$, $\forall x, y \in X$.

An ideal A of a BH-algebra X is said to be a translation ideal of X if it satisfies:

(III) $x * y \in A$ and $y * x \in A$ imply $(x * z) * (y * z) \in A$ and $(z * x) * (z * y) \in A$, $\forall x, y, z \in X$.

Obviously, $\{0\}$ and X are ideals of X. For any elements x and y of a BH-algebra X, $x * y^n$ denotes $(\cdots ((x * y) * y) * \cdots) * y$ in which y occurs n times.

Definition 2.2. A non-empty subset A of a BH-algebra X is called a strong ideal ([2]) of X if it satisfies (II) and

(I4) $(x * y) * z \in A$ and $y \in A$ imply $x * z \in A$ for all $x, y, z \in X$.

A non-empty subset A of a BH-algebra X is called an n-fold strong ideal ([1]) of X if it satisfies (II) and

(I5) for every $x, y, z \in X$ there exists a natural number n such that $x * z^n \in A$ whenever $(x * y) * z^n \in A$ and $y \in A$.

Definition 2.3 ([11]). A BH-algebra X is called a BH*-algebra if it satisfies the identity $(x * y) * x = 0$ for all $x, y \in X$.
Definition 2.4. A BH-algebra \((X; *, 0)\) is said to be transitive if \(x * y = 0\) and \(y * z = 0\) imply \(x * z = 0\) for all \(x, y, z \in X\).

We now review some fuzzy logic concepts. A fuzzy set in a set \(X\) is a function \(\mu : X \to [0, 1]\). For a fuzzy set \(\mu\) in \(X\) and \(t \in [0, 1]\), define \(U(\mu; t)\) to be the set \(\{ x \in X | \mu(x) \geq t \}\), which is called a level subset of \(\mu\).

Definition 2.5. A fuzzy set \(\mu\) in a BH-algebra \(X\) is called a fuzzy BH-ideal (here call it a fuzzy ideal) ([6]) of \(X\) if

\[(\text{FI1}) \quad \mu(0) \geq \mu(x), \forall x \in X,\]
\[(\text{FI2}) \quad \mu(x) \geq \min\{\mu(x * y), \mu(y)\}, \forall x, y \in X.\]

A fuzzy set \(\mu\) in a BH-algebra \(X\) is called a fuzzy translation BH-ideal ([6]) of \(X\) if it satisfies (FI1), (FI2) and

\[(\text{FI3}) \quad \min\{\mu((x+z) * (y+z)), \mu((z+x) * (z+y))\} \geq \min\{\mu(x*y), \mu(y*x)\}, \forall x, y, z \in X.\]

A fuzzy set \(\mu\) in a BH-algebra \(X\) is called a fuzzy strong ideal ([7]) of \(X\) if it satisfies (FI1) and

\[(\text{FI4}) \quad \mu(x * z) \geq \min\{\mu((x * y) * z), \mu(y)\}, \forall x, y, z \in X.\]

A fuzzy set \(\mu\) in a BH-algebra \(X\) is called a fuzzy \(n\)-fold strong ideal ([7]) of \(X\) if it satisfies (FI1) and

\[(\text{FI5}) \quad \mu(x * z^n) \geq \min\{\mu((x * y) * z^n), \mu(y)\}, \forall x, y, z \in X.\]

We now display the basic theory on falling shadows. We refer the reader to the papers [12, 13, 14] for further information regarding the theory of falling shadows.

Given a universe of discourse \(U\), let \(\mathcal{P}(U)\) denote the power set of \(U\). For each \(u \in U\), let

\[(2.1) \quad \hat{u} := \{ E | u \in E \text{ and } E \subseteq U \},\]

and for each \(E \in \mathcal{P}(U)\), let

\[(2.2) \quad \hat{E} := \{ \hat{u} | u \in E \}.\]

