This paper describes a sensitivity-coefficient-based iterative method for detecting cracks in a structure. The sensitivity coefficients of a cracked structure are obtained by changing its eigenvectors. The proposed method is applied to a cracked cantilever. The crack is modeled as a rotational stiffness. The predicted cracks are in good agreement with those from a structural reanalysis of the cracked structure.
고유값공방수의 변화만 고려하였기 때문이다.

본 연구에서는 균열 발생 전, 후의 구조물을 이용하여 감도계수를 해석한 다음, 이 감도계수와 균열 전, 후의 고유값공방수로부터 반복법을 사용하여 일반화된 강성변화량행렬을 구하는 방법을 제시한다. 이 일반화된 강성변화량행렬을 외관보에 적용하여 근위를 탐지하고 유효성을 검증한다.

2. 이론

구조물에 균열이 발생하여도 질량은 변하지 않고 가장 먼저 감소되는 부분으로 구조물의 균열 전 후의 동특성은 다음과 같다.

\[
(K - \lambda M) \phi = 0 \quad (1)
\]

\[
(K - \lambda M) \phi = [(K + \Delta K) - (\lambda_0 + \Delta \lambda) M] \phi = 0 \quad (2)
\]

여기서 \(K, M, \lambda, \Delta K \)은 각각 구조물 균열 발생 전의 강성행렬과 질량행렬, 균열 발생 후의 강성행렬, 강성행렬의 변화량이며 \(\lambda, \lambda_0, \phi, \Delta \phi \)는 각각 구조물 균열 발생 후의 고유치와 고유벡터, 구조물 균열 발생 전의 고유치, 고유벡터, 고유치 및 고유벡터 변화량이다.

2.1 균열을 갖는 유한요소의 강성행렬

Fig. 1과 같이 길이가 \(L \)인 외관보에 균열이 \(L_1 \)에 있는 경우 강성행렬은 등가 회전스프링으로 대체될 수 있으며 균열을 가진 유한요소는 균열이 없는 보 요소의 끝 끝 등가 회전스프링이 부착된 모델로 생각할 수 있다.

균열이 없고 길이가 \(L \), 단면 2차모멘트가 \(I \), 종성계수가 \(E \)인 보의 경우 전단력은 \(V \), 급심모멘트는 \(M \), 청 방향 변위는 \(y \), 청 방향 기울기를 \(\varphi \)라 하면 유한 요소의 강성행렬은 다음 식과 같다.

\[
[K]_e =
\begin{bmatrix}
12EI & 6EI & -12EI & 6EI \\
6EI & 4EI & -6EI & 2EI \\
6EI & 0 & 12EI & 0 \\
6EI & 2EI & -6EI & 4EI \\
L^3 & L^2 & L^2 & L^2 \\
L^2 & L & L & L \\
L^2 & 2L & 0 & 0 \\
L^2 & 0 & 0 & 0 \\
\end{bmatrix}
\quad (3)
\]

또한 보의 유한요소 오른쪽과 왼쪽 끝 균열을 갖는 보의 강성행렬\(^\text{11}\)을 \([K]_R, [K]_L\)이라고 하면 다음과 같다.

\[
[K]_R =
\begin{bmatrix}
12EI & 6EI & -12EI & 6EI \\
6EI & 4EI & -6EI & 2EI \\
6EI & 0 & 12EI & 0 \\
6EI & 2EI & -6EI & 4EI \\
L^3 & L^2 & L^2 & L^2 \\
L^2 & L & L & L \\
L^2 & 2L & 0 & 0 \\
L^2 & 0 & 0 & 0 \\
\end{bmatrix}
\quad (4a)
\]

\[
[K]_L =
\begin{bmatrix}
12EI & 6EI & -12EI & 6EI \\
6EI & 4EI & -6EI & 2EI \\
6EI & 0 & 12EI & 0 \\
6EI & 2EI & -6EI & 4EI \\
L^3 & L^2 & L^2 & L^2 \\
L^2 & L & L & L \\
L^2 & 2L & 0 & 0 \\
L^2 & 0 & 0 & 0 \\
\end{bmatrix}
\quad (4b)
\]

