FUZZY r-MINIMAL β-OPEN SETS ON FUZZY MINIMAL SPACES

WON KEUN MINa AND MYEONG HWAN KIMb,∗

Abstract. We introduce the concept of fuzzy r-minimal β-open set on a fuzzy minimal space and basic some properties. We also introduce the concept of fuzzy r-M β-continuous mapping which is a generalization of fuzzy r-M continuous mapping and fuzzy r-M semicontinuous mapping, and investigate characterization for the continuity.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [5]. Chang [1] defined fuzzy topological spaces using fuzzy sets. In [2], Ramadan introduced the concept of smooth topological space, which is a generalization of fuzzy topological space. We introduced the concept of fuzzy r-minimal space [4] which is an extension of the smooth fuzzy topological space. The concepts of fuzzy r-open sets and fuzzy r-M continuous mappings are also introduced and studied. We introduced the concepts of fuzzy r-minimal semiopen sets [3] and fuzzy r-M semicontinuous mappings, and investigate properties of such concepts. In this paper, we introduce the concept of fuzzy r-minimal β-open set on a fuzzy minimal space and basic some properties. We also introduce the concept of fuzzy r-M β-continuous mapping which is a generalization of fuzzy r-M continuous mapping and fuzzy r-M semicontinuous mapping, and investigate characterization for the continuity.

2. Preliminaries

Let I be the unit interval $[0,1]$ of the real line. A member A of I^X is called a fuzzy set [5] of X. By $\tilde{0}$ and $\tilde{1}$, we denote constant maps on X with value 0 and $1,$

Received by the editors April 6, 2012. Accepted August 13, 2012.

2000 Mathematics Subject Classification. 54C08.

Key words and phrases. fuzzy minimal structures, r-minimal open, r-minimal β-open, fuzzy r-M continuous, fuzzy r-M β-continuous.

∗Corresponding author.

respectively. For any $A \in I^X$, A^c denotes the complement $\tilde{1} - A$. All other notations are standard notations of fuzzy set theory.

An fuzzy point x_α in X is a fuzzy set x_α defined as follows

$$x_\alpha(y) = \begin{cases}
\alpha & \text{if } y = x \\
0 & \text{if } y \neq x.
\end{cases}$$

A smooth topology $[2]$ on X is a map $T : I^X \to I$ which satisfies the following properties:

1. $T(\tilde{0}) = T(\tilde{1}) = 1$.
2. $T(A_1 \cap A_2) \geq T(A_1) \land T(A_2)$.
3. $T(\cup A_i) \geq \land T(A_i)$.

The pair (X, T) is called a smooth topological space.

Let X be a nonempty set and $r \in (0, 1] = I_0$. A fuzzy family $M : I^X \to I$ on X is said to have a fuzzy r-minimal structure $[4]$ if the family

$$M_r = \{ A \in I^X | M(A) \geq r \}$$

contains $\tilde{0}$ and $\tilde{1}$.

Then the (X, M) is called a fuzzy r-minimal space $[4]$ (simply r-FMS). Every member of M_r is called a fuzzy r-minimal open set. A fuzzy set A is called a fuzzy r-minimal closed set if the complement of A (simply, A^c) is a fuzzy r-minimal open set.

Let (X, M) be an r-FMS and $r \in I_0$. The fuzzy r-minimal closure of A, denoted by $mC(A, r)$, is defined as

$$mC(A, r) = \cap \{ B \in I^X : B^c \in M_r \text{ and } A \subseteq B \}.$$

The fuzzy r-minimal interior of A, denoted by $mI(A, r)$, is defined as

$$mI(A, r) = \cup \{ B \in I^X : B \in M_r \text{ and } B \subseteq A \}.$$

Theorem 2.1 ($[4]$). Let (X, M) be an r-FMS and $A, B \in I^X$.