An ordered pair \((\mathcal{P}(U), \mathcal{B})\) is said to be a hyper-measurable structure on \(U\) if \(\mathcal{B}\) is a \(\sigma\)-field in \(\mathcal{P}(U)\) and \(\hat{U} \subseteq \mathcal{B}\). Given a probability space \((\Omega, \mathcal{A}, P)\) and a hyper-measurable structure \((\mathcal{P}(U), \mathcal{B})\) on \(U\), a random set on \(U\) is defined to be a mapping \(\xi : \Omega \to \mathcal{P}(U)\) which is \(\mathcal{A}\)-\(\mathcal{B}\) measurable, that is,

\[(2.3) \quad (\forall C \in \mathcal{B}) (\xi^{-1}(C) = \{ \omega | \omega \in \Omega \text{ and } \xi(\omega) \in C \} \in \mathcal{A}).\]
Suppose that ξ is a random set on U. Let
\[
\tilde{H}(u) := P(\omega \mid u \in \xi(\omega)) \text{ for each } u \in U.
\]
Then \tilde{H} is a kind of fuzzy set in U. We call \tilde{H} a falling shadow of the random set ξ, and ξ is called a cloud of \tilde{H}.

For example, $(\Omega, \mathcal{A}, P) = ([0,1], \mathcal{A}, m)$, where \mathcal{A} is a Borel field on $[0,1]$ and m is the usual Lebesgue measure. Let \tilde{H} be a fuzzy set in U and $\tilde{H}_t := \{ u \in U \mid \tilde{H}(u) \geq t \}$ be a t-cut of \tilde{H}. Then
\[
\xi : [0,1] \to \mathcal{P}(U), \ t \mapsto \tilde{H}_t
\]
is a random set and ξ is a cloud of \tilde{H}. We shall call ξ defined above as the cut-cloud of \tilde{H}.

3. FALLING SUBALGEBRAS/IDEALS IN BH-ALGEBRAS

In what follows let X denote a BH-algebra unless otherwise specified.

Definition 3.1. Let (Ω, \mathcal{A}, P) be a probability space, and let
\[
\xi : \Omega \to \mathcal{P}(X),
\]
be a random set. If $\xi(\omega)$ is a subalgebra (resp., ideal, strong ideal, n-fold strong ideal and translation ideal) of a BH-algebra X for any $\omega \in \Omega$ with $\xi(\omega) \neq \emptyset$, then the falling shadow \tilde{H} of the random set ξ, i.e.,
\[
\tilde{H}(x) = P(\omega \mid x \in \xi(\omega))
\]
is called a falling subalgebra (resp., falling ideal, falling strong ideal, falling n-fold ideal and falling translation ideal) of X.

Example 3.2. (1) Let $X := \{0,1,2,3\}$ be a BH-algebra([5]) with the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

For a probability space $(\Omega, \mathcal{A}, P) = ([0,1], \mathcal{A}, m)$, define a random set $\xi : [0,1] \to \mathcal{P}(X)$ as follows:
\[
\xi : \Omega \to \mathcal{P}(X), \ t \mapsto \begin{cases}
\emptyset & \text{if } t \in [0,0.3), \\
\{0,1,2\} & \text{if } t \in [0.3,0.8), \\
X & \text{if } t \in [0.8,1].
\end{cases}
\]
Then $\xi(t)$ is an ideal of X for all $t \in [0,1]$. Hence \tilde{H} is a falling ideal of X. If we take $t \in [0.3,0.8)$, then $\xi(t) = \{0,1,2\}$ is neither a subalgebra nor a translation ideal of X since $0 \ast 2 = 3 \notin \{0,1,2\}$ and $1 \ast 2 = 2, 2 \ast 1 = 2 \in \{0,1,2\}$, $(1 \ast 1) \ast (2 \ast 1) = 0 \ast 2 = 3 \notin \{0,1,2\}$. Hence \tilde{H} is neither a falling subalgebra nor a falling translation ideal of X.

(2) Let $X := \{0,1,2\}$ be a BH-algebra([5]) with the following table:

$$
\begin{array}{c|ccc}
* & 0 & 1 & 2 \\
\hline
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 \\
\end{array}
$$

For a probability space $(\Omega, A, P) = ([0,1], A, m)$, define a random set $\xi : [0,1] \rightarrow \mathcal{P}(X)$ as follows:

$$
\xi : \Omega \rightarrow \mathcal{P}(X), \ t \mapsto \begin{cases}
\emptyset & \text{if } t \in [0,0.4), \\
\{0,1\} & \text{if } t \in [0.4,0.7), \\
X & \text{if } t \in [0.7,1].
\end{cases}
$$

Then $\xi(t)$ is a subalgebra of X for all $t \in [0,1]$. Hence \tilde{H} is a falling subalgebra of X. If we take $t \in [0.4,0.7)$, then $\xi(t) = \{0,1\}$ is not an ideal of X since $2 \ast 1 = 1, 1 \in \{0,1\}$ and $2 \notin \{0,1\}$. Hence \tilde{H} is not a falling ideal of X.