여기서 \(\theta_1 \sim \theta_6 \)는 다음과 같다.

\[
\begin{align*}
\theta_1 &= \frac{1+\alpha}{4+\alpha}, \quad \theta_2 = \frac{2+\alpha}{4+\alpha}, \quad \theta_3 = \frac{\alpha}{4+\alpha} \\
\theta_4 &= \frac{3+\alpha}{4+\alpha}, \quad \theta_5 = \frac{\alpha}{4+\alpha}, \quad \theta_6 = \frac{\alpha}{4+\alpha}
\end{align*}
\quad (5)
\]

여기서 \(\alpha = k_0/(EI) \)로 무단원 계수이며 \(k_0 \)는 회전스프링 상수이다. \(\alpha \) 값은 균열이 없을 때는 \(\infty \)이며 균열이 커질수록 점점 작아져 0에 가까워지게 된다.

2.2 균열을 갖는 유한요소의 질량행렬

보에 균열이 발생하여도 질량은 변하지 않는다고 볼 수 있으므로 질량행렬은 균열이 발생하지 않았을 때의 질량행렬과 같으며 다음과 같다.
여기서 ρ는 밀도, A는 요소의 단면적이다.

2.3 균열 발생 후 감도계수의 해석

Fox의 균열발생 개념을 균열 발생 전 고유벡터의 선형합으로 표시할 수 있다고 다음과 같이 가정하였다.

$$\Delta \phi_i = \sum_{k=1}^{n} \alpha_{ik} \phi_k$$ \hspace{1cm} (7)

여기서 $\{\Delta \phi_i\}$는 i차 모드의 고유벡터 변화량이고 α_{ik}는 k차 모드에 대한 i차 모드의 감도계수이며 $\{\phi_k\}_k$는 구조 변경 전 k차 모드의 고유벡터이다. 식 (7)을 확장하면 다음 식으로 된다.

$$[\Delta \phi] = [\alpha] [\phi]$$ \hspace{1cm} (8)

$$[\alpha] = [\Delta \phi][\phi]^{-1}$$ \hspace{1cm} (9)

여기서 $[\Delta \phi]$, $[\alpha]$, $[\phi]$는 고유벡터 변화량행렬과 감도계수행렬, 구조물 균열 발생 전 고유벡터행렬이다. 즉 감도계수행렬은 구조물 균열 발생 전 고유벡터행렬과 균열 발생 후의 고유벡터 변화량행렬로부터 구할 수 있다.

2.4 균열 발생 후 일반화된 강성변화량 해석

균열 발생 후 구조물의 일반화된 강성 변화량은 진성 변화량을 해석하기 위해 기존의 방법을 사용하였으나 이 때 진성 변화를 무시할 수 있으므로 감도계수는 다음과 같이 된다.

$$\omega_j^2 = \omega_{\alpha j}^2 + 2\alpha_{\alpha j} + \Delta K_{\alpha j} + \sum_{k=1}^{n} \alpha_{\alpha k} \Delta K_{\alpha k} + \sum_{k=1}^{n} \alpha_{\alpha k}^2 \omega_{\alpha k}$$ \hspace{1cm} (10)

$$+ \sum_{k=1}^{n} \alpha_{\alpha k} \Delta K_{\alpha k} + \sum_{l=1}^{n} \alpha_{\alpha l} \Delta K_{\alpha l} i = j$$

$$+ \sum_{j=1}^{n} \alpha_{\alpha j} \Delta K_{\alpha j} + \sum_{j=1}^{n} \alpha_{\alpha j} \Delta K_{\alpha j} i \neq j$$ \hspace{1cm} (11)

여기서 $\omega_{\alpha j}$와 $\omega_{\alpha k}$는 $\lambda_{\alpha j}$와 $\lambda_{\alpha k}$이고

$$\Delta K_{\alpha j} = \{\phi_{\alpha j}\}^T \Delta K \{\phi_{\alpha j}\}$$ \hspace{1cm} (12)