1. $mI(A, r) \subseteq A$ and if A is a fuzzy r-minimal open set, then $mI(A, r) = A$.
2. $A \subseteq mC(A, r)$ and if A is a fuzzy r-minimal closed set, then $mC(A, r) = A$.
3. If $A \subseteq B$, then $mI(A, r) \subseteq mI(B, r)$ and $mC(A, r) \subseteq mC(B, r)$.
4. $mI(A, r) \cap mI(B, r) \supseteq mI(A \cap B, r)$ and $mC(A, r) \cup mC(B, r) \subseteq mC(A \cup B, r)$.
5. $mI(mI(A, r), r) = mI(A, r)$ and $mC(mC(A, r), r) = mC(A, r)$.
6. $\tilde{1} - mC(A, r) = mI(\tilde{1} - A, r)$ and $\tilde{1} - mI(A, r) = mC(\tilde{1} - A, r)$.

Let \((X, M)\) be an \(r\)-FMS and \(A \in I^X\). Then a fuzzy set \(A\) is called a fuzzy \(r\)-minimal semiopen set \([3]\) in \(X\) if
\[A \subseteq mC(mI(A, r), r). \]
A fuzzy set \(A\) is called a fuzzy \(r\)-minimal semiclosed set if the complement of \(A\) is fuzzy \(r\)-minimal semiopen.

Let \((X, M)\) and \((Y, N)\) be two \(r\)-FMS's. Then \(f : X \rightarrow Y\) is said to be fuzzy \(r\)-M continuous function if for every \(A \in N_r\), \(f^{-1}(A)\) is in \(M_r\).

3. Fuzzy \(r\)-minimal \(\beta\)-open Sets

In this section, we introduce and study the concept of fuzzy \(r\)-minimal \(\beta\)-open sets. The two operators \(m\beta C(A, r)\) and \(m\beta I(A, r)\) are introduced and investigated.

Definition 3.1. Let \((X, M)\) be an \(r\)-FMS and \(A \in I^X\). Then a fuzzy set \(A\) is called a fuzzy \(r\)-minimal \(\beta\)-open set in \(X\) if
\[A \subseteq mC(mI(mC(A, r), r), r). \]
A fuzzy set \(A\) is called a fuzzy \(r\)-minimal \(\beta\)-closed set if the complement of \(A\) is fuzzy \(r\)-minimal \(\beta\)-open.

Remark 3.2. From definitions of fuzzy \(r\)-minimal semiopen set and fuzzy \(r\)-minimal \(\beta\)-open set, the following implications are obtained but the converses are not true in general.

fuzzy \(r\)-minimal open \(\Rightarrow\) fuzzy \(r\)-minimal semiopen \(\Rightarrow\) fuzzy \(r\)-minimal \(\beta\)-open

Example 3.3. Let \(X = I = [0, 1]\) and let \(A\) and \(B\) be fuzzy sets defined as follows
\[A(x) = \begin{cases} -x + \frac{1}{2}, & \text{if } 0 \leq x \leq \frac{1}{4}, \\ \frac{1}{3}(x - 1) + \frac{1}{2}, & \text{if } \frac{1}{4} \leq x \leq 1; \end{cases} \]
\[B(x) = \frac{1}{4}(x + 3), & \text{if } 0 \leq x \leq 1. \]
Let us consider a fuzzy minimal structure
\[M(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \tilde{1}, A, \\ 0, & \text{otherwise.} \end{cases} \]
Then the fuzzy set \(B\) is a fuzzy \(\frac{2}{3}\)-minimal \(\beta\)-open set but not fuzzy \(\frac{2}{3}\)-minimal semiopen.
Lemma 3.4. Let (X, M) be an r-FMS. Then a fuzzy set A is fuzzy r-minimal β-closed if and only if $mI(mC(mI(A, r), r), r) \subseteq A$.

Theorem 3.5. Let (X, M) be an r-FMS. Any union of fuzzy r-minimal β-open sets is fuzzy r-minimal β-open.

Proof. Let A_i be a fuzzy r-minimal β-open set for $i \in J$. Then from Theorem 2.1,

\[A_i \subseteq mI(mC(A_i, r), r) \subseteq mI(mC(\bigcup A_i, r), r). \]

This implies $\bigcup A_i \subseteq mI(mC(\bigcup A_i, r), r)$ and so $\bigcup A_i$ is fuzzy r-minimal β-open. □

Remark 3.6. In general, the intersection of two fuzzy r-minimal β-open sets may not be fuzzy r-minimal β-open as shown in the next example.

