Design of a Robust Track-following Controller with Multiple Constraints

Moon-Noh Lee, Kyoung Bog Jin and Jin-Soo Kim

Key Words: Track-following System, Regional Stability Constraint, Sinusoidal Disturbance, Uncertain Frequency, LMI Optimization

ABSTRACT

In this paper, we design a robust multi-objective track-following controller that satisfies transient response specifications and diminishes the influence of sinusoidal disturbance. To this end, a robust control problem with the multiple constraints is considered. We show that a sufficient condition satisfying the robust control problem can be expressed by linear matrix inequalities. Finally, the robust track-following controller can be designed by solving an LMI optimization problem. The effectiveness of the proposed controller design method is verified through experiments.

1. 서론

트랙킹 여주어터의 모델링 불확실성과 디스크의 편심적인 회전에 의해 발생하는 정현과 외란은 광 디스크 드라이브의 트랙 추종 시스템 설계에서 반드시 고려되어야 한다. 트랙 추종 시스템은 모델링 불확실성과 정현과 외란에 대해 강한 안정하고 만족할 만한 트랙 추종 성능을 가지도록 설계되어야 한다. 그러나, 하나의 재료 알고리즘으로는 목표로 하는 안정적인 트랙 추종 시스템을 설계할 수 없기 때문에 여러 알고리즘들을 동시에 적용하는 다목적 재료가 필요하다.

트랙 추종 시스템은 초기의 과도 응답 특성이 안정되지 못하면 현재의 트랙에서 다음 트랙으로 넘어가

† 책임저자: 정희원, 동의대학교 컴퓨터공학과
E-mail: mnlee@deu.ac.kr
Tel: (051) 890-1713, Fax: (051) 890-1619

* 정희원, 한국기술교육대학교 메카트로닉스공학부
** 한밭대학교 정보통신컴퓨터공학부

시스템이 불안해지기 때문에 안정적인 과도 응답 특성의 가지는 것이 필요하다. 일반적으로 오버 슈트, 안정화 시간, 상승 시간 등의 과도 응답 특성들은 시스템의 극점을 여러에 위치시키는 것과 관련이 있다. 따라서, 트랙 추종 시스템의 과도 응답 특성은 트랙 추종 시스템의 모든 극점을 특정 영역에 모두 위치시키는 지역 안정 제한 조건에 의해 이루어질 수 있다.^(4)

광 디스크 드라이브에서 트랙킹 에러는 디스크가 회전함에 따라 고유적으로 발생하는 정현과 외란을 포함한다. 정현과 외란은 디스크 회전 주파수 성분이 상대적으로 가장 크기 때문에 만족할 만한 트랙 추종 성능을 위해서 정현과 외란은 효과적으로 제거되어야 한다. 특정 주파수의 정현과 외란을 다루는 일반적인 방법은 정현과 외란의 모델을 시스템에 포함하는 내부 모델 원리를 적용하는 것이다. 즉, 트랙 추종 제어기는 디스크 회전 주파수에 대한 정현과 외란의 모델을 포함하여야 한다.^(10)

낮은 품질의 성능을 사용하여 모델링 불확실성이 발생하는 것과 같이 불확실한 주파수의 정현과 외란
온 낮은 풍질의 회전 기기에 의해 발생될 수 있다. 그러므로, 송속도를 일정하게 회전하는 기록 기기에
는 트랙을 이동함에 따라 회전 각속도가 서서히 변하
기 때문에 정확하게 관판과 외란의 주파수도 서서히 변하게 된
다. 공부 모델 원리가 특정 주파수의 정확한 외란을
효율적으로 제거할수록 주파수가 변하는 불확실한
주파수의 정확한 외란에 대해서는 효율적으로 제거할
수 없다. 불확실한 주파수로 인한 시스템의 성능 저
하를 최대한 줄이기 위해서는 추가적인 성능을 고려
하여야 한다.