(3) Let $X := \{0,1,2,3\}$ be a BH-algebra([5]) with the following table:

$$
\begin{array}{c|cccc}
* & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 3 \\
3 & 3 & 3 & 3 & 0 \\
\end{array}
$$

For a probability space $(\Omega, A, P) = ([0,1], A, m)$, define a random set $\xi : [0,1] \rightarrow \mathcal{P}(X)$ as follows:

$$
\xi : \Omega \rightarrow \mathcal{P}(X), \ t \mapsto \begin{cases}
\emptyset & \text{if } t \in [0,0.2), \\
\{0,1\} & \text{if } t \in [0.2,0.7), \\
X & \text{if } t \in [0.7,1].
\end{cases}
$$

Then $\xi(t)$ is both a subalgebra and a translation ideal of X for all $t \in [0,1]$. Hence \tilde{H} is both a falling subalgebra and a falling translation ideal of X.

Lemma 3.3 ([6,7]). A fuzzy set μ in a BH-algebra X is a fuzzy subalgebra(resp., fuzzy ideal, fuzzy strong ideal, fuzzy n-fold strong ideal, and fuzzy translation ideal) of X if and only if for every $t \in [0,1]$, μ_t is either empty or a subalgebra(resp., ideal, strong ideal, n-fold strong ideal, and translation ideal) of X.

Theorem 3.4. Let X be a BH-algebra. Then every fuzzy ideal(resp., fuzzy subalgebra, fuzzy strong ideal, fuzzy n-fold strong ideal, and fuzzy translation ideal) of X is a falling ideal(resp., falling subalgebra, falling strong ideal, falling n-fold strong ideal, and falling translation ideal) of X.

Proof. Let \tilde{H} be any fuzzy ideal(resp., fuzzy subalgebra, fuzzy strong ideal, fuzzy n-fold strong ideal, and fuzzy translation ideal) of X. By Lemma 3.3, \tilde{H}_t is an ideal(resp., subalgebra, strong ideal, n-fold strong ideal, and translation ideal) of X for all $t \in [0, 1]$. Let $\xi(t) : [0, 1] \to \mathcal{P}(X)$ be a random set and $\xi(t) = \tilde{H}_t$. Then \tilde{H} is a falling ideal(resp., falling subalgebra, falling strong ideal, falling n-fold strong ideal, and falling translation ideal) of X. \hfill \square

The converse of Theorem 3.4 is not true in general as seen in the following example.

Example 3.5. Let $X \coloneqq \{0, 1, 2, 3, 4\}$ be a BH-algebra([2]) with the following table:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

For a probability space $(\Omega, \mathcal{A}, P) = ([0, 1], \mathcal{A}, m)$, define a random set $\xi : [0, 1] \to \mathcal{P}(X)$ as follows:

$$\xi : \Omega \to \mathcal{P}(X), \ t \mapsto \begin{cases}
\{0, 1\} & \text{if } t \in [0, 0.2), \\
\{0, 2\} & \text{if } t \in [0.2, 0.5), \\
\{0, 3, 4\} & \text{if } t \in [0.5, 0.8) \\
X & \text{if } t \in [0.8, 1].
\end{cases}$$

Then $\xi(t)$ is a subalgebra of X for all $t \in [0, 1]$ and

$$\tilde{H}(x) = \begin{cases}
1 & \text{if } x = 0, \\
0.4 & \text{if } x = 1, \\
0.5 & \text{if } x = 2, \\
0.5 & \text{if } x = 3, \\
0.5 & \text{if } x = 4.
\end{cases}$$

Hence \tilde{H} is a falling subalgebra of X, but not a fuzzy subalgebra of X since $\tilde{H}(3 \ast 2) = \tilde{H}(1) = 0.4 \not\leq 0.5 = \min\{\tilde{H}(3), \tilde{H}(2)\}$.
For a probability space \((\Omega, \mathcal{A}, P) = ([0, 1], \mathcal{A}, m)\), define a random set \(\eta : [0, 1] \to \mathcal{P}(X)\) as follows:

\[
\eta : \Omega \to \mathcal{P}(X), \quad t \mapsto \begin{cases}
\{0\} & \text{if } t \in [0, 0.2), \\
\emptyset & \text{if } t \in [0.2, 0.3), \\
\{0, 1\} & \text{if } t \in [0.3, 0.5), \\
\{0, 2\} & \text{if } t \in [0.5, 0.8), \\
X & \text{if } t \in [0.8, 1].
\end{cases}
\]