여기서 $\Delta K_{\alpha j}$는 일반화된 강성변화량(Generalized change of mass and stiffness)이라고 정의하고 식 (12)을 행렬로 다음과 같이 나타낼 수 있다.

$$[\phi_{\alpha j}]^T \Delta K \{\phi_{\alpha j}\} = \{\Delta K_{\alpha j}\}$$ \hspace{1cm} (13)

여기서 식 (10)~(13)은 균열 발생 전, 후의 구조물의 동정성과 동정성 변화량을 가지고 감도계수를 해석하여 균열을 탐지하는데 사용된다.

2.5 균열 탐지 알고리즘

균열을 탐지하기 위해 다음과 같은 방법을 사용하였다.

2. 감도계수행렬을 식 (10)~(13)에 대입하여 일반화된 강성변화량행렬 $[\Delta K_{\alpha}]$을 구한다. 식 (9)을 이용하여 구한 감도계수 α_{ij}를 식 (10), (11)에 대입하면 N개 자유도수의 경우 방정식은 $N \times N$ 개수의 N개의 방정식을 구할 수 있다. 그러나 이렇게 하면 행렬의 크기가 자유도수의 제품에 비해하여 회로의 비효율적이 되어 다음과 같은 방법을 사용하여 ΔK_{α}를 구한다.

먼저 초기가지를 구하기 위해 감도계수 α_{ij}와 ΔK_{ij}는 미소량이라고 가정하면 식 (10), (11)에서 2차 항들은 무시할 수 있고 다음과 같은 반복식의 알고리즘을 유도한다.

$$\Delta K_{ij}^{(1)} = \omega_{ij}^2 - \omega_{ij}^2 i = j$$ \hspace{1cm} (14)

$$\Delta K_{ij}^{(1)} = \omega_{ij}^2 - \omega_{ij}^2 - 2\alpha_{ij} \Delta K_{ij} - \sum_{k=1}^{n} \alpha_{ik} \Delta K_{ik}^{(1)} - \sum_{k=1}^{n} \alpha_{kj} \Delta K_{kj}^{(1)} i \neq j$$ \hspace{1cm} (15)

$$\Delta K_{ij}^{(j+1)} = \omega_{ij}^2 - \omega_{ij}^2 - 2\alpha_{ij} \Delta K_{ij} - \sum_{k=1}^{n} \alpha_{ik} \Delta K_{ik}^{(j)} - \sum_{k=1}^{n} \alpha_{kj} \Delta K_{kj}^{(j)} i = j$$ \hspace{1cm} (16)

$$\Delta K_{ij}^{(j)} = \omega_{ij}^2 - \omega_{ij}^2 - 2\alpha_{ij} \Delta K_{ij} - \sum_{k=1}^{n} \alpha_{ik} \Delta K_{ik}^{(j)} - \sum_{k=1}^{n} \alpha_{kj} \Delta K_{kj}^{(j)} i \neq j$$ \hspace{1cm} (17)
3) 위에서 구한 ΔK_{ij}를 일반화된 강성변화량 행렬로 $[\Delta K_{ij}]$로 만든다.
4) 식 (13)로부터

$$[\Delta \alpha] = \{(\alpha_i)\}^{-1} [\Delta K_{ij}] \{\alpha_i\}^{-1}$$

(18)

이므로 강성행렬의 변화량인 $[\Delta \alpha]$를 구한다.
5) 이 $[\Delta \alpha]$를 강성행렬과 비교하여 식 (4)에 있는 θ를 해석한 다음 α를 구하고 이 α로부터 k_p를 구한다.

3. 컴퓨터 모사 실험

Fig. 2은 위에서 해석한 이론을 적용하기 위해 사용한 외팔보의 모델을 나타낸다. 길이 $L = 300$ mm, 높이 $h = 10$ mm, 폭 $b = 20$ mm, 세로탄성계수 $E = 210$ GPa, 포이송 비 $v = 0.3$, 밀도 $\rho = 7860$ kg/m3인 보를 등 간격으로 5개 요소로 나누었으며 균열은 보의 외팔에 있는 것으로 모델링하였고 시뮬레이션은 다음의 세 가지 경우를 하였다.

