AN EXTENSION WHICH IS A WEAKLY LINDELÖFF SPACE

YONG SIK YUN a and CHANGIL KIM b,∗

Abstract. In this paper, we construct an extension \((kX, kX)\) of a space \(X\) such that \(kX\) is a weakly Lindelöff space and for any continuous map \(f : X \rightarrow Y\), there is a continuous map \(g : kX \rightarrow kY\) such that \(g|_X = f\). Moreover, we show that \(\nu X\) is Lindelöff if and only if \(kX = \nu X\) and that for any \(P'\)-space \(X\) which is weakly Lindelöff, \(kX = \nu X\).

1. Introduction

All spaces in this paper are assumed to be Tychonoff spaces and \(\beta X(\nu X, \text{resp.})\) denotes the Stone-Čech compactification (the Hewitt realcompactification, resp.) of a space \(X\).

One of the many characterizations of \((\beta X, \beta X)\) is following:

1. \(\beta X\) is a compact space, and
2. for any continuous map \(f : X \rightarrow Y\), there is a continuous map \(f^\beta : \beta X \rightarrow \beta Y\) such that \(f^\beta|_X = f\) ([5]).

There have been many ramifications from the Stone-Čech compactifications of spaces. In fact, realcompactifications of spaces and zero-dimensional compactifications of zero-dimensional spaces have been studied by various authors ([3], [5]).

The purpose to write this paper is to construct an extension of a space which has similar properties to the above extensions. We first construct an extension \((kX, kX)\) of a space \(X\) such that \(\nu X \subseteq kX \subseteq \beta X\) and \(kX\) is a weakly Lindelöff space. We show that for any continuous map \(f : X \rightarrow Y\), there is a continuous map \(g : kX \rightarrow kY\) such that \(g|_X = f\). Blasco ([1], [2]) showed that for a paracompact (or separable) space \(X\), \(\nu X\) is a Lindelöff space if and only if every separating nest generated intersection ring on \(X\) is complete. We show that \(\nu X\) is Lindelöff if and

Received by the editors April 9, 2012. Revised June 4, 2012. Accepted June 21, 2012.
2000 Mathematics Subject Classification. 54D80, 54D60, 54D20.
Key words and phrases. filter, realcompactification, weakly Lindelöff space.
∗Corresponding author.
only if $kX = vX$. Using these, we then show that $kX = X$ if and only if X is Lindelöf. Finally, we will show that for any P'-space X which is weakly Lindelöf, $kX = vX$.

For the terminology, we refer to [3] and [5].

2. AN EXTENSION WHICH IS A WEAKLY LINDELÖFF SPACE

For any space X, let $Z(X)$ be the set of all zero-sets in X. A $Z(X)$-filter is called a z-filter on X.

Definition 2.1. Let X be a space and F a z-filter on X. Then F is called

1. real if it has the countable intersection property, and
2. free (fixed, resp.) if $\cap \{F \mid F \in F\} = \emptyset$ (or $\cap \{F \mid F \in F\} \neq \emptyset$, resp.).

A space X is called a realcompact space if every real z-ultrafilter on X is fixed. It is known that for any real z-ultrafilter F on a space X, $\cap \{cl_x^X(F) \mid F \in F\} \neq \emptyset$ ([3]).

Let X be a space and $kX = vX \cup \{p \in \beta X - vX \mid$ there is a real z-filter F on X such that $\cap \{cl_x^X(F) \mid F \in F\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(F) \mid F \in F\}\}$. Let X be a set and $F \subseteq P(X)$. For any $A \subseteq X$, let F_A denote the set $\{F \cap A \mid F \in F\}$. **Proposition 2.2.** Let X be a space. Then we have the following:

1. $vX \subseteq kX \subseteq \beta X$,
2. $k(vX) = kX$, and
3. kX is realcompact if for any non-empty zero-set Z in kX, $Z \cap X \neq \emptyset$.

Proof. (1) It is trivial.

(2) Let $p \in kX - vX$. Then there is a real z-filter F on X such that $\cap \{cl_x^X(F) \mid F \in F\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(F) \mid F \in F\}$. Let $F_p = \{cl_x^X(F) \mid F \in F\}$. Note that for any zero-set Z in X, $cl_x^X(Z)$ is a zero-set in vX and for any sequence (Z_n) in $Z(X)$, $cl_x^X(\cap \{Z_n \mid n \in N\}) = \cap \{cl_x^X(Z_n) \mid n \in N\}$ ([3]). Hence F_p is a real z-filter F on vX. Note that $\cap \{cl_x^X(H) \mid H \in F_p\} = \{cl_x^X(F) \mid F \in F\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(H) \mid H \in F_p\} = \cap \{cl_{\beta X}(F) \mid F \in F\}$. Since $v(vX) = vX$ and $\beta (vX) = \beta X, p \in k(vX)$. Hence $kX \subseteq k(vX)$.