Then \(\eta(t)\) is an ideal and a subalgebra of \(X\) for all \(t \in [0, 1]\) and

\[
\tilde{H}(x) = \begin{cases}
0.9 & \text{if } x = 0, \\
0.4 & \text{if } x = 1, \\
0.5 & \text{if } x = 2, \\
0.2 & \text{if } x = 3, \\
0.2 & \text{if } x = 4.
\end{cases}
\]

Hence \(\tilde{H}\) is a falling ideal and a falling subalgebra of \(X\), but not a fuzzy ideal of \(X\) since \(\tilde{H}(3) = 0.2 \not\leq 0.4 = \min\{\tilde{H}(3 \ast 2), \tilde{H}(2)\}\).

Proposition 3.6. In a BH*-algebra \(X\), every falling ideal of \(X\) is a falling subalgebra of \(X\).

Proof. Let \(\tilde{H}\) be a falling ideal of a BH*-algebra \(X\). Then \(\xi(\omega)\) is an ideal of \(X\) for any \(\omega \in \Omega\) with \(\xi(\omega) \neq \emptyset\). Let \(x, y \in X\) be such that \(x, y \in \xi(\omega)\). Since \((x \ast y) \ast x = 0\) for any \(x, y \in X\), we have \((x \ast y) \ast x = 0 \in \xi(\omega)\). It follows from (12) that \(x \ast y \in \xi(\omega)\). Hence \(\xi(\omega)\) is a subalgebra of \(X\). Thus \(\tilde{H}\) is a falling subalgebra of \(X\). \(\square\)

In a BH-algebra \(X\), Proposition 3.6 is not true in general (see Example 3.2(1)).

Theorem 3.7. In a BH-algebra, every falling n-fold strong ideal is a falling ideal.

Proof. Let \(\tilde{H}\) be a falling n-fold strong ideal of a BH-algebra \(X\). Then \(\xi(\omega)\) is an n-fold strong ideal of \(X\) for any \(\omega \in \Omega\) with \(\xi(\omega) \neq \emptyset\). Let \(x, y, z \in X\) be such that \((x \ast y) \ast z^n \in \xi(\omega)\) and \(y \in \xi(\omega)\) for any positive integer \(n\). Putting \(z := 0\) and \(n := 1\) in the above statement, we have \(x \ast y = (x \ast y) \ast 0^1\) and \(y \in \xi(\omega)\). It follows from (15) that \(x = x \ast 0^1 \in \xi(\omega)\), i.e., \(\xi(\omega)\) is an ideal of \(X\). Therefore \(\tilde{H}\) is a falling ideal of \(X\). \(\square\)

Corollary 3.8. In a BH-algebra, every falling strong ideal is a falling ideal.

Proof. Put \(n := 1\) in Theorem 3.7. \(\square\)
The converse of Corollary 3.8 is not true in general as seen in the following example.

Example 3.9. Let \(X := \{0, a, b, c, d\} \) be a BH-algebra([2]) with the following table:

\[
\begin{array}{c|ccccc}
* & 0 & a & b & c & d \\
\hline
0 & 0 & 0 & 0 & 0 & d \\
a & a & 0 & a & 0 & 0 \\
b & b & b & 0 & 0 & 0 \\
c & c & c & a & 0 & 0 \\
d & d & c & d & c & 0 \\
\end{array}
\]

For a probability space \((\Omega, \mathcal{A}, P) = ([0,1], \mathcal{A}, m)\), define a random set \(\xi : [0,1] \to \mathcal{P}(X) \) as follows:

\[
\xi : \Omega \to \mathcal{P}(X), \ t \mapsto \begin{cases}
\emptyset & \text{if } t \in [0, 0.4), \\
\{0, a\} & \text{if } t \in [0.4, 1].
\end{cases}
\]

Then \(\xi(t) \) is a subalgebra and an ideal of \(X \) for all \(t \in [0,1] \). Hence \(\tilde{H} \) is a falling subalgebra and a falling ideal of \(X \). If we take \(t \in [0, 0.4) \), then \(\xi(t) = \{0, a\} \) is not a strong ideal of \(X \) since \((d * a) * b = a \in \{0, a\}, a \in \{0, a\} \) and \(d * b = d \notin \{0, a\} \).

