Simulating Cutting Forces in Milling Machines Using Multi-layered Neural Networks

Sin-Young Lee*

a School of Mechanical & Automotive Engineering, Kunsan National University, 558, Daehak-ro, Gunsan, Jeonbuk-do, 54150, Korea

ABSTRACT

Predicting cutting forces in machine tools is essential to productivity improvement and process control in the manufacturing field. Furthermore, milling machining is more complicated than turning machining. Therefore, several studies have been conducted previously to simulate milling forces; this study aims to simulate the cutting forces in milling machines using multi-layered neural networks. In the experiments, the number of layers in these networks was 3 and 4 and the number of neurons in the hidden layers was varied from 20 to 200. The root mean square errors of simulated cutting force components were obtained from taught and untaught data for the various neural networks. Results show that the error trends for untaught data were non-uniform because of the complex nature of the cutting force components, which was caused by different cutting factors and nonlinear characteristics coming into play. However, trends for taught data showed a very good coincidence.
2. 신경회로망 및 학습

2.1 신경회로망의 구성
여러 가지 다양한 형태의 신경회로망이 제안되어 있으며 본 논문에서는 오차역전파(error back propagation) 방법에 의하여 학습이 이루어지는 다층 퍼셉트론 구조의 신경회로망을 사용한다[5-8]. 여기에서의 기본 요소는 다수의 입력과 하나의 출력을 갖는 뉴런이 다[5,6], 몇 개의 뉴런들이 한 층을 이루고 과 같이 몇 개의 층이 전체 신경회로망을 구성한다. 제 n층 i번째 뉴런의 내부 상태 \(U_i^n \)는 앞 층의 출력 \(O_j^{n-1} \), 결합계수 \(W_{i,j}^{n-1,n} \) 및 역치 \(\theta_i^n \)에 의하여 식 (1)과 같이 주어지고 출력 \(O_i^n \)은 내부 상태와 출력함수에 의하여 식 (2)와 같이 주어진다.

\[
U_i^n = \sum_{j=1}^{k} W_{i,j}^{n-1,n} O_j^{n-1} + \theta_i^n \quad (1)
\]

\[
O_i^n = f(U_i^n) \quad (2)
\]

출력함수는 다음과 같은 시그모이드 함수를 이용하였다.

\[
f(x) = \frac{2}{1 + e^{-ax}} - 1 \quad (3)
\]

\(a \)는 함수의 기울기에 관련되는 값이다. Fig. 1과 같이 최종층의 출력에 대응하는 신호를 교사신호 \(T \)라고 한다.

2.2 오차역전파에 의한 학습
신경회로망의 평가함수로 출력층에서의 출력과 교사신호 차의 제곱 합을 이용하고, 다음과 같이 표기한다.

\[
J = \frac{1}{2} \sum_{i=1}^{N} (T_i - O_i)^2 \quad (4)
\]

출력층(N층)과 직전층(N-1층) 사이의 결합계수 및 역치의 수정은 평가함수의 편미분으로부터 구할 수 있다.

\[
\frac{\partial J}{\partial W_{i,j}^{n-1,n}} = -(T_i - O_i) f'(U_i^n) O_j^{n-1} \quad (5)
\]

\[
\frac{\partial J}{\partial \theta_i^n} = -(T_i - O_i) f'(U_i^n) \quad (6)
\]

과 같은 방법으로 \(N-1 \)층과 \(N-2 \)층 사이의 오차신호를 \(\delta_j^{N-1} \)라고 하면 결합계수의 수정량은 식 (7)과 같고, 역치의 수정량은 다음과 같다.

\[
\Delta W_{i,j}^{N-2,N-1} = -\epsilon \delta_j^{N-1} O_j^{N-2} \quad (7)
\]

\[
\Delta \theta_i^{N-1} = -\epsilon \delta_i^{N-1} \quad (8)
\]

시그모이드 함수의 기울기 관련 값 \(a \) 역시 같은 방법으로 수정량을 구할 수 있다. 또한 극소치에 떨어질 가능성이 있는 경우를 피하기 위하여 식 (12), (13)과 같이 전체의 수정량 및 전전회의 수정량을 고려하는 자기회귀형 오차역전파법[9]을 사용하였다.