Example 3.7. Let $X = I = [0, 1]$ and let A, B and C be fuzzy sets defined as follows

\[
A(x) = -\frac{1}{2}(x - 1), \quad \text{if } x \in I; \\
B(x) = \frac{1}{2}x, \quad \text{if } x \in I; \\
C(x) = \frac{3}{4}x, \quad x \in I.
\]

Let us consider a fuzzy minimal structure

\[
N(\mu) = \begin{cases}
\frac{2}{3}, & \text{if } \mu = 0, 1, A, B, A \cup B \\
0, & \text{otherwise}.
\end{cases}
\]

Then the fuzzy sets A and B are fuzzy $\frac{2}{3}$-minimal β-open. But $A \cap B$ is not fuzzy $\frac{2}{3}$-minimal β-open, because of $mI(mC(A \cap B, \frac{2}{3}), \frac{2}{3}) = 0$.

Definition 3.8. Let (X, M) be an r-FMS. For $A \in I^X$, $m\beta C(A, r)$ and $m\beta I(A, r)$, respectively, are defined as the following:

\[
m\beta C(A, r) = \cap\{F \in I^X : A \subseteq F, \ F \text{ is fuzzy } r\text{-minimal } \beta\text{-closed}\} \\
m\beta I(A, r) = \cup\{U \in I^X : U \subseteq A, U \text{ is fuzzy } r\text{-minimal } \beta\text{-open}\}.
\]

Theorem 3.9. Let (X, M) be an r-FMS and $A \in I^X$. Then

1. $m\beta I(A, r) \subseteq A$.
2. If $A \subseteq B$, then $m\beta I(A, r) \subseteq m\beta I(B, r)$.
3. A is r-minimal β-open iff $m\beta I(A, r) = A$.
4. $m\beta I(\beta mI(A, r), r) = m\beta I(A, r)$.
5. $m\beta C(\bar{1} - A, r) = \bar{1} - m\beta I(A, r)$ and $m\beta I(\bar{1} - A, r) = \bar{1} - m\beta C(A, r)$.
Proof. (1), (2), (3) and (4) are clear from Theorem 3.5.

(5) For $A \in I^X$,
$$\tilde{1} - m\beta I(A, r) = \tilde{1} - \bigcup\{\tilde{1} - U : U \subseteq A, U \text{ is fuzzy } r\text{-minimal } \beta\text{-open}\}$$
$$= \bigcap\{\tilde{1} - U : U \subseteq A, U \text{ is fuzzy } r\text{-minimal } \beta\text{-open}\}$$
$$= \bigcap\{\tilde{1} - U : \tilde{1} - A \subseteq \tilde{1} - U, U \text{ is fuzzy } r\text{-minimal } \beta\text{-open}\}$$
$$= m\beta C(\tilde{1} - A, r).$$

Similarly, we can show that $m\beta I(\tilde{1} - A, r) = \tilde{1} - m\beta C(A, r)$. \square

Theorem 3.10. Let (X, M) be an r-FMS and $A \in I^X$. Then

(1) $A \subseteq m\beta C(A, r)$.

(2) If $A \subseteq B$, then $m\beta C(A, r) \subseteq m\beta C(B, r)$.

(3) F is r-minimal β-closed iff $m\beta C(F, r) = F$.

(4) $m\beta C(m\beta C(A, r), r) = m\beta C(A, r)$.

Proof. It is similar to the proof of Theorem 3.9. \square

Lemma 3.11. Let (X, M) be an r-FMS and $A \in I^X$. Then

(1) $x_\alpha \in m\beta C(A, r)$ if and only if $A \cap V \neq \tilde{0}$ for every r-minimal β-open set V containing x_α.

(2) $x_\alpha \in m\beta I(A, r)$ if and only if there exists a fuzzy r-minimal β-open set G such that $G \subseteq A$.

Proof. (1) If there is a fuzzy r-minimal β-open set V containing x_α such that $A \cap V = \tilde{0}$, then $\tilde{1} - V$ is a fuzzy r-minimal β-closed set such that $A \subseteq \tilde{1} - V, x_\alpha \notin \tilde{1} - V$. From this fact, $x_\alpha \notin m\beta C(A, r)$.