Let $q \in k(vX)$ and $q \notin vX$. Since $v(vX) = vX$, there is a real z-filter G on vX such that $\cap \{G \mid G \in G\} = \emptyset$ and $q \in \cap \{cl_{\beta X}(G) \mid G \in G\}$. Then G is a real z-filter on X and $\cap \{cl_x^X(H) \mid H \in G_X\} = \cap \{G \mid G \in G\} = \emptyset$. Since $q \in \cap \{cl_{\beta X}(H) \mid H \in G_X\} = \cap \{cl_{\beta X}(G) \mid G \in G\}, q \in kX$. Hence $k(vX) \subseteq kX$.

(3) Take any real z-ultrafilter F on kX. By the assumption, for any $F \in F$,
Let $F \cap X \neq \emptyset$ and so \mathcal{F}_X is a z-filter on X. Let Z be a zero-set in X such that for any $F \in \mathcal{F}$, $Z \cap F \neq \emptyset$. Since $X \subseteq kX \subseteq \beta X$, there is a zero-set B in kX such that $Z = B \cap X$. Then for any $F \in \mathcal{F}$, $F \cap B \neq \emptyset$. Since \mathcal{F} is a z-ultrafilter on kX, $B \in \mathcal{F}$ and $B \cap X = Z \in \mathcal{F}_X$. Hence \mathcal{F}_X is a z-ultrafilter on X. Since \mathcal{F}_X is real, $\cap \{cl_vX(F \cap X) \mid F \in \mathcal{F}\} = \{q\}$ for some $q \in vX$. Note that $\cap \{cl_vX(F \cap X) \mid F \in \mathcal{F}\} = \cap \{cl_vX(F \cap vX) \mid F \in \mathcal{F}\}$ and for any $F \in \mathcal{F}$, $cl_vX(F \cap vX) \subseteq F$. Hence $q \in \cap \{F \mid F \in \mathcal{F}\}$ and so $\cap \{F \mid F \in \mathcal{F}\} \neq \emptyset$. Thus kX is a realcompact space.

Let S be a subspace of a space X. Then S is called $C(C^*, \text{ resp.})$-embedded in X if for any real-valued (bounded, resp.) continuous function f on S, there is a real-valued (bounded, resp.) continuous function g on X such that $g|_S = f$.

Note that X is a dense C-embedded subspace of Y if and only if $X \subseteq Y \subseteq vX$, equivalently, $vX = vY$ and that a dense subspace X of a space Y is C^*-embedded in Y if and only if $\beta X = \beta Y$ ([3]). Using these, we have the following:

Proposition 2.3. Let X be a dense C-embedded subspace of Y. Then $kX = kY$.

Proof. Since X is a dense C-embedded subspace of Y, $vX = vY([3])$. Let $p \in kX - vX$. Then there is a real z-filter \mathcal{F} on X such that $\cap \{cl_vX(F) \mid F \in \mathcal{F}\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(F) \mid F \in \mathcal{F}\}$. Let $G = \{G \in Z(Y) \mid G \cap X \in \mathcal{F}\}$. Then $G_X = \mathcal{F}$ and since $vX = vY$, G is a real z-filter on Y.

Let $G \in G$ and $x \in vX - cl_vX(G \cap X)$. Then there is a zero-set neighborhood Z of x in vX such that $G \cap Z \cap X = \emptyset$. Since $X \subseteq Y \subseteq vX$, there is a zero-set H in vX such that $G = H \cap Y$. Since $H \cap Z \cap X = \emptyset$ and $H \cap Z$ is a zero-set in vX, $H \cap Z = \emptyset([5])$. Hence $G \cap Z = \emptyset$ and $x \notin cl_vX(G)$. Thus $cl_vX(G) \subseteq cl_vX(G \cap X)$. Clearly, $cl_vX(G \cap X) \subseteq cl_vX(G)$ and so $cl_vX(G \cap X) = cl_vX(G)$.

Since $\cap \{cl_vX(G \cap X) \mid G \in G\} = \emptyset$, $\cap \{cl_{\beta Y}(G) \mid G \in G\} = \emptyset$. Since X is C^*-embedded in Y, $\beta X = \beta Y$ and $p \in \cap \{cl_{\beta Y}(G) \mid G \in G\}$. Hence $p \in kY$ and so $kX \subseteq kY$.