본 논문에서는 광 디스크 드라이브의 강인 성능을
보장하는 트랙 추종 제어기 설계 문제를 고려하였다.
트랙 추종 제어기는 과도 응답 특성을 만족하고 정밀
과 외란의 확신한 주파수의 영향을 최대한 줄이도록
설계되었다. 이러한 설계 문제는 하나의 제어 할
고려노선으로 효율적으로 해결될 수 없기 때문에 다중
세한 조건을 가진 강인 제어 문제를 정의하였다. 최
적적으로 강인 트랙 추종 제어기는 LMI 최적화 이론
을 이용하여 설계되었고 본 논문의 제어기 설계 문제
의 타당성은 여러 실험을 통하여 검증되었다.

2. 광 디스크 드라이브의 트랙 추종 시스템

멀티미디어 기술의 극속한 발전과 많은 데이터를
저량할 수 있는 저장기기에 대한 요구로 광 디스크
드라이브는 많은 분야에서 유용한 저장 장치로 주목
받고 있다.

광 디스크에 기록된 데이터를 정확하게 재생하고
기록하기 위해서 광 픽업은 디스크면에 정확하게 초
점과 맞추어야 하고 트랙을 정확하게 추종하여야 한다.
정확한 초점 제어와 트랙 추종은 포커싱, 트랙킹
시스템에 의해 이루어진다. 두 시스템 간의 상호 영향은 거의 없기 때문에 서로 시스템들은 독립
적으로 분석되고 설계된다.

Fig. 1은 포커스 제어만 하는 경우 출력되는 트랙
킹 에러 신호를 나타낸다. 트랙킹 제어를 하지 않는
상태에서는 광 픽업이 트랙 방향으로 움직이지 않으
면 디스크의 편심적인 회전으로 인해 광 픽업이 마치
특정 트랙의 안쪽과 바깥쪽 방향으로 추지적으로 특
정 트랙을 벗어난 것처럼 보이게 된다. 따라서, 트
랙킹 에러에는 디스크 회전 주파수에 해당하는 주기
마다 두 그룹의 신호 형태가 나타난다. 하나는 광 픽
업이 바깥쪽 방향으로 벗어날 때 나타나는 그룹이고
또 하나는 광 픽업이 안쪽 방향으로 벗어날 때 나타
난다는 그룹이다. 광 픽업이 한 트랙을 이동할 때마
다 하나의 편습이 출력되고 트랙킹 에러 검출 방법에
따라 출력되는 편습의 형태를 달리한다. 하나의 그룹
에 나타난 편습의 수를 카운트하면 광 픽업이 바깥
쪽이나 안쪽으로 얼마나 벗어났는지를 알 수 있고 이
양에 의해 현재 정착된 디스크의 편심량을 알 수 있
다. 하나의 편습의 한 트랙의 빗날을 나타내므로
디스크의 편심적인 회전에 의한 광 픽업의 트랙 빗
날을 수식으로 나타내면 디스크 회전 주파수의 정
현과 외란을 구할 수 있다. 편심량이 큰 디스크일 수
로 많이 빗날으므로 정현과 외란의 강인 성능에
가치할 수 있다. 정현과 외란은 트랙 추종

Fig. 1 A typical pattern of the tracking error
 signal by radial runout

Fig. 2 Block diagram of the track-following
system

828 /한국음진동공학회논문집/제 14 권 제 9 호. 2004년
다중 제한 조건을 고려한 강인 트랙 추종 제어기의 설계

애티리는 이동 범위는 작지만 높은 주파수의 트랙킹 위치를 추종할 수 있다. 트랙 추종 동작에서 조동 액추에이터의 역할은 트랙커 액추에서 DC 오프셋이 발생하지 않도록 조동 액추에이터를 전원히 움직여주는 것이며 때문에 트랙 추종 성능은 전적으로 미동 액추에이터가 얼마나 정확하게 제어되어느냐에 달려있다. 이런 이유로 대부분의 트랙 추종 제어기의 설계에서 미동 액추에이터만 고려한다.