The converse is easily proved by definition of the operator of $m\beta C(A, r)$.

(2) Obvious. \square

4. FUZZY r-M β-CONTINUITY AND FUZZY r-$M(M^*)$ β-OPEN MAPPINGS

In this section, we introduce the concepts of fuzzy r-M β-continuous mapping, fuzzy r-M β-open mapping and fuzzy r-M^* β-open mapping, and investigate characterization for such mappings.

Definition 4.1. Let (X, M) and (Y, N) be r-FMS’s. Then a mapping $f : (X, M) \rightarrow (Y, N)$ is said to be fuzzy r-M β-continuous if for each point x_α and each fuzzy r-minimal open set V containing $f(x_\alpha)$, there exists a fuzzy r-minimal β-open set U containing x_α such that $f(U) \subseteq V$.
Let \((X, M)\) and \((Y, N)\) be \(r\)-FMS’s. Then a mapping \(f : (X, M) \rightarrow (Y, N)\) is said to be fuzzy \(r\)-\(M\) semicontinuous \([3]\) if for each point \(x_\alpha\) and each fuzzy \(r\)-minimal open set \(V\) containing \(f(x_\alpha)\), there exists a fuzzy \(r\)-minimal semiopen set \(U\) containing \(x_\alpha\) such that \(f(U) \subseteq V\).

Remark 4.2. It is obvious that every fuzzy \(r\)-\(M\) semicontinuous mapping is fuzzy \(r\)-\(M\) \(\beta\)-continuous but the converse may not be true as shown in the next example.

fuzzy \(r\)-\(M\) continuous \(\Rightarrow\) fuzzy \(r\)-\(M\) semicontinuous \(\Rightarrow\) fuzzy \(r\)-\(M\) \(\beta\)-continuous

Example 4.3. For \(X = [0, 1]\), consider two fuzzy minimal structures \(M\) and \(N\) defined in Example 3.3 and Example 3.7, respectively. The identity mapping \(f : (X, M) \rightarrow (X, N)\) is fuzzy \(r\)-\(M\) \(\beta\)-continuous but not fuzzy \(r\)-\(M\) semicontinuous.

Theorem 4.4. Let \(f : (X, M) \rightarrow (Y, N)\) be a mapping on \(r\)-FMS’s \((X, M)\) and \((Y, N)\). Then the following statements are equivalent:

1. \(f\) is fuzzy \(r\)-\(M\) \(\beta\)-continuous.
2. \(f^{-1}(V)\) is a fuzzy \(r\)-minimal \(\beta\)-open set for each fuzzy \(r\)-minimal open set \(V\) in \(Y\).
3. \(f^{-1}(B)\) is a fuzzy \(r\)-minimal \(\beta\)-closed set for each fuzzy \(r\)-minimal closed set \(B\) in \(Y\).
4. \(f(m_\beta C(A, r)) \subseteq m C(f(A), r)\) for \(A \subseteq X\).
5. \(m_\beta C(f^{-1}(B), r) \subseteq f^{-1}(m C(B, r))\) for \(B \in I^Y\).
6. \(f^{-1}(m I(B, r)) \subseteq m I(f^{-1}(B), r)\) for \(B \in I^Y\).

Proof.

(1) \(\Rightarrow\) (2) Let \(V\) be any fuzzy \(r\)-minimal open set in \(Y\) and \(x_\alpha \in f^{-1}(V)\). By hypothesis, there exists a fuzzy \(r\)-minimal \(\beta\)-open set \(U\) containing \(x_\alpha\) such that \(f(U) \subseteq V\). This implies that \(\cup U = f^{-1}(V)\) and hence from Theorem 3.5, \(f^{-1}(V)\) is fuzzy \(r\)-minimal \(\beta\)-open.

(2) \(\Rightarrow\) (3) Obvious.