Similarly, we have $kY \subseteq kX$.

For any space X, let $k_X : X \rightarrow kX$ denote the inclusion map. Then (kX, k_X) is an extension of X.

Note that for any continuous map $f : X \rightarrow Y$, there is a unique continuous map $f^v : vX \rightarrow vY$ such that $f^v |_X = f$.

Proposition 2.4. Let $f : X \rightarrow Y$ be a continuous map. Then there is a unique continuous map $g : kX \rightarrow kY$ such that $g \circ k_X = k_Y \circ f$.

AN EXTENSION WHICH IS A WEAKLY LINDELÖFF SPACE
Proof. Note that there is a continuous map \(h : \beta X \to \beta Y \) such that \(h \circ \beta_X = \beta_Y \circ f \) and \(h(vX) \subseteq vY \). Let \(p \in kX - vX \). Then there is a real \(z \)-filter \(F \) on \(X \) such that \(\cap \{ \text{cl}_v(X)\} F \subseteq F \) and \(p \in \cap \{ \text{cl}_\beta_X(F)\} F \subseteq F \}. \) Since \(F \) is a real \(z \)-filter on \(X \), \(\mathcal{G} \) is a real \(z \)-filter on \(Y \). Let \(G \subseteq \mathcal{G} \). Then \(h^{-1}(G) \subseteq \mathcal{F} \). Since \(p \in \text{cl}_\beta_X(h^{-1}(G)) \subseteq \text{cl}_\beta_Y(h^{-1}(G)) \subseteq \text{cl}_\beta_Y(G) \). Hence \(p \in \cap \{ \text{cl}_\beta_X(G)\} G \subseteq \mathcal{G} \) and so \(h(p) \in kY \).

Let \(g : kX \to kY \) be the restriction and corestriction of \(h \) with respect to \(kX \) and \(kY \), respectively. Then \(g : kX \to kY \) is a continuous map and \(g \circ kX = kY \circ f \). Since \(kX : X \to kX \) is a dense embedding, such an \(g \) is unique. \(\square \)

It is well-known that a space \(X \) is Lindel"off if and only if for any real \(z \)-filter \(F \) in \(X \), \(\cap \{ F \mid F \in \mathcal{F} \} \neq \emptyset \).

Proposition 2.5. Let \(X \) be a space. Then the following are equivalent:

1. \(vX = kX \),
2. \(vX \) is a Lindel"off space,
3. for any free real \(z \)-filter \(F \) on \(X \), \(\cap \{ \text{cl}_v(X)\} F \subseteq F \} \neq \emptyset \), and
4. for any free real \(z \)-filter \(F \) on \(X \), there is a free real \(z \)-ultrafilter \(\mathcal{A} \) on \(X \) such that \(\mathcal{F} \subseteq \mathcal{A} \).

Proof. (1) \(\Rightarrow \) (2) Take any real \(z \)-filter \(\mathcal{G} \) on \(vX \). Then \(\mathcal{G}_X \) is a real \(z \)-filter on \(X \). Suppose that \(\cap \{ G \cap X \mid G \in \mathcal{G} \} = \emptyset \). Then \(\cap \{ \text{cl}_\beta_X(G \cap X) \mid G \in \mathcal{G} \} \neq \emptyset \). Pick \(p \in \cap \{ \text{cl}_\beta_X(G \cap X) \mid G \in \mathcal{G} \} \). Then \(p \in kX \) and since \(kX = vX \), \(p \in vX \). Hence \(p \in \cap \{ \text{cl}_\beta_X(G \cap X) \mid G \in \mathcal{G} \} \) \(vX = \cap \{ G \mid G \in \mathcal{G} \} \) and so \(\cap \{ G \mid G \in \mathcal{G} \} \neq \emptyset \). Thus \(vX \) is a Lindel"off space.

(2) \(\Rightarrow \) (3) It is trivial.

(3) \(\Rightarrow \) (4) Let \(\mathcal{F} \) be a free real \(z \)-filter on \(X \). By the assumption, \(\cap \{ \text{cl}_v(X)\} F \subseteq F \} \neq \emptyset \). Pick \(p \in \cap \{ \text{cl}_v(X)\} F \subseteq F \} \}. \) Let \(\mathcal{A}_p = \{ A \in Z(X) \mid p \in \text{cl}_v(X)\} \}). \) Then \(\mathcal{A}_p \) is a free real \(z \)-ultrafilter on \(X \) and \(\mathcal{F} \subseteq \mathcal{A}_p \).