Fig. 2는 다크 드라이브의 트랙 추종 시스템의 구성도를 나타낸 것이다. 트랙 추종 시스템은 변위 센서, 높은 대역폭의 트랙커 액추에이터, 트랙 추종 제어기, 필터, 주동 회로로 구성되어 있다. 트랙커 액추리는 트랙 중심에서 광파열의 중심이 얼마나 벗어나 있느냐를 나타낸다. 트랙커 액추는 포토 다이오드에 의해 검출된 후에 재주도되어 트랙 추종 제어기 영역에 입력된다. 정현과 외란은 다크스크의 전폭적인 회전에 의해 다크스크 회전 주파수와 그 하모니 성분으로 나타내지만 고장 주파수 성분이 가장 지배적이므로 다음의 형태로 표현될 수 있다.

\[w(t) = a \sin(\omega t + \phi), \quad \nu = \nu_0 + \delta \nu(t), \quad |\delta \nu(t)| \leq \epsilon \quad (1) \]

여기서, \(\nu \)는 다크스크 회전 주파수, \(a \)와 \(\phi \)는 정현과 외란의 전폭과 위상을 나타낸다. 디스크 회전 주파수는 각속도가 변형에 따라 변하기 때문에 주파수 \(\nu \)는 공중 주파수에서 변하기 때문에 변하며 가정한다. 정현과 외란의 최대 전폭은 디스크의 제조 용량에 따라 보통 100 \(\mu \)m이내이다. 트랙커 액추에이터 \(P(s) \)는 전류 증폭기에 의해 구동되는 voice coil 모터이고 액추에이터 동작은 근사적으로 2차 선형 모델에 의해 모델링될 수 있다. 비록 액추에이터 모델을 비교적 정확하게 얻을 수 있다고 할지라도 액추에이터 특성은 항상 일정하지 않기 때문에 모델링 불확실성이 존재하게 된다. 그리고, 디스크 반응의 변화 등도 액추에이터의 모델링 불확실성이 포함되어야 한다. 이를 도태로, 액추에이터의 각 파라미터들은 어떤 범위 내에서 변한다고 가정한다.

\[P(s) = \frac{[b_2^+, b_2^{-}]}{s^2 + [a_1^+, a_1^{-}]s + [a_2^+, a_2^{-}]} \quad (2) \]

모델링 불확실성은 전달 함수의 계수에 의해 표현되고 식 (2)를 상대 방정식으로 변환하면 트랙 추종 제어기는 제한된 트랙 추종 시스템은 다음과 같이 표현될 수 있다.

\[\dot{x}(t) = Ax(t) + H_1 p_1(t) + Bu(t) \]
\[\epsilon(t) = Cx(t) + H_2 p_1(t) + w(t) \]
\[q_1(t) = E_1 x_1(t), \quad p_1(t) = \Delta_1 q_1(t), \quad \|\Delta_1\| \leq 1 \quad (3) \]

여기서, \(x(t) \)는 상태 변수, \(p_1(t) \)는 모델링 불확실성 입력, \(u(t) \)는 제어기 입력, \(w(t) \)는 정현과 외란, \(\epsilon(t) \)는 트랙커 에러를 나타낸다. 정현과 외란의 크기는 트랙커 에러의 최대 허용 범위보다 보통 수백배 더 크기 때문에 반드시 효과적으로 제어되어야 한다. 따라서, 본 논문에서는 공정 주파수에 대한 모델을 포함하는 다음과 같은 형태의 트랙 추종 제어기를 고려한다.

\[C(s) = C_m(s)C_m(s) \quad (4) \]

여기서, 부분 제어기 \(C_m(s) := (A_{cm}, B_{cm}, C_{cm}, D_{cm}) \)는 대부분 모델 외부에 따라 공정 주파수 \(\nu_0 \)에 대한 모델을 가지도록 미리 설정되고 다른 부분 제어기 \(C_m(s) := (A_{cm}, B_{cm}, C_{cm}) \)는 트랙 추종 시스템이 성능을 만족하도록 설계된다. 증폭된 트랙커 에러 \(K_p \epsilon(t) \)만이 측정될 수 있기 때문에 트랙 추종 제어기는 에러 피드백 형태가 된다.

\[\dot{x}_c(t) = A_c x_c(t) + B_c(K_p \epsilon(t)) \quad u(t) = C_c x_c(t) \quad (5) \]

\[A_c = \begin{bmatrix} A_{cm} & 0 \\ B_{cm} & 0 \end{bmatrix}, \quad B_c = \begin{bmatrix} B_{cm} \\ B_{cm}D_{cm} \end{bmatrix}, \quad C_c = [0 \ C_{cm}] \]