\[
\Delta W_{i,j}^{N-1,n} = -\epsilon \delta_j^n O_j^{n-1} + \alpha_1 \Delta W_{i,j}^{n-1,n}(t-1) \quad (12)
\]

\[
\Delta \theta_i^n = -\epsilon \delta_i^n + \alpha_1 \Delta \theta_i^n(t-1) + \alpha_2 \Delta \theta_i^n(t-2) \quad (13)
\]

3. 절삭력 시뮬레이션
3.1 절삭실험 데이터
본 연구에서는 머시닝센터(통일 TVN-40)에서 2날 초경 앤드 밀을 사용하여 수행한 절삭실험[10]의 데이터를 사용하였다. 절삭 시편은 일반탄소강 SM45C로 만들어졌고, 시편 절삭부의 폭은 45 mm이었다. 앤드밀의 지름은 16 mm와 20 mm의 두 가지를 사용하였다. 측정에 사용한 공구동력계는 Kistler 9257B, Charge Amplifier는 Kistler 5019A이었다. 절삭부의 폭 45 mm에 걸쳐
절삭을 수행하고, 엔드밀의 N 회전(N×360°)에 상당하는 절삭성분의 평균을 구하여 평균절삭력으로 나타내었다. 실험결과 구한 절삭력의 예는 Fig. 2와 같이, 이 때 공구 지름은 16 mm, 주축회전속도는 600 rpm, 이송속도는 120 mm/min(절삭시간 22.5 초), 축평형 절삭깊이는 12 mm이고, 반경방향 절삭깊이는 4 mm이었다.

Fx는 이송방향 절삭색 성분이고 Fy는 이송방향에 수직인 방향의 절삭색 성분이다. 전체 실험데이터는 74개였고, 각 실험데이터에서 얻은 평균 절삭력은 Table 1과 같다.

3.2 3층 신경회로망을 이용한 학습

입력층은 공구반지름, 축방향 절삭깊이, 주축회전속도, 이송속도, 반경방향 절삭깊이의 5 소자로 하고, 출력층은 이송방향 절삭력(Fx), 이송방향에 수직인 방향의 절삭력(Fy)의 2 소자로 설정하였다. 전체 74개의 데이터 중 학습하지 않은 데이터의 수는 각각 4, 8, 12, 16개로 설정하였다.

은닉층 뉴런의 수를 변경하여 가면서 신경회로망을 학습하고 학습하지 않은 데이터에 대한 오차의 값을 구하였다. Table 2는 3층 신경회로망, 은닉층 뉴런의 수 50, 미학습데이터의 수 12개인 경우에 대한 신경회로망 학습 후 시뮬레이션 사례를 나타낸다.

Table 2 Simulation sample of 3 layered N.N(NH=50) where No. of untaught data is 12