(4) \(\Rightarrow \) (1) Let \(p \in kX - vX \). Then there is a real \(z \)-filter \(F \) on \(X \) such that \(\cap \{ \text{cl}_v(X)\} F \subseteq F \} \neq \emptyset \) and \(p \in \cap \{ \text{cl}_\beta_X(G \cap X) \mid G \in \mathcal{G} \} \). Since \(\mathcal{F} \) is free, by (4), there is a free real \(z \)-ultrafilter \(\mathcal{A} \) on \(X \) such that \(\mathcal{F} \subseteq \mathcal{A} \). Since \(\cap \{ \text{cl}_v(X)\} A \subseteq A \} \neq \emptyset \), \(\cap \{ \text{cl}_v(X)\} F \subseteq F \} \neq \emptyset \) and this is a contradiction. \(\square \)

By Proposition 2.2. and Proposition 2.5., we have the following:

Corollary 2.6. Let \(X \) be a space. Then \(kX = X \) if and only if \(X \) is Lindel"off.

Recall that a space \(X \) is called a pseudo-compact space if every real-valued
continuous function on X is bounded, equivalently, $vX = \beta X$.

Corollary 2.7. If X is a pseudo-compact space, then $kX = \beta X$.

Let X be a space. The collection $\mathcal{R}(X)$ of all regular closed sets in X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet, and complementation operations are defined as follows: For any $A \in \mathcal{R}(X)$ and any $\mathcal{F} \subseteq \mathcal{R}(X)$,

\[\bigvee \mathcal{F} = \text{cl}_X((\bigcup \{F \mid F \in \mathcal{F}\}), \quad \bigwedge \mathcal{F} = \text{cl}_X(\text{int}_X(\bigcap \{F \mid F \in \mathcal{F}\})), \quad A' = \text{cl}_X(X - A). \]

A sublattice of $\mathcal{R}(X)$ is a subset of $\mathcal{R}(X)$ that contains \emptyset, X and is closed under finite joins and finite meets ([7]).

An $\mathcal{R}(X)$-filter \mathcal{A} is said to have the countable meet property if for any sequence (A_n) in $\mathcal{R}(X)$, $\bigwedge \{A_n \mid n \in \mathbb{N}\} \neq \emptyset$.

Let $Z(X)^\# = \{\text{cl}_X(\text{int}_X(A)) \mid A \in Z(X)\}$. Then $Z(X)^\#$ is a sublattice of $\mathcal{R}(X)$.

A space X is called a weakly Lindelöf space if for any open cover \mathcal{U} of X, there is a countable subset \mathcal{V} of \mathcal{U} such that $\cup \{V \mid V \in \mathcal{V}\}$ is dense in X.

A space X is a weakly Lindelöf space if and only if for any $Z(X)^\#$-filter \mathcal{A} with the countable meet property, $\cap \{A \mid A \in \mathcal{A}\} \neq \emptyset$ ([4]).

Theorem 2.8. Let X be a space. Then kX is a weakly Lindelöf space.