(3) \(\Rightarrow\) (4) For \(A \in I^X\),

\[
\begin{align*}
f^{-1}(m C(f(A), r)) &= f^{-1}(\cap \{ F \in I^Y : f(A) \subseteq F \text{ and } F \text{ is fuzzy } r\text{-minimal closed} \}) \\
&= \cap \{ f^{-1}(F) \in I^X : A \subseteq f^{-1}(F) \text{ and } f^{-1}(F) \text{ is fuzzy } r\text{-minimal } \beta\text{-closed} \} \\
&\supseteq \cap \{ K \in I^X : A \subseteq K \text{ and } K \text{ is fuzzy } r\text{-minimal } \beta\text{-closed} \} \\
&= m_\beta C(A, r).
\end{align*}
\]

Hence \(f(m_\beta C(A, r)) \subseteq m C(f(A), r)\).
(4) ⇒ (5) For $B \in I^Y$,
\[f(m_{\beta C}(f^{-1}(B), r)) \subseteq m_{C}(f(f^{-1}(B)), r) \subseteq m_{C}(B, r). \]
So $m_{\beta C}(f^{-1}(B), r) \subseteq f^{-1}(m_{C}(B, r))$.

(5) ⇒ (6) For $B \subseteq Y$, from Theorem 2.1 and Theorem 3.9, it follows
\[f^{-1}(m_{I}(B, r)) = f^{-1}(\tilde{1} - m_{C}(\tilde{1} - B, r)) = \tilde{1} - f^{-1}(m_{C}(\tilde{1} - B, r)) \subseteq \tilde{1} - m_{\beta C}(f^{-1}(\tilde{1} - B), r) = m_{\beta I}(f^{-1}(B), r). \]
This implies $f^{-1}(m_{I}(B, r)) \subseteq m_{\beta I}(f^{-1}(B), r)$.

(6) ⇒ (1) Let V be any fuzzy r-minimal open set containing $f(x_\alpha)$ for a fuzzy point x_α. By hypothesis, $x_\alpha \in f^{-1}(V) = f^{-1}(m_{I}(V, r)) \subseteq m_{\beta I}(f^{-1}(V), r)$. Since $x_\alpha \in m_{\beta I}(f^{-1}(V), r)$, by Lemma 3.11, there exists a fuzzy r-minimal β-open set U containing x_α such that $U \subseteq f^{-1}(V)$. This implies $f^{-1}(V)$ is fuzzy r-minimal β-open, and hence f is fuzzy r-M β-continuous. \qed

Definition 4.5. Let $f : (X, \mathcal{M}) \rightarrow (Y, \mathcal{N})$ be a mapping on r-FMS’s (X, \mathcal{M}) and (Y, \mathcal{N}). Then f is said to be fuzzy r-$M^*\beta$-open if for every fuzzy r-minimal β-open set A in X, $f(A)$ is fuzzy r-minimal open in Y.

Theorem 4.6. Let $f : (X, \mathcal{M}) \rightarrow (Y, \mathcal{N})$ be a mapping on r-FMS’s (X, \mathcal{M}) and (Y, \mathcal{N}).

(1) f is fuzzy r-$M^*\beta$-open.

(2) $f(m_{\beta I}(A, r)) \subseteq m_{I}(f(A), r)$ for $A \in I^X$.

(3) $m_{\beta I}(f^{-1}(B), r) \subseteq f^{-1}(m_{I}(B, r))$ for $B \in I^Y$.

Then (1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2) For $A \in I^X$,
\[f(m_{\beta I}(A, r)) = f(\bigcup\{B \in I^X : B \subseteq A, B \text{ is fuzzy } r\text{-minimal } \beta\text{-open}\}) = \bigcup\{f(B) \in I^Y : f(B) \subseteq f(A), f(B) \text{ is fuzzy } r\text{-minimal open}\} \subseteq \bigcup\{U \in I^Y : U \subseteq f(A), U \text{ is fuzzy } r\text{-minimal open}\} = m_{I}(f(A), r) \]
Hence $f(m_{\beta I}(A, r)) \subseteq m_{I}(f(A), r)$.

(2) ⇒ (3)

For $B \in I^Y$, from (3),
\[f(m\beta I(f^{-1}(B), r)) \subseteq m I(f(f^{-1}(B)), r) \subseteq m I(B, r). \]

Similarly, we have the implication (3) \(\Rightarrow\) (2).