![Crack model in cantilever beam](image)

Fig. 2 Crack model in cantilever beam

Table 1 Comparison of natural frequencies before and after crack (unit: Hz)

<table>
<thead>
<tr>
<th>Mode</th>
<th>CASE 0 ω_n</th>
<th>CASE 1 ω_n</th>
<th>CASE 2 ω_n</th>
<th>ω_n (%)</th>
<th>ω_n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92.82</td>
<td>80.37</td>
<td>90.66</td>
<td>86.59</td>
<td>97.68</td>
</tr>
<tr>
<td>2</td>
<td>582.08</td>
<td>477.08</td>
<td>475.46</td>
<td>81.96</td>
<td>81.68</td>
</tr>
<tr>
<td>3</td>
<td>1634.88</td>
<td>1425.46</td>
<td>1499.87</td>
<td>87.19</td>
<td>91.74</td>
</tr>
<tr>
<td>4</td>
<td>3229.63</td>
<td>3163.38</td>
<td>2954.24</td>
<td>97.95</td>
<td>91.47</td>
</tr>
<tr>
<td>5</td>
<td>5360.43</td>
<td>4720.38</td>
<td>4702.21</td>
<td>79.66</td>
<td>87.72</td>
</tr>
<tr>
<td>6</td>
<td>8905.38</td>
<td>8084.49</td>
<td>8447.02</td>
<td>90.78</td>
<td>94.85</td>
</tr>
<tr>
<td>7</td>
<td>13023.59</td>
<td>13009.21</td>
<td>11570.32</td>
<td>99.89</td>
<td>88.84</td>
</tr>
<tr>
<td>8</td>
<td>18887.21</td>
<td>16165.63</td>
<td>18255.43</td>
<td>85.59</td>
<td>96.65</td>
</tr>
<tr>
<td>9</td>
<td>26830.14</td>
<td>24211.49</td>
<td>23832.52</td>
<td>90.24</td>
<td>88.83</td>
</tr>
<tr>
<td>10</td>
<td>39473.60</td>
<td>39375.81</td>
<td>39024.32</td>
<td>99.75</td>
<td>98.86</td>
</tr>
</tbody>
</table>

1) CASE 0: 균열이 없는 경우 $k_p = \infty$
2) CASE 1: 2번 요소 외팔쪽에 균열이 있는 경우 $k_p = 3.0$ kNm/rad
3) CASE 2: 3 번 요소 외팔쪽에 균열이 있는 경우 $k_p = 5.0$ kNm/rad

4. 결과 및 고찰

4.1 고유진동수 변화 검토

Table 1은 균열 전후의 고유진동수를 나타낸 표이며 외팔보의 5개 요소로 나누었으므로 10개의 고유진동수를 존재한다. 보에 균열이 발생하여 고유진동수가 낮아짐을 볼 수 있었다.