트랙 추종 제어기 식 (5)은 식 (3)에 적용하면 트랙 추종 시스템은 다음과 같이 표현될 수 있다.

\[\dot{x}_c(t) = \dot{\tilde{x}}_{cl}(t) + \tilde{H}_1 p_1(t) + \tilde{B}_1 w(t) \]
\[e(t) = C_{cl} x_{cl}(t) + H_2 p_1(t) + w(t) \]
\[q_1(t) = E_1 x_{cl}(t), \quad p_1(t) = \Delta_1 q_1(t), \quad \|\Delta_1\| \leq 1 \quad (6) \]
여기서, $x_d(t)$는 페루프 시스템의 상태 변수이고
derivative{x}{t}(t)는 부분 제어기 $G_m(s)$의 출력이다.

디스크의 기록된 데이터를 정확하게 재생하고 기록
하기 위해서는 트랙 추종 제어기를 제어하여 광 범위
이 정확하게 트랙을 추종하도록 하여야 한다. 트랙
추종 시스템의 설계 목표는 모델링 불확실성과 불확
실한 주파수의 정확한 외란에 대해 강한 안정성과 만
족할만한 트랙 추종 성능을 확보하는 것이다. 이를
위해 본 논문에서는 트랙 추종 시스템이 과도 응답
특성을 만족하고 불확실한 주파수의 정확한 외란에
의한 영향을 최대한 줄이도록 부분 제어기 $G_m(s)$
을 설계 한다. 불확실한 주파수는 식 (1)과 같이 공칭 주파수
에서 어떤 범위 내에 존재하기 때문에 본 논문에서는
공칭 주파수에 대한 모델링 트랙 추종 제어기에 포함
한다. 그리고 과도 응답 특성을 위해 지역 안정 제한
조건을 고려하고 정확한 외란의 불확실한 주파수에
의한 영향을 최소화하기 위한 제한 조건을 고려한다.
결론적으로, 트랙 추종 제어기 설계 문제는 다중 제
한조건을 가진 강한 제어 문제로 정의된다.

3. 다중 제한 조건을 만족하는 트랙 추종 제어기의 설계

3절에서는 지역 안정 제한 조건과 불확실한 주파수
의 정확한 외란의 영향을 최소화하는 제한 조건을 가
진 강한 제어 문제를 고려한다. 본 논문에서는 이
러한 강한 제어 문제에 2개의 선형 행렬 부등식으로 표
현될 수 있는 것을 보인다.

3.1 지역 안정 제한 조건

페루프 시스템의 극점이 존재해야 하는 특정 영
역은 LMI 영역에 의해 표현될 수 있다. 만약, 다
음은 만족하는 대칭 행렬 $\alpha = [\alpha_{kl}] \in R^{m \times m}$, 행렬
$\beta = [\beta_{kl}] \in R^{m \times m}$가 있다면 특정 영역 D는 LMI
영역이다.(1)

$$D = \{z \in C : \quad f_D(z) := \alpha + z\beta + \bar{z}\beta^T < 0\} \quad (7)$$

여기서, $f_D(z) = [\alpha_{kl} + \beta_{kl} z + \bar{\beta}_{kl} \bar{z}]_{1 \leq k,l \leq m}$ 이다.
특성 방정식 $f_D(z)$는 $m \times m$ Hermitian 행렬의 공간에
서 값을 가진다.(1) 이러한 LMI 영역은 타원, 포물
선, 섹터, 다각형 영역 등의 여러 영역을 포함할 수
있다. 모델링 불확실성이 없는 경우 트랙 추종 시스
템의 경우 ($\Delta = 0$), 다음을 만족하는 대칭 행렬 $X_D >
0$이 존재하면 시스템 행렬 \bar{A}의 모든 극점은 주어진
LMI 영역 D에 존재하게 된다.

$$M_D(\bar{A}, X_D) := \alpha \otimes X_D + \beta \otimes (\bar{A} X_D) + \beta^T \otimes (\bar{A} X_D)^T$$
$$= \{\alpha_{kl} (X_D + \beta_{kl} \bar{A} X_D + \bar{\beta}_{kl} \bar{X} D^T)\}_{1 \leq k,l \leq m} < 0 \quad (8)$$