<table>
<thead>
<tr>
<th>No.</th>
<th>Teach Signal</th>
<th>Output Signal</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>294.2 409.4</td>
<td>294.2 409.4</td>
<td>-7.199e-011 6.573e-011</td>
</tr>
<tr>
<td>002</td>
<td>457.5 763.7</td>
<td>457.5 763.7</td>
<td>-2.013e-012 6.345e-011</td>
</tr>
<tr>
<td>003</td>
<td>348.3 1523.0</td>
<td>348.3 1523.0</td>
<td>-3.368e-011 1.192e-010</td>
</tr>
<tr>
<td>004</td>
<td>117.4 1897.0</td>
<td>117.4 1897.0</td>
<td>8.735e-011 1.592e-010</td>
</tr>
<tr>
<td>005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>204.7 1272.0</td>
<td>204.7 1272.0</td>
<td>-1.763e-010 -3.502e-011</td>
</tr>
<tr>
<td>061</td>
<td>404.1 797.2</td>
<td>404.1 797.2</td>
<td>-7.303e-011 7.309e-010</td>
</tr>
<tr>
<td>062</td>
<td>210.1 218.9</td>
<td>210.1 218.9</td>
<td>-3.712e-011 5.234e-010</td>
</tr>
<tr>
<td>063</td>
<td>-127.4 1694.0</td>
<td>46.2 1549.9</td>
<td>-1.362e+002 -8.506e+000</td>
</tr>
<tr>
<td>064</td>
<td>219.5 526.1</td>
<td>175.5 505.6</td>
<td>-2.005e+001 -3.897e+000</td>
</tr>
<tr>
<td>065</td>
<td>248.2 2111.0</td>
<td>318.0 2221.0</td>
<td>2.813e+001 5.212e+000</td>
</tr>
<tr>
<td>066</td>
<td>663.3 2126.0</td>
<td>647.5 2573.9</td>
<td>-2.382e+000 -2.107e+001</td>
</tr>
<tr>
<td>067</td>
<td>238.1 636.3</td>
<td>298.2 687.0</td>
<td>2.522e+001 7.965e+000</td>
</tr>
<tr>
<td>068</td>
<td>150.3 134.0</td>
<td>54.3 139.5</td>
<td>-6.388e+001 4.110e+000</td>
</tr>
<tr>
<td>069</td>
<td>165.8 2413.0</td>
<td>148.8 2818.5</td>
<td>-1.027e+001 1.680e+001</td>
</tr>
<tr>
<td>070</td>
<td>683.4 2674.0</td>
<td>617.0 2981.1</td>
<td>-9.723e+000 1.148e+001</td>
</tr>
<tr>
<td>071</td>
<td>577.2 1584.0</td>
<td>554.6 1546.7</td>
<td>-3.917e-002 -2.353e+000</td>
</tr>
<tr>
<td>072</td>
<td>535.4 1352.0</td>
<td>543.5 1222.2</td>
<td>1.517e+000 -9.603e+000</td>
</tr>
<tr>
<td>073</td>
<td>376.9 539.3</td>
<td>473.3 635.6</td>
<td>2.558e+001 1.786e+001</td>
</tr>
<tr>
<td>074</td>
<td>329.9 540.8</td>
<td>282.2 571.4</td>
<td>-1.446e+001 5.661e+000</td>
</tr>
</tbody>
</table>

RMS of Percent error is 4.619e+001
1-th RMS of Percent error is 1.1187e+001
다. Table 2에서 교사신호(teach signal)는 평균절삭력의 입력값이고, 출력신호(output signal)는 평균절삭력을 시뮬레이션한 값을 나타낸다. 시뮬레이션 번호 1-62까지의 학습한 데이터에 대하여는 0.01% 이하의 정확한 학습 결과를 나타내었으나, 시뮬레이션 번호 63-74의 12개 미강습데이터에 대하여 다양한 크기의 오차를 나타내었고 유사한 데이터가 학습되지 않은 경우에는 특히 큰 오차를 나타내었다.

Table 3은 3층 신경회로망 중 은닉층 뉴런의 수 NH=50인 경우
의 미강습데이터의 수에 따른 미강습데이터 절삭력 성분 시뮬레이션 오차의 RMS 값을 나타낸다. Table 2와 같은 양식의 시뮬레이션 결과는 학습한 데이터에 대하여는 특별히 큰 오차를 나타내었다.

<table>
<thead>
<tr>
<th>Case</th>
<th>No. of untaught data</th>
<th>RMS error (%) in Fx</th>
<th>RMS error (%) in Fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>14.1</td>
<td>12.7</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>36.5</td>
<td>16.4</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>47.7</td>
<td>27.1</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>66.0</td>
<td>31.1</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>14.0</td>
<td>15.2</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>49.7</td>
<td>9.2</td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td>40.5</td>
<td>10.8</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>47.5</td>
<td>18.4</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>16.8</td>
<td>10.8</td>
</tr>
<tr>
<td>J</td>
<td>8</td>
<td>46.2</td>
<td>20.2</td>
</tr>
<tr>
<td>K</td>
<td>12</td>
<td>72.3</td>
<td>17.6</td>
</tr>
<tr>
<td>L</td>
<td>16</td>
<td>57.3</td>
<td>20.0</td>
</tr>
<tr>
<td>M</td>
<td>4</td>
<td>18.7</td>
<td>11.7</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>17.4</td>
<td>19.5</td>
</tr>
<tr>
<td>O</td>
<td>12</td>
<td>61.7</td>
<td>18.8</td>
</tr>
<tr>
<td>P</td>
<td>16</td>
<td>68.9</td>
<td>21.4</td>
</tr>
<tr>
<td>Q</td>
<td>4</td>
<td>15.6</td>
<td>11.4</td>
</tr>
<tr>
<td>R</td>
<td>8</td>
<td>57.6</td>
<td>19.2</td>
</tr>
<tr>
<td>S</td>
<td>12</td>
<td>46.1</td>
<td>11.2</td>
</tr>
<tr>
<td>T</td>
<td>16</td>
<td>85.0</td>
<td>15.1</td>
</tr>
<tr>
<td>Overall RMS error</td>
<td>55.3</td>
<td>19.1</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3 RMS error of forces (3 layers, NH=50)