Let \(X \) be a nonempty set and \(M : I^X \to I \) a fuzzy family on \(X \). The fuzzy \(r \)-minimal structure \(M_r \) is said to have the property (\(U \)) [4] if for \(A_i \in M_r (i \in J) \),

\[M_r(\cup A_i) \geq \wedge M_r(A_i). \]

Theorem 4.7 ([4]). Let \((X, M)\) be an \(r \)-FMS with the property (\(U \)). Then \(m I(A, r) = A \) if and only if \(A \) is fuzzy \(r \)-minimal open for \(A \in I^X \).

From the above Theorem 4.7, obviously the following corollary is obtained:

Corollary 4.8. Let \(f : (X, M) \to (Y, N) \) be a mapping on \(r \)-FMS’s \((X, M)\) and \((Y, N)\). If \((Y, N)\) has the property (\(U \)), then the following are equivalent:

1. \(f \) is fuzzy \(r \)-\(M^* \)-\(\beta \)-open.
2. \(f(m\beta I(A, r)) \subseteq m\beta I(f(A), r) \) for \(A \in I^X \).
3. \(m\beta I(f^{-1}(B), r) \subseteq f^{-1}(m\beta I(B, r)) \) for \(B \in I^Y \).

Definition 4.9. Let \(f : (X, M) \to (Y, N) \) be a mapping on \(r \)-FMS’s \((X, M)\) and \((Y, N)\). Then \(f \) is said to be fuzzy \(r \)-\(M \)-\(\beta \)-open if for fuzzy \(r \)-minimal open set \(A \) in \(X \), \(f(A) \) is fuzzy \(r \)-minimal \(\beta \)-open in \(Y \).

Theorem 4.10. Let \(f : (X, M) \to (Y, N) \) be a mapping on \(r \)-FMS’s \((X, M)\) and \((Y, N)\). Then the following are equivalent:

1. \(f \) is fuzzy \(r \)-\(M \)-\(\beta \)-open.
2. \(f(m I(A, r)) \subseteq m I(f(A), r) \) for \(A \in I^X \).
3. \(m I(f^{-1}(B), r) \subseteq f^{-1}(m I(B, r)) \) for \(B \in I^Y \).

Proof.

1. \(\Rightarrow \) (2) For \(A \in I^X \),

\[
\begin{align*}
f(m I(A, r)) &= f(\cup \{ B \in I^X : B \subseteq A, B \text{ is fuzzy } r \text{-minimal open} \}) \\
&= \cup \{ f(B) \in I^Y : f(B) \subseteq f(A), f(B) \text{ is fuzzy } r \text{-minimal } \beta \text{-open} \} \\
&\subseteq \cup \{ U \in I^X : U \subseteq f(A), U \text{ is fuzzy } r \text{-minimal } \beta \text{-open} \} \\
&= m \beta I(f(A), r)
\end{align*}
\]

Hence \(f(m I(A, r)) \subseteq m \beta I(f(A), r) \).

2. \(\Rightarrow \) (3)

For \(B \in I^Y \), from (3) it follows that
\[f(mI(f^{-1}(B), r)) \subseteq m\beta I(f(f^{-1}(B)), r) \subseteq m\beta I(B, r). \]

Hence we get (3).

(3) ⇒ (2) It is similar to the proof of the implication (2) ⇒ (3).

(2) ⇒ (1) Let \(A \) be a fuzzy \(r \)-minimal open set in \(X \). Then \(A = mI(A, r) \). By (2), \(f(A) = m\beta I(f(A), r) \) and hence by Theorem 3.9 (3), \(f(A) \) is fuzzy \(r \)-minimal \(\beta \)-open.

\[\square \]

References

\[^a \text{Department of Mathematics, Kangwon National University, Chuncheon 200-701, Korea} \]
\[\text{Email address: wkmin@kangwon.ac.kr} \]

\[^b \text{Department of Mathematics, Kangwon National University, Chuncheon 200-701, Korea} \]
\[\text{Email address: mhkim@kangwon.ac.kr} \]