Therefore \(\tilde{H} \) is not a falling strong ideal of \(X \).

Corollary 3.10. In a BH*-algebra, every falling \(n \)-fold strong ideal is a falling subalgebra.

Proof. It follow from Proposition 3.6 and Theorem 3.7. \(\square \)

The converse of Corollary 3.10 is not true in general as seen in the following example.

Example 3.11. Let \(X := \{0, a, b, c\} \) be a BH*-algebra([1]) with the following table:

\[
\begin{array}{c|ccccc}
* & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & 0 \\
b & b & b & 0 & 0 \\
c & c & b & b & 0 \\
\end{array}
\]

For a probability space \((\Omega, \mathcal{A}, P) = ([0,1], \mathcal{A}, m)\), define a random set \(\xi : [0,1] \to \mathcal{P}(X) \) as follows:

\[
\xi : \Omega \to \mathcal{P}(X), \ t \mapsto \begin{cases}
\emptyset & \text{if } t \in [0, 0.3), \\
\{0, a, b\} & \text{if } t \in [0.3, 0.8), \\
X & \text{if } t \in [0.8, 1].
\end{cases}
\]
Then $\xi(t)$ is an n-fold strong ideal of X for all $t \in [0, 1]$ and for every positive integer n. Hence \tilde{H} is a falling n-fold strong ideal of X for every positive integer n.

Define a random set $\xi : [0, 1] \to \mathcal{P}(x)$ as follows:

$$
\xi : \Omega \to \mathcal{P}(X), \ t \mapsto \begin{cases}
\{0, c\} & \text{if } t \in [0, 0.3), \\
\{0, b\} & \text{if } t \in [0.3, 0.8), \\
X & \text{if } t \in [0.8, 1].
\end{cases}
$$

Then $\xi(t)$ is a subalgebra of X for all $t \in [0, 1]$. Hence \tilde{H} is a falling subalgebra of X. If we take $t \in [0.3, 0.8)$, then $\xi(t) = \{0, b\}$ is not an n-fold strong ideal of X since $(c * b) * 0^n = b * 0^n = b \in \{0, b\}$ and $c * 0^n = c \notin \{0, b\}$. Thus \tilde{H} is not a falling n-strong ideal of X for every positive integer n.

Theorem 3.12. Let X be a BH-algebra. Assume that the falling shadow \tilde{H} of a random set $\xi : \Omega \to \mathcal{P}(X)$ is a falling subalgebra of X. Then \tilde{H} is a falling n-fold strong ideal of X if and only if for each $\omega \in \Omega$, the following is valid:

$$(3.1) \quad (\forall x \in \xi(\omega))(\forall y, z \in X)(y * z^n \notin \xi(\omega) \Rightarrow (y * x) * z^n \notin \xi(\omega)).$$

Proof. Suppose that \tilde{H} is a falling n-fold strong ideal of a BH-algebra X. Then $\xi(\omega)$ is an n-fold strong ideal of X for any $\omega \in \Omega$ with $\xi(\omega) \neq \emptyset$. Let $x, y, z \in X$ with $x \in \xi(\omega)$ and $y * z^n \notin \xi(\omega)$. If $(y * x) * z^n \in \xi(\omega)$, then $y * z^n \in \xi(\omega)$ since $\xi(\omega)$ is an n-fold strong ideal of X. This is a contradiction. Thus $(y * x) * z^n \notin \xi(\omega)$ for all positive integer n.

Conversely, let \tilde{H} be a falling subalgebra of X satisfying (3.1). Then $\xi(\omega)$ is a subalgebra of X for any $\omega \in \Omega$ with $\xi(\omega) \neq \emptyset$. Hence $0 \in \xi(\omega)$. Let $x, y, z \in X$ be such that $(y * x) * z^n \in \xi(\omega)$ and $x \in \xi(\omega)$. If $y * z^n \notin \xi(\omega)$, then $(y * x) * z^n \notin \xi(\omega)$ by (3.1). This is a contradiction and so \tilde{H} is a falling n-fold strong ideal of X. □