특정 영역 D가 전체 안정화 영역임 때 식 (8)은
다음의 Lyapunov 안정화 조건이 된다.

$$\bar{A} X_D + X_D \bar{A}^T < 0 \quad (9)$$

불확실성이 있는 트랙 추종 시스템 식 (6)의 경우
모델링 불확실성에 대한 항목이 다음과 같이 식 (8)
에 추가된다.

$$M_D(\bar{A} + \bar{H}, X_D) := \{\alpha \otimes X_D + \beta \otimes (\bar{A} X_D) + \beta^T \otimes (\bar{A} X_D)^T$$
$$+ \bar{H} \otimes (\bar{A} X_D)^T\}_{1 \leq k,l \leq m} < 0 \quad (10)$$

여기서, $Y_D = \alpha \otimes X_D + \beta \otimes (\bar{A} X_D) + \beta^T \otimes (\bar{A} X_D)$
이다. 크기가 제한된 모델링 불확실성을 가진 시스템
의 경우 모든 모델링 불확실성에 대해 식 (10)을 만
족하는 행렬 $X_D > 0$이 존재하면 트랙 추종 시스템의
모든 극점들은 주어진 LMI 영역 D에 위치하게 된
다. 식 (10)을 만족하는 하나의 조건은 Lyapunov와
S-인자들의 이용을 이용하여 주어진 LMI 영역에 대해
다음의 행렬을 만족하는 상수 $\lambda > 0$이 존재하면 모든 모델
링 불확실성에 대해 식 (10)을 만족하는 대칭 행렬
$X_D > 0$이 존재하게 된다.(4)

$$\begin{bmatrix}
Y_D & \beta \otimes \bar{H} & I \otimes \lambda X_D \bar{E}_{l}^T \\
\beta^T \otimes \bar{H}^T & -\lambda I & 0 \\
I \otimes \lambda \bar{E} X_D & 0 & -\lambda I
\end{bmatrix} < 0 \quad (11)$$

결과적으로, 식 (11)을 만족하는 상수 $\lambda > 0$와 대
칭행렬 $X_D > 0$이 존재하면 트랙 추종 시스템 식 (6)
의 모든 극점들은 주어진 LMI 영역에 위치하게 된다.

830 /한국소음진동공학회논문집/제 14 권 제 9 호, 2004년
3.2 불확실한 주파수의 정현파 외란의 영향을 줄이기 위한 제한 조건

트랙 추종 시스템 식 (6)은 정현파 외란의 공정 주파수에 대한 모델을 포함하고 있기 때문에 정현파 외란 식 (1)은 완전히 제거될 수 없고 불확실한 주파수로 인해 트랙 추종 성능이 저하된다. 따라서, 트랙 추종 시스템은 불확실한 주파수의 영향을 최대한 줄이도록 설계되어야 한다.

불확실한 주파수의 영향을 줄이기 위한 하나의 방법은 정현파 외란에서 트랙링 에러까지의 시스템 개 인을 최소화하는 것이다. 그러나, 이 방법은 불확실한 주파수를 설계에서 고려하지 않기 때문에 conservative 결과를 제공할 수 있다. 따라서, 주파수 불확 심성 \(\delta v(t) \) 을 적절적으로 포함하는 설계방법을 고려 하여야 한다. 이를 위해 본 논문에서는 불확실한 주파 수를 알고 있다고 가정하고 불확실한 주파수에 대 한 모델을 가지는 하나의 이상 제어기가 적용되는 하나의 가장 시스템을 도입한다. 이상 제어기가 불확실한 주파수에 대한 모델을 포함하고 있기 때문에 가상 시스템은 내부 모델 원리에 의해 불확실한 주파수의 영향을 최대한 줄일 수 있다. 이상 제어기는 다음과 같은 시스템 행렬에 의해 구성될 수 있다.

\[
\hat{A}_c = \begin{bmatrix} \hat{A}_c \ \hat{B}_c \ \hat{C}_c \end{bmatrix}, \ \hat{B}_c = \begin{bmatrix} \hat{B}_c \ \hat{D}_c \end{bmatrix}, \ \hat{C}_c = \begin{bmatrix} \hat{C}_c \end{bmatrix}
\]

(12)