Table 4 Simulation error of forces (3 layers, NH=100)

<table>
<thead>
<tr>
<th>Case</th>
<th>No. of untaught data</th>
<th>RMS error (%) in Fx</th>
<th>RMS error (%) in Fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>5.1</td>
<td>19.5</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>22.0</td>
<td>21.1</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>46.5</td>
<td>20.8</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>47.8</td>
<td>26.3</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>7.1</td>
<td>15.0</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>43.0</td>
<td>12.5</td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td>42.2</td>
<td>14.8</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>73.8</td>
<td>22.9</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>5.1</td>
<td>13.8</td>
</tr>
<tr>
<td>J</td>
<td>8</td>
<td>47.9</td>
<td>16.7</td>
</tr>
<tr>
<td>K</td>
<td>12</td>
<td>50.3</td>
<td>15.1</td>
</tr>
<tr>
<td>L</td>
<td>16</td>
<td>68.1</td>
<td>25.7</td>
</tr>
<tr>
<td>M</td>
<td>4</td>
<td>12.9</td>
<td>33.6</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>28.5</td>
<td>14.6</td>
</tr>
<tr>
<td>O</td>
<td>12</td>
<td>63.2</td>
<td>24.2</td>
</tr>
<tr>
<td>P</td>
<td>16</td>
<td>52.8</td>
<td>30.8</td>
</tr>
<tr>
<td>Q</td>
<td>4</td>
<td>14.0</td>
<td>23.0</td>
</tr>
<tr>
<td>R</td>
<td>8</td>
<td>42.3</td>
<td>16.8</td>
</tr>
<tr>
<td>S</td>
<td>12</td>
<td>59.6</td>
<td>17.3</td>
</tr>
<tr>
<td>T</td>
<td>16</td>
<td>30.5</td>
<td>20.1</td>
</tr>
<tr>
<td>Overall RMS error</td>
<td>49.3</td>
<td>21.6</td>
<td></td>
</tr>
</tbody>
</table>
NH=150인 경우를 나타낸다. Figs. 4-6의 경향은 Fig. 3에서와 같이, 미학습데이터의 수가 증가함에 따라 미학습데이터에 대한 시뮬레이션 오차의 RMS 값이 대체로 증가하였고, Fx의 경우가 RMS, Fy보다 큰 오차를 나타내었다.

3층 신경회로망을 사용하는 경우에 미학습데이터에 대한 시뮬레이션 오차를 구하여 Table 5와 Fig. 7에 나타내었다. 학습에 사용하지 않은 미학습데이터의 수는 4-16개이었고, 가로축은 은닉층 뉴런의 수, 세로축은 전체적인 RMS 오차(%)이며, Fx는 이송방향 절삭력 성분이고, Fy는 이송방향에 수직 방향의 절삭력 성분이다. 3층 신경회로망의 경우 은닉층 100개 이상인 경우가 Fx에서 45% 정도, Fy에서 20% 정도의 미학습데이터 오차를 나타내었다.

전체적으로 이송방향 절삭력 성분의 시뮬레이션 오차가 이송방향에 수직인 방향의 절삭력 성분 시뮬레이션 오차가 컸다. 이송 방향에 수직인 방향의 절삭력 성분은 반경방향 절삭깊이가 증가함에 따라 비교적 단순하게 증가하였음에 비하여 이송방향 절삭력 성분은 반경방향 절삭깊이가 증가함에 따라 증가하다 감소하는 포물선 형태의 복잡한 실험치를 나타낸 것에 차적인 원인이 있다고 판단된다[1].