Table 2 Comparison of eigenvectors before and after crack

<table>
<thead>
<tr>
<th>Mode</th>
<th>CASE 0</th>
<th>CASE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_n</td>
<td>$\phi_1 \times 10^{-3}$</td>
<td>$\phi_1 \times 10^{-3}$</td>
</tr>
<tr>
<td>1</td>
<td>0.0002</td>
<td>0.0059</td>
</tr>
<tr>
<td>2</td>
<td>0.0009</td>
<td>0.0226</td>
</tr>
<tr>
<td>3</td>
<td>-0.0018</td>
<td>-0.0050</td>
</tr>
<tr>
<td>4</td>
<td>-0.0023</td>
<td>-0.0063</td>
</tr>
<tr>
<td>5</td>
<td>-0.0030</td>
<td>-0.0075</td>
</tr>
<tr>
<td>6</td>
<td>0.0011</td>
<td>-0.0067</td>
</tr>
<tr>
<td>7</td>
<td>0.0003</td>
<td>-0.0029</td>
</tr>
<tr>
<td>8</td>
<td>-0.0008</td>
<td>-0.0029</td>
</tr>
<tr>
<td>9</td>
<td>0.0012</td>
<td>0.0247</td>
</tr>
<tr>
<td>10</td>
<td>0.0002</td>
<td>0.0064</td>
</tr>
<tr>
<td>ω_n</td>
<td>$\phi_1 \times 10^{-3}$</td>
<td>$\phi_1 \times 10^{-3}$</td>
</tr>
<tr>
<td>1</td>
<td>0.0001</td>
<td>0.0044</td>
</tr>
<tr>
<td>2</td>
<td>0.0009</td>
<td>0.0244</td>
</tr>
<tr>
<td>3</td>
<td>-0.0011</td>
<td>-0.0031</td>
</tr>
<tr>
<td>4</td>
<td>-0.0028</td>
<td>-0.0095</td>
</tr>
<tr>
<td>5</td>
<td>-0.0022</td>
<td>-0.0065</td>
</tr>
<tr>
<td>6</td>
<td>-0.0008</td>
<td>-0.0059</td>
</tr>
<tr>
<td>7</td>
<td>-0.0003</td>
<td>-0.0064</td>
</tr>
<tr>
<td>8</td>
<td>-0.0008</td>
<td>-0.0048</td>
</tr>
<tr>
<td>9</td>
<td>0.0007</td>
<td>0.0161</td>
</tr>
<tr>
<td>10</td>
<td>0.0002</td>
<td>0.0084</td>
</tr>
</tbody>
</table>

Table 2 Comparison of eigenvectors before and after crack

<table>
<thead>
<tr>
<th>Mode</th>
<th>CASE 2</th>
<th>CASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_n</td>
<td>$\phi_1 \times 10^{-3}$</td>
<td>$\phi_1 \times 10^{-3}$</td>
</tr>
<tr>
<td>1</td>
<td>0.0002</td>
<td>0.0059</td>
</tr>
<tr>
<td>2</td>
<td>0.0009</td>
<td>0.0226</td>
</tr>
<tr>
<td>3</td>
<td>-0.0018</td>
<td>-0.0050</td>
</tr>
<tr>
<td>4</td>
<td>-0.0023</td>
<td>-0.0063</td>
</tr>
<tr>
<td>5</td>
<td>-0.0030</td>
<td>-0.0075</td>
</tr>
<tr>
<td>6</td>
<td>0.0011</td>
<td>-0.0067</td>
</tr>
<tr>
<td>7</td>
<td>0.0003</td>
<td>-0.0029</td>
</tr>
<tr>
<td>8</td>
<td>-0.0008</td>
<td>-0.0029</td>
</tr>
<tr>
<td>9</td>
<td>0.0012</td>
<td>0.0247</td>
</tr>
<tr>
<td>10</td>
<td>0.0002</td>
<td>0.0064</td>
</tr>
</tbody>
</table>

Table 2 Comparison of eigenvectors before and after crack
4.2 고유벡터 변화 검토

Table 2에 고유벡터 변화를 정리하여 나타내었다. 고유벡터는 10개 있으므로 고유벡터도 10개가 존재하였다. 행(row) 또는 열(column)은 변화량을 나타내므로 고유벡터의 값에서 타를 빼어서 나타내었다. 고유벡터의 값에서 홀수 열(column)은 변위를, 짝수 열(column)은 변형을 나타냈다.

Table 2의 (a), (b), (c)는 고유벡터의 변화량을 나타낸 것으로 각을 나타낸다.

Table 3(a)는 CASE 1의 고유벡터의 변화량을 나타낸 것으로 고유벡터의 행렬을 가지고 식 5를 통해 고유벡터의 변화량을 나타내었다. Table 3(b)는 CASE 2의 경우는 균열 발생 전 고유벡터의 행렬을 가지고 식 5를 통해 고유벡터의 변화량을 나타내었다. Table 3(b)을 베어아 이를 비교할 때, 고유벡터의 변화량은 비교적 큰 것을 균열의 크기에 따라 변화한다. CASE 2가 CASE 1보다 균열에 의한 고유벡터의 변화가 큰 편으로 나타났다.