여기서, 부분 이상 제어기 \(\hat{A}_{cm}, \hat{B}_{cm}, \hat{C}_{cm}, \hat{D}_{cm} \) 는 불확실한 주파수에 대한 모델을 포함하도록 주어진다. 내부 모델 원리로 불확실한 주파수에 확장함으로서 부분 이상 제어기의 형태는 다음과 같이 얻을 수 있다.

\[
\hat{A}_{cm} = A_{cm} + H_3 \Delta_2(t) E_2, \ \hat{B}_{cm} = B_{cm}
\hat{C}_{cm} = C_{cm} + H_4 \Delta_2(t) E_2, \ \hat{D}_{cm} = D_{cm}, \ \| \Delta_2(t) \| \leq 1
\]

(13)

주파수 불확실성 \(\delta v(t) \) 에 대한 항목들은 행렬의 불확실성 부분에 포함된다. 따라서, 주파수 불확실성 은 부분 이상 제어기에서 크기가 제한된 불확실성으로 간주될 수 있다. 이런 결과로 가상 시스템은 다음과 같이 표현될 수 있다.

\[
\dot{x}(t) = \hat{A}_c x(t) + \hat{H}_1 \hat{p}_1(t) + \hat{H}_3 \hat{p}_2(t) + \hat{B}_w(t)
\]

\[
\dot{\epsilon}(t) = \hat{C}_c x(t) + \hat{H}_2 \hat{p}_1(t) + \hat{B}_w(t)
\]

\[
\dot{\epsilon}_w(t) = \hat{C}_w \hat{x}(t) + K_p (D_{cm} \hat{H}_2 \hat{p}_1(t) + H_4 \hat{p}_2(t) + D_{cm} w(t))
\]

\[
\dot{\hat{p}}_1(t) = \hat{E}_1 \dot{x}(t), \ \hat{p}_1(t) = \Delta_1 \hat{q}_1(t), \ \| \Delta_1 \| \leq 1
\]

\[
\dot{\hat{p}}_2(t) = \hat{E}_2 \dot{x}(t), \ \hat{p}_2(t) = \Delta_2 \hat{q}_2(t), \ \| \Delta_2 \| \leq 1
\]

(14)

여기서, \(\hat{e}(t) \) 는 가상 시스템의 트랙링 에러이고 \(\hat{\epsilon}_w(t) \) 는 부분 이상 제어기 \(\hat{A}_{cm}, \hat{B}_{cm}, \hat{C}_{cm}, \hat{D}_{cm} \) 의 출력이다. 모델링 불확실성과 주파수 불확실성의 크기 제한으로부터 다음은 만족된다.

\[
\hat{p}_1^T(t) \hat{p}_1(t) + \hat{p}_2^T(t) \hat{p}_2(t) - \epsilon^T(t) (\hat{E}_1^T \hat{E}_1 + \hat{E}_2^T \hat{E}_2) \epsilon(t) \leq 0
\]

(15)

내부 모델 원리의 적용을 확장하여 도입된 가상 시스템 식 (14)는 시불변 불확실한 주파수 \((\Delta_{cm}(t) = \Delta_{cm}) \)를 가지는 정현파 외란에 대해서는 완벽하게 제거할 수 있다. 그러나, 본 논문에서는 시변 불확실한 주파수를 가지는 정현파 외란의 경우 내부 모델 원리가 적용된 다라도 가상 시스템은 완벽하게 정현파 외란을 제거 할 수 없다. 따라서, 내부 모델 원리가 적용된 상태에서 트랙킹 에러의 \(\| \hat{e}(t) \|_p \) 를 최소화하기 위해 정현 파 외란에서 가지는 시스템 계획을 최소화하도록 부분 이상 제어기 \(\hat{A}_{cm}, \hat{B}_{cm}, \hat{C}_{cm}, \hat{D}_{cm} \) 의 출력이기 때문에 입력 \(\hat{e}_w(t) \) 을 가진 가중 함수의 제어 출력으로 간주할 수 있다. 최종적으로, 가상 시스템의 설계는 다음을 만족하는 부분 이상 제어기 \(\hat{A}_{cm}, \hat{B}_{cm}, \hat{C}_{cm} \) 를 설계함으로 환원된다.