Table 5 Overall simulation error in 3 layers N.N.

<table>
<thead>
<tr>
<th>No. of neurons in Hidden Layer</th>
<th>RMS error (%) in Fx</th>
<th>RMS error (%) in Fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>61.3</td>
<td>23.4</td>
</tr>
<tr>
<td>30</td>
<td>46.3</td>
<td>20.4</td>
</tr>
<tr>
<td>40</td>
<td>54.1</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>55.3</td>
<td>19.1</td>
</tr>
<tr>
<td>60</td>
<td>46.1</td>
<td>21.9</td>
</tr>
<tr>
<td>70</td>
<td>48.8</td>
<td>22.3</td>
</tr>
<tr>
<td>80</td>
<td>48.4</td>
<td>21.4</td>
</tr>
<tr>
<td>90</td>
<td>56.2</td>
<td>21.9</td>
</tr>
<tr>
<td>100</td>
<td>49.3</td>
<td>21.6</td>
</tr>
<tr>
<td>125</td>
<td>46.2</td>
<td>19.9</td>
</tr>
<tr>
<td>150</td>
<td>44.7</td>
<td>20.6</td>
</tr>
<tr>
<td>200</td>
<td>45.0</td>
<td>23.6</td>
</tr>
</tbody>
</table>

3.3 4층 신경회로망을 이용한 학습

입력층과 출력층은 3층 신경회로망의 경우와 동일하게 하고, 두 은닉층 뉴런의 수를 변경하여 가면서 신경회로망을 학습하고, 학습
다음은 데이터에 대한 오차의 값을 구하였다. 층 신경회 모양 중 제 은닉층 뉴런의 수와 제 은닉층의 뉴런 수가 \(NH \times NJ = 20 \times 20\)인 경우 가지 사례에 대한 시뮬레이션 결과는 \(Table 6\)과 \(Table 7\)에 나타내었다. 은닉층 뉴런의 수 미학습데이터 개인 \(C = 20 \times 20\)이고 시뮬레이션 번호 까지의 학습한 데이터에 대하여, \(1~62\)는 이하의 정확한 학습결과를 나타내었으나 시뮬레이션 번호의 개 미학습데이터에 대하여 다양한 크기의 오차를 나타내었다.

로는 인 경우 미학습데이터의 수를 변화시켜가며 학습한 신경회로망에서 시뮬레이션 한 오차의 값을 나타낸다. 은닉층 뉴런의 수가 증가함에 따라서 미학습데이터의 수를 변화시켜가며 학습한 신경회로망에서 얻어진 미학습데이터 절삭력 성분 시뮬레이션 오차의 값을 나타내었다.

\(Fig. 9\)은 \(NH \times NJ = 30 \times 30\)인 경우 미학습데이터의 수를 변화시켜 미학습한 신경회로망에서 얻어진 미학습데이터 절삭력 성분 사례에 대한 오차의 RMS 값을 나타내고, \(Fig. 10\)은 \(NH \times NJ = 40 \times 40\)인 경우에 대한 절삭력 성분 시뮬레이션 오차의 RMS 값을 나타내었다. 은닉층 뉴런의 수가 증가함에 따라서 미학습데이터 절삭력 성분 시뮬레이션 오차의 RMS값이 대체로 증가함을 볼 수 있다.

\(Table 8\)에 \(Fig. 11\)은 \(4\)층 신경회로망을 사용한 경우의 미학습데이터에 대한 전반적인 RMS 오차를 나타낸다.