Corollary 3.13. Let X be a BH-algebra. Assume that the falling shadow \tilde{H} of a random set $\xi : \Omega \to \mathcal{P}(X)$ is a falling subalgebra of X. Then \tilde{H} is a falling strong ideal of X if and only if for each $\omega \in \Omega$, the following is valid:

$$(\forall x \in \xi(\omega))(\forall y, z \in X)(y * z \notin \xi(\omega) \Rightarrow (y * x) * z \notin \xi(\omega)).$$

Proof. Put $n := 1$ in Theorem 3.12. □

Corollary 3.14. Let X be a BH-algebra. Assume that the falling shadow \tilde{H} of a random set $\xi : \Omega \to \mathcal{P}(X)$ is a falling subalgebra of X. Then \tilde{H} is a falling ideal of X if and only if for each $\omega \in \Omega$, the following is valid:
(\forall x \in \xi(\omega))(\forall y \in X)(y \notin \xi(\omega) \Rightarrow y \ast x \notin \xi(\omega)).

Proof. Put \(z := 0 \) in Corollary 3.13. \(\square \)

Let \((\Omega, A, P) \) be a probability space and \(\tilde{H} \) a falling shadow of a random set \(\xi : \Omega \rightarrow \mathcal{P}(X) \). For any \(x \in X \), let

(3.2) \[\Omega(x; \xi) := \{ \omega \in \Omega \mid x \in \xi(\omega) \}. \]

Then \(\Omega(x; \xi) \in A \).

Lemma 3.15. If \(\tilde{H} \) is a falling subalgebra of a BH-algebra \(X \), then

(3.3) \[(\forall x \in X)(\Omega(x; \xi) \cap \Omega(y; \xi) \subseteq \Omega(x \ast y; \xi)). \]

Proof. If \(\Omega(x; \xi) = \emptyset \), then it is clear. Assume that \(\Omega(x; \xi) \neq \emptyset \) and let \(\omega \in \Omega \) be such that \(\omega \in \Omega(x; \xi) \). Then \(x \in \xi(\omega) \), and so \(0 = x \ast x \in \xi(\omega) \) since \(\xi(\omega) \) is a subalgebra of \(X \). Hence \(\omega \in \Omega(0; \xi) \), and therefore \(\Omega(x; \xi) \subseteq \Omega(0; \xi) \) for all \(x \in X \). \(\square \)

Combing Proposition 3.6 and Lemma 3.15, we have the following corollary.

Corollary 3.16. If \(\tilde{H} \) is a falling ideal of a BH*-algebra \(X \), then (3.3) is valid.

Theorem 3.17. If \(\tilde{H} \) is a falling subalgebra of a BH-algebra \(X \), then

(\forall x, y \in X)(\Omega(x; \xi) \cap \Omega(y; \xi) \subseteq \Omega(x \ast y; \xi)).

Proof. Let \(\omega \in \Omega(x; \xi) \cap \Omega(y; \xi) \) for any \(x, y \in X \). Then \(x \in \xi(\omega) \) and \(y \in \xi(\omega) \). Since \(\xi(\omega) \) is a subalgebra of \(X \), \(x \ast y \in \xi(\omega) \). Hence \(\omega \in \Omega(x \ast y, \xi) \). Thus \(\Omega(x; \xi) \cap \Omega(y; \xi) \subseteq \Omega(x \ast y; \xi) \). \(\square \)

Theorem 3.18. If \(\tilde{H} \) is a falling ideal of a BH-algebra \(X \), then

(i) (\forall x, y \in X)(x \leq y \Rightarrow \Omega(y; \xi) \subseteq \Omega(x; \xi)).

(ii) (\forall x, y \in X)(\Omega(x \ast y; \xi) \cap \Omega(y; \xi) \subseteq \Omega(x; \xi)).

Proof. (i) Let \(x, y \in X \) with \(x \leq y \) and \(\omega \in \Omega(y; \xi) \). Then \(y \in \xi(\omega) \) and \(0 = x \ast y \in \xi(\omega) \). Since \(\xi(\omega) \) is an ideal of \(X \), \(x \in \xi(\omega) \), i.e., \(\omega \in \Omega(x; \xi) \). Hence (i) holds.