Proof. Take any $Z(X)^\#$-filter \mathcal{U} on kX with the countable meet property. Let $\mathcal{F} = \{Z \in Z(kX) \mid \text{cl}_X(\text{int}_X(Z)) \in \mathcal{U}\}$. Clearly, $\emptyset \notin \mathcal{F} \neq \emptyset$. For any $A, B \in \mathcal{F}$, $\text{cl}_X(\text{int}_X(A \cap B)) = \text{cl}_X(\text{int}_X(A)) \cap \text{cl}_X(\text{int}_X(B)) \in \mathcal{U}$ and hence $A \cap B \in \mathcal{F}$. Thus \mathcal{F} is a z-filter on kX. By the definition of \mathcal{F}, for any $F \in \mathcal{F}$, $F \cap X \neq \emptyset$. Hence \mathcal{F}_X is also a z-filter on X. Let (A_n) be a sequence in \mathcal{F}_X. For any $n \in \mathbb{N}$, there is a $B_n \in \mathcal{F}$ such that $A_n = B_n \cap X$. Since \mathcal{U} has the countable meet property, $\text{cl}_X(\text{int}_X(\cap \{B_n \mid n \in \mathbb{N}\})) \neq \emptyset$ and since X is dense in kX, $\text{cl}_X(\text{int}_X(\cap \{B_n \mid n \in \mathbb{N}\})) \cap X \neq \emptyset$. Since $\text{cl}_X(\text{int}_X(\cap \{B_n \mid n \in \mathbb{N}\})) \cap X = \text{cl}_X(\text{int}_X(\cap \{B_n \cap X \mid n \in \mathbb{N}\})) = \text{cl}_X(\text{int}_X(\cap \{B_n \mid n \in \mathbb{N}\})) = \text{cl}_X(\text{int}_X(\cap \{A_n \mid n \in \mathbb{N}\}))$, $\cap \{A_n \mid n \in \mathbb{N}\} \neq \emptyset$ and so \mathcal{F}_X has the countable intersection property. Note that $\cap \{\text{cl}_{vX}(F \cap X) \mid F \in \mathcal{F}\} \neq \emptyset$. Pick $x \in \cap \{\text{cl}_{vX}(F \cap X) \mid F \in \mathcal{F}\}$. Let $U \in \mathcal{U}$. Suppose that $x \notin U$. Since \mathcal{U} is a closed set in kX, there is a zero-set Z in kX such that $x \notin Z$ and $U \subseteq Z$. Then $Z \cap X \in \mathcal{F}_X$ and since $\text{cl}_{vX}(Z \cap X) = Z \cap vX$, $\text{cl}_{vX}(Z \cap X) = Z \cap vX$. AN EXTENSION WHICH IS A WEAKLY LINDELÖFF SPACE 277
since \(cl_{\nu X}(Z \cap X) = Z \cap \nu X, \ x \in Z \). This is a contradiction and so \(x \in U \). Hence \(x \in \cap \{U \mid U \in \mathcal{U} \} \).

Assume that \(\cap \{cl_{\nu X}(F \cap X) \mid F \in \mathcal{F} \} = \emptyset \). Let \(p \in \cap \{cl_{\beta X}(F \cap X) \mid F \in \mathcal{F} \} \). Then \(p \in kX \). Let \(U \in \mathcal{U} \). Suppose that \(p \notin U \). Then there is a zero-set \(B \) in \(\beta X \) such that \(p \notin B \) and \(U \subseteq B \). Since \(B \cap X \in \mathcal{F}_X \), \(p \in cl_{\beta X}(B \cap X) \subseteq B \). This is a contradiction and so \(p \in U \). Hence \(p \in \cap \{U \mid U \in \mathcal{U} \} \).

Thus \(\cap \{U \mid U \in \mathcal{U} \} \neq \emptyset \) and \(kX \) is a weakly Lindelöf space.

A space \(X \) is called a \(P' \)-space if for any non-empty zero-set \(Z \) in \(X \), \(int_X(Z) \neq \emptyset \), equivalently, every zero-set in \(X \) is a regular closed set in \(X \). Clearly, a space \(X \) is a \(P' \)-space if and only if \(\nu X \) is a \(P' \)-space. If \(X \) is a realcompact and locally compact space, then \(\beta X - X \) is a \(P' \)-space ([6]).

Proposition 2.9. Let \(X \) be a \(P' \)-space. Then \(X \) is a weakly Lindelöf space if and only if \(X \) is a Lindelöf space.

Proof. Suppose that \(X \) is a weakly Lindelöf space. Let \(\mathcal{F} \) be a real \(z \)-filter on \(X \). Since \(X \) is a \(P' \)-space, \(Z(X) = Z(X)^\# \) and since \(Z(X) \) is closed under countable intersections, for any sequence \((A_n) \) in \(Z(X) \),

\[
\bigwedge \{A_n \mid n \in N\} = cl_X(int_X(\cap \{A_n \mid n \in N\})) = \cap \{A_n \mid n \in N\}.
\]

Hence \(\mathcal{F} \) is a \(Z(X)^\# \)-filter with the countable meet property. Since \(X \) is a weakly Lindelöf space, \(\cap \{F \mid F \in \mathcal{F} \} \neq \emptyset \) and hence \(X \) is a Lindelöf space.

The converse is trivial.

A space with a dense weakly Lindelöf space is also a weakly Lindelöf space. Using this, Proposition 2.9. and Proposition 2.5., we have the following:

Corollary 2.10. For any \(P' \)-space \(X \) which is weakly Lindelöf, \(\nu X \) is a Lindelöf space and \(\nu X = kX \).

References

aDepartment of Mathematics, Jeju National University, Jeju 690-756, Korea
Email address: yunys@jejunu.ac.kr

bDepartment of Mathematics Education, Dankook University, 126, Jukjeon, Yongin 448-701, Korea
Email address: kci206@hanmail.net