<table>
<thead>
<tr>
<th>Case</th>
<th>No. of untaught data</th>
<th>RMS error (%) in Fx</th>
<th>RMS error (%) in Fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>5.1</td>
<td>10.3</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>17.6</td>
<td>11.4</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>30.1</td>
<td>19.9</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>35.4</td>
<td>17.3</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>12.6</td>
<td>7.7</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>27.0</td>
<td>24.1</td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td>47.2</td>
<td>19.5</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>40.3</td>
<td>13.3</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>8.4</td>
<td>11.8</td>
</tr>
<tr>
<td>J</td>
<td>8</td>
<td>23.3</td>
<td>15.1</td>
</tr>
<tr>
<td>K</td>
<td>12</td>
<td>49.0</td>
<td>14.1</td>
</tr>
<tr>
<td>L</td>
<td>16</td>
<td>39.2</td>
<td>20.9</td>
</tr>
<tr>
<td>M</td>
<td>4</td>
<td>7.0</td>
<td>8.3</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>19.4</td>
<td>18.8</td>
</tr>
<tr>
<td>O</td>
<td>12</td>
<td>67.5</td>
<td>15.8</td>
</tr>
<tr>
<td>P</td>
<td>16</td>
<td>28.2</td>
<td>19.0</td>
</tr>
<tr>
<td>Q</td>
<td>4</td>
<td>12.7</td>
<td>9.9</td>
</tr>
<tr>
<td>R</td>
<td>8</td>
<td>15.2</td>
<td>33.1</td>
</tr>
<tr>
<td>S</td>
<td>12</td>
<td>39.9</td>
<td>15.7</td>
</tr>
<tr>
<td>T</td>
<td>16</td>
<td>39.5</td>
<td>15.4</td>
</tr>
<tr>
<td>Overall RMS error</td>
<td>36.6</td>
<td>17.7</td>
<td></td>
</tr>
</tbody>
</table>
서 가로축은 은닉층 뉴런의 수, 세로축은 전반적인 RMS 오차(%)。
Fx는 이송방향 절삭력 성분이고, Fy는 이송방향에 수직방향의 절
삭력 성분이다.
4층 신경회로망의 경우 제1 은닉층과 제2 은닉층의 뉴런 수가 각각 15개씩 이상인 경우 Fx에서 35% 정도, Fy에서 18% 정도의 미학습데이터 오차를 나타내었고 은닉층 뉴런의 수가 27 및 30인 경우 양호한 결과를 나타내었다. 절삭력 성분의 방
향에 따른 전반적인 오차 경향은 3층 신경회로망의 경우와 유
사하였다.
3.4 예비 학습 4층 신경회로망을 이용한 학습
일반적인 4층 신경회로망에서는 제1 은닉층과 제2 은닉층의 두
은닉층 뉴런의 수를 변경하여 가면서 신경회로망을 학습하는데, 뉴
런 결합계수와 역치의 초기값은 난수(random number) 발생에 의
하여 1층과 2층, 2층과 3층 사이에 물리적 의미를 부여할 수 없다.
본 연구에서는 제3층의 뉴런 중 출력층의 뉴런 갯수와 동일한 갯수
가 출력층의 값을 가지도록 하는 예비 학습을 하고, 예비 학습이
종료된 후 3.3절의 일반적인 4층 신경회로망 학습 방법으로 전체
결합계수 및 역치를 교사신호의 학습에 의하여 수정하도록 하는 방
법을 검토하였다. 예비 학습 4층 신경회로망 중 제1 은닉층 뉴런의
수(NH)와 제2 은닉층의 뉴런 수(NJ)가 NH×NJ=30×30인 경우
가 20개 사례에 대한 시뮬레이션 결과를 Table 9와 Table 10에 나
타내었다.
Table 9는 Table 10 중 Case B에 해당하는 미학습데이터가 8개
인 경우를 나타낸다. 시뮬레이션 번호 1-66까지의 경우에는 정확
한 학습결과를 나타내었으나, 시뮬레이션 번호 67-74의 8개 미학
습데이터에 대하여 다양한 크기의 오차를 나타내었다. 이와 같은
예비 학습 후 전체학습을 수행하는 방식으로 구한 1층 신경회로망
에 의하여 시뮬레이션 하는 방식을 은닉층 뉴런의 수 10-40개인
경우에 대하여 적용하였다. Fig. 12는 Table 9와 같이 NH×NJ=30×30인 경우를 도시한 것으로 가로축은 미학습데이터의 수를 나
타내고, 세로축은 미학습데이터의 수를 변화시키며 예비 학습과 전
체 학습을 거친 신경회로망에서 시뮬레이션한 각 오차의 RMS 값
을 나타낸다. 동일한 은닉층 뉴런의 수 및 동일한 미학습데이터의
경우에 있어서도 사례에 따라 오차의 값이 분산되어 있는 것을 볼
수 있고, 전체적으로는 은닉층 뉴런의 수가 증가함에 따라 미학
습데이터 절삭력 성분 시뮬레이션 오차의 값이 대체로 증가