4.3 감도계수의 해석

Table 4는 Table 3의 고유벡터 변화량행렬과 Table 2(a)에 있는 고유벡터 변화량행렬을 가지고 식 (9)을 이용하여 감도계수를 해석한 결과이다. CASE 1과 CASE 2의 감도계수는 Table 4의 (a), (b)에 각각 나타내었다. CASE 1의 감도계수의 최대값은 $\alpha_{88} = -0.3352$이고 최소값은 $\alpha_{66} = -0.3141$이었으며 CASE 2는 최대값은 $\alpha_{66} = 0.2393$이고 최소값은 $\alpha_{88} = -0.2170$이었다. CASE 1의 감도계수는 CASE 2의 감도계수보다 비교적 큰 것은 균열의 크기에 따라 그 크기에 따라 변형하기 때문으로 판단된다.

4.4 균열 탐지 해석

Fig. 3은 반복회수에 따른 균열탐지를 예측한 그래프이다. 균열의 탐지는 식 (14)~(18)을 사용하여 구하였으며 반복회수를 50회까지 하였다. 5번 반복하였을 때 균열의 탐지를 예측하는 경우는 $k_p(9) = 5.193 \text{kNm/rad}$, CASE 2는 $k_p(9) = 6.516 \text{kNm/rad}$로 예측치의 각각 173.10%, 130.33%이었으나 반복회수가 증가함에 따라 오차가 감소하여 CASE 1은 $k_p = 3.0 \text{kNm/rad}$, CASE 2는 $k_p = 5.0 \text{kNm/rad}$에 수렴함을 볼 수 있다.

Table 5은 반복회수를 50회까지 하였을 때 균열 탐지를 예측한 결과이다.

Table 3

<table>
<thead>
<tr>
<th>mode</th>
<th>delta eigenvectors</th>
<th>$\Delta \times 10^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>mode</th>
<th>delta eigenvectors</th>
<th>$\Delta \times 10^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3 Predictive crack according to the number of iteration

Table 5 Predictive crack in cantilever beam

<table>
<thead>
<tr>
<th>(a) CASE 1</th>
<th>Rotational stiffness (kNm/rad)</th>
<th>ratio $\Delta k_{p}/k_{0}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element No.</td>
<td>no crack k_{0}</td>
<td>crack Δk_{0}</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>100000.0</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>100000.0</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>100000.0</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>100000.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) CASE 2</th>
<th>Rotational stiffness (kNm/rad)</th>
<th>ratio $\Delta k_{p}/k_{0}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element No.</td>
<td>no crack k_{0}</td>
<td>crack Δk_{0}</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>100000.0</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>100000.0</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>100000.0</td>
</tr>
</tbody>
</table>

5. 결론
외판보에는 군열 발생 후의 동특성을 이용하여 군열 탐지를 예측하는 알고리즘을 개발하였으며 다음과 같은 결론을 얻었다.

(1) 군열 발생 전, 후의 고유벡터변화량을 가지고 감도계수를 해석하는 방법을 제안하였다.
(2) 감도계수로부터 반복법을 이용하여 강성의 변화량행렬을 해석하는 알고리즘을 개발하였다.
(3) 강성의 변화량행렬과 군열 전 유한요소법의 강성행렬을 비교하여 군열을 탐지하는 방법을 제안하였다.
(4) 이 방법을 군열이 발생한 외팔보에 적용하여 군열 탐지를 잘 예측하고 제안된 방법이 탐지는 효율을 알 수 있었다.
(5) 제안된 방법은 이론적 방법이므로 주기 실험을 실시하여 구조물의 군열을 예측하는 연구와 군열이 동시에 여러 개 존재할 때 군열을 예측하는 연구가 필요하다고 판단된다.

후기
본 연구는 2011학년도 경기대학교 학술연구비 지원(교내학술연구과제)의 혜수로 수행되었다.

References