(ii) Let \(\omega \in \Omega(x \ast y; \xi) \cap \Omega(y; \xi) \) for any \(x, y \in X \). Then \(x \ast y \in \xi(\omega) \) and \(y \in \xi(\omega) \). Since \(\xi(\omega) \) is an ideal of \(X \), \(x \in \xi(\omega) \). Hence \(\omega \in \Omega(x; \xi) \). Thus (ii) holds. \(\square \)

Theorem 3.19. If \(\tilde{H} \) is a falling \(n \)-fold strong ideal of a BH-algebra \(X \), then

(i) (\forall x, y, z \in X)(x \ast y \leq z^n \Rightarrow \Omega(y; \xi) \subseteq \Omega(x \ast z^n; \xi)),

(ii) (\forall x, y, z \in X)(\Omega((x \ast y) \ast z^n; \xi) \cap \Omega(y; \xi) \subseteq \Omega(x \ast z^n; \xi))

for any positive integer \(n \).
Proof. (i) Let \(x, y, z \in X \) with \(\omega \in \Omega(y; \xi) \) and \(x * y \leq z^n \) for any integer \(n \). Then \(y \in \xi(\omega) \) and \((x * y) * z^n = 0 \in \xi(\omega) \). Since \(\xi(\omega) \) is an \(n \)-fold strong ideal of \(X \), we have \(x * z^n \in \xi(\omega) \). Hence \(\omega \in \Omega(x * z^n; \xi) \). Thus (i) holds.

(ii) Let \(x, y, z \in X \) be such that \(\omega \in \Omega((x * y) * z^n; \xi) \cap \Omega(y; \xi) \). Then \((x * y) * z^n \in \xi(\omega) \) and \(y \in \xi(\omega) \). Since \(\xi(\omega) \) is an \(n \)-fold strong ideal of \(X \), we have \(x * z^n \in \xi(\omega) \), i.e., \(\omega \in \Omega(x * z^n; \xi) \). Thus (ii) holds. \(\square \)

Corollary 3.20. If \(\tilde{H} \) is a falling strong ideal of a BH-algebra \(X \), then

(i) \((\forall x, y, z \in X) (x * y \leq z \Rightarrow \Omega(y; \xi) \subseteq \Omega(x * z; \xi)) \).

(ii) \((\forall x, y, z \in X) (\Omega((x * y) * z; \xi) \cap \Omega(y; \xi) \subseteq \Omega(x * z; \xi)) \).

Proof. Since the 1-fold strong ideal is precisely a strong ideal, these two conditions hold by Theorem 3.19. \(\square \)

Theorem 3.21. If \(\tilde{H} \) is a falling translation ideal of a BH-algebra \(X \), then

(i) \((\forall x, y, z \in X) (x \leq y \Rightarrow \Omega(y * x; \xi) \subseteq \Omega((x * z) * (y * z); \xi) \cap \Omega((z * x) * (z * y); \xi)) \).

(ii) \((\forall x, y, z \in X) (\Omega(x * y; \xi) \cap \Omega(y * x; \xi) \subseteq \Omega((x * z) * (y * z); \xi) \cap \Omega((z * x) * (z * y); \xi)) \).

Proof. (i) Let \(x, y, z \in X \) be such that \(\omega \in \Omega(y * x; \xi) \) and \(x \leq y \). Then \(y * x \in \xi(\omega) \) and \(0 = x * y \in \xi(\omega) \). Since \(\xi(\omega) \) is a translation ideal of \(X \), we have \((x * z) * (y * z) \in \xi(\omega) \) and \((z * x) * (z * y) \in \xi(\omega) \). Hence \(\omega \in \Omega((x * z) * (y * z); \xi) \cap \Omega((z * x) * (z * y); \xi) \). Hence (i) holds.

(ii) Let \(x, y, z \in X \) be such that \(\omega \in \Omega(x * y; \xi) \cap \Omega(y * x; \xi) \). Then \(x * y \in \xi(\omega) \) and \(y * x \in \xi(\omega) \). Since \(\xi(\omega) \) is a translation ideal of \(X \), we have \((x * z) * (y * z) \in \xi(\omega) \) and \((z * x) * (z * y) \in \xi(\omega) \). Hence \(\omega \in \Omega((x * z) * (y * z); \xi) \cap \Omega((z * x) * (z * y); \xi) \). Thus (ii) holds. \(\square \)

4. **Acknowledgements**

The authors wish to thank the referees for their valuable suggestions.

References

a Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea
Email address: duchil@hanmail.net

b Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea
Email address: sunshine@dongguk.edu