<table>
<thead>
<tr>
<th>No. of neurons in hidden layers</th>
<th>RMS error (%) in Fx</th>
<th>RMS error (%) in Fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>First hidden</td>
<td>Second hidden</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>35.7</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>35.4</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>36.6</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>30.9</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30.7</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>39.8</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>34.5</td>
</tr>
</tbody>
</table>

Fig. 9 RMS error of forces (4 layers, NH=30, NJ=30)

Fig. 10 RMS error of forces (4 layers, NH=40, NJ=40)

Fig. 11 Overall RMS error in 4-layered network
함을 볼 수 있다.

Fig. 13은 은닉층 뉴런의 수가 NH×NJ= 30×30인 경우 미학습 데이터의 수를 변화시켜가며 예비 학습후 전체 학습으로 학습한 신경회로망에서 얻어진 미학습데이터 절삭력 성분 시뮬레이션 오차의 값을 나타내고 는 인 경우에 RMS , Fig. 14 NH×NJ= 40×40 대한 절삭력 성분 시뮬레이션 오차의 값을 나타낸다.

Tabla 9 Simulation sample of 4 layered prelearned N.N (NH= 20, NJ=20) where No. of untaught data is 8

<table>
<thead>
<tr>
<th>No.</th>
<th>Teach Signal</th>
<th>Output Signal</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fx</td>
<td>Fy</td>
<td>Fx</td>
</tr>
<tr>
<td>001</td>
<td>294.2</td>
<td>409.4</td>
<td>294.2</td>
</tr>
<tr>
<td>002</td>
<td>248.2</td>
<td>2111.0</td>
<td>248.2</td>
</tr>
<tr>
<td>003</td>
<td>663.3</td>
<td>2126.0</td>
<td>663.3</td>
</tr>
<tr>
<td>004</td>
<td>238.1</td>
<td>636.3</td>
<td>146.9</td>
</tr>
<tr>
<td>005</td>
<td>165.8</td>
<td>2413.0</td>
<td>244.8</td>
</tr>
<tr>
<td>006</td>
<td>683.4</td>
<td>2674.0</td>
<td>624.1</td>
</tr>
<tr>
<td>007</td>
<td>577.2</td>
<td>1584.0</td>
<td>585.8</td>
</tr>
<tr>
<td>008</td>
<td>329.9</td>
<td>540.8</td>
<td>394.9</td>
</tr>
</tbody>
</table>

Fig. 12 RMS error (Pre-learned 4 layers, NH=20, NJ=20)

Fig. 13 RMS error (Pre-learned 4 layers, NH=30, NJ=30)

Fig. 14 RMS error (Pre-learned 4 layers, NH=40, NJ=40)
학습데이터 절삭력 성분 시뮬레이션 오차의 값이 대체로 증가함을 볼 수 있다.

Table 11 Overall simulation error in 4 layers prelearned N.N.

<table>
<thead>
<tr>
<th>No. of neurons in hidden layers</th>
<th>RMS error (%) in Fx</th>
<th>RMS error (%) in Fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>First hidden</td>
<td>Second hidden</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>45.7</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>50.9</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>47.4</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>39.4</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>46.2</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>52.6</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>40.1</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>40.7</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>38.6</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>45.1</td>
</tr>
</tbody>
</table>

Fig. 15 Overall RMS error in 4-layered prelearned network

학습데이터 절삭력 성분 시뮬레이션 오차의 RMS값이 대체로 증가함을 볼 수 있다. Table 11과 Fig. 15는 예비 학습을 한 4층 신경회로망에서의 미학습데이터에 대한 전반적인 RMS 오차를 나타낸다. Fig. 15에서 가로축은 은닉층 뉴런의 수, 세로축은 전반적인 RMS 오차(%)로, Fx는 이송방향 절삭력 성분이고 Fy는 이송방향에 수직 방향의 절삭력 성분이다.

예비 학습된 4층 신경회로망의 경우에는 은닉층 뉴런의 갯수가 20-20개인 경우가 다른 경우에 비하여 오차가 작았다. 또한 전반적인 RMS 오차를 보면 예비 학습된 신경회로망이 예비 학습을 하지 않은 경우에 비하여 약화한 결과를 나타내지 못하였다. Fig. 11과 Fig. 12를 비교하면 순수한 난수 발생에 의하여 획득된 합계수 및 역치로부터 학습된 4층 신경회로망이 예비 학습을 거친 경우보다 약화한 결과를 나타내었다.

이것으로부터 예비 학습이 수행된 신경회로망의 합계수 및 역치의 경우에도 학습이 진행됨에 따라 최종층으로부터의 오차 역전과에 의하여 수정이 진행됨으로써 예비 학습의 결과가 특별한 효과를 나타내지 않았다고 판단한다.

전체적으로 이송방향 절삭력 성분의 시뮬레이션 오차가 이송방향에 수직인 방향의 절삭력 성분 시뮬레이션 오차가 컸다. 이송방향에 수직인 방향의 절삭력 성분은 반경방향 절삭깊이가 증가함에 따라 비교적 단순하게 증가하였음에 비하여 이송방향 절삭력 성분은 반경방향 절삭깊이가 증가함에 따라 증가하며 감소하는 포물선형의 실험치를 나타내는 상대적으로 복잡한 특성을 완전히 나타낸다고 판단된다. 신경회로망의 학습 후 학습된 데이터에 대한 오차는 0.01% 미만으로 매우 작지만, 미학습데이터에 대한 시뮬레이션 오차는 Fig. 3-6, Figs. 8-10, Figs. 12-14에 나타낸 바와 같이 분산적임을 볼 수 있다.

4. 결론

본 논문에서는 다수의 뉴런을 갖는 은닉층 1개 또는 2개의 은닉층을 갖는 신경회로망을 이용하여 밀링 가공 시에 발생하는 절삭력 성분을 시뮬레이션하고자 하였다. 입력층은 공구반지름, 축방향 절삭깊이, 주축 회전속도, 이송속도 및 반경방향 절삭깊이의 5 요소로 하고, 출력층은 이송방향 절삭력 성분과 이송방향에 수직인 방향의 절삭력 성분의 2 요소로 설정하였다. 전체 74개의 데이터 중 학습하지 않은 데이터의 수는 각각 4, 8, 12, 16개로 설정하였다. 3층 신경회로망은 은닉층 뉴런의 수를 20-200으로 변경시켜 가며 학습하고 미학습데이터에 대한 시뮬레이션 오차의 RMS값을 나타내었다. 4층 신경회로망은 은닉층 뉴런의 수를 20-200으로 변경시켜 가며 학습하고 미학습데이터에 대한 시뮬레이션 오차의 RMS값을 나타내었다. 4층 신경회로망은 제1 은닉층 및 제2 은닉층 뉴런의 수를 10-40으로 변경시켜가며 학습하였다.

이송방향 절삭력 성분의 시뮬레이션 오차가 이송방향에 수직인 방향의 절삭력 성분 시뮬레이션 오차에 비하여 컸으며, 3층 신경회로망의 경우 은닉층 뉴런이 150개인 경우가 오타가 작았다. 3층 신경회로망의 경우 은닉층 뉴런이 30-30개인 경우가, 예비 학습된 4층 신경회로망의 경우에는 은닉층 뉴런의 수가 37-37개인 경우가 다른 경우에 비하여 오차가 작았다. 4층 신경회로망의 두 경우에 있어서 반반적인 RMS 오차를 보면 예비 학습된 신경회로망이 일반적인 경우에 비하여 특별히 약화한 결과를 나타내지 않았다.

본 논문에서는 학습에 사용한 절삭력 데이터의 수가 74개의 매우 작은 양이어서 실제 신경회로망의 우수한 시뮬레이션 결과를 알기 힘들었고 사료된다. 학습에 사용하는 데이터의 양을 증가시키면 이론 및 분론에서의 시뮬레이션보다 약화한 결과를 얻을 수 있다고 판단된다.
후 기

본 연구는 "건설기계 R&D 전문인력양성사업(N0001292)"의 지원을 받아 수행하였습니다.

References