\[
\text{min} \gamma_2 \text{ subject to } \| \hat{e}_w(t) \|_p < \gamma_2 \| w(t) \|_p
\]

(16)

식 (14)를 만족하는 모든 \(\hat{x}(t), \hat{p}_1(t), \hat{p}_2(t), w(t) \) 에 대해 다음을 만족하는 상수 \(\mu_2 > 0 \) 와 Lyapunov 함수 \(V(\xi) = \xi^T P_m \xi, \ P_m > 0 \) 가 존재한다고 하자.

\[
\frac{d}{dt} V(\hat{x}) + \hat{e}_w^T(t) \hat{e}_w(t) - \mu_2 \| w(t) \| \leq 0, \ \mu_2 = \gamma_2^2
\]

(17)
그러면 가상 시스템 식 (14)는 강한 안정하고 \(\| \hat{\epsilon}_m(t) \|_p < \gamma_2 \| w(t) \|_p \)를 만족한다. 식 (17)을 만족하는 하나의 조건은 Lyapunov와 S-절차를 이용하여 상수 \(\mu_2 > 0 \)이 주어지고 다음의 식을 만족하는 \(\lambda_2 > 0 \)이 존재하면 가상 시스템을 만족하는 모든 \(\hat{x}(t), \bar{p}_1(t), \bar{p}_2(t), w(t) \)에 대해 식 (17)을 만족하는 양의 정정행렬 \(P_m = X_m^{-1} \)이 존재하게 된다.\(^{(10)}\)

\[
\begin{bmatrix}
\dot{X}_m + X_m \dot{r}_m & I & H_3 & X_m \dot{r}_m & \lambda X_m \dot{r}_m & \lambda X_m \dot{r}_m^T & \lambda X_m \dot{x}_m^T & \lambda^2 X_m \dot{x}_m^T \\
\dot{R}_m & \-\mu_1 & 0 & 0 & K_p P_m & 0 & 0 & 0 \\
\dot{R}_m^T & 0 & \-\lambda_2 & 0 & K_p P_m & 0 & 0 & 0 \\
\dot{R}_m^T & 0 & 0 & \-\lambda_2 & K_p P_m & 0 & 0 & 0 \\
\dot{C}_m X_m & K_p P_m & K_d P_m H_2 & K_d H_4 & \-I & 0 & 0 & 0 \\
\dot{C}_m X_m & K_p P_m & 0 & K_d H_4 & \-I & 0 & 0 & 0 \\
\dot{a}_m X_m & 0 & 0 & 0 & 0 & \-\lambda_2 & 0 & 0 \\
\dot{a}_m X_m & 0 & 0 & 0 & 0 & 0 & \-\lambda_2 & 0 \\
\end{bmatrix} < 0
\]

\[(18)\]

결론적으로 식 (18)을 만족하는 상수 \(\lambda_2 > 0 \)와 행렬 \(X_m > 0 \)이 존재하면 가상 시스템 식 (14)는 강한 안정하면서 \(\| \hat{\epsilon}_m(t) \|_p < \gamma_2 \| w(t) \|_p \)를 만족한 다. 가상 시스템은 식 (18)을 만족하면서 \(\gamma_2 \)를 최소화하는 최적화 문제를 다음으로써 구해질 수 있다.

가상 시스템 설계에서는 불확실한 주파수를 미리 정확하게 알 수 있다고 가정하였다. 그러나, 주파수 불확실성을 포함하고 있는 이상 제어기는 실제로 구현될 수 없기 때문에 본 논문에서는 트랙 추종 시스템이 설계된 가상 시스템을 최대한 근사화하도록 부분 제어기 \(C_m(s) \)를 설계한다. 이를 위해 입력 \(w(t) \)와 출력 \(\tilde{\epsilon}_m(t) = \epsilon_m(t) - \hat{\epsilon}_m(t) \)에 의해 정의되는 Fig. 3의 difference 시스템을 고려한다.

\[
\tilde{x} = \begin{bmatrix} x_d & \hat{x} \end{bmatrix}^T \quad \text{과} \quad \tilde{p}_1 = \begin{bmatrix} p_d & \hat{p} \end{bmatrix}^T \text{를 정의하면 difference 시스템은 다음과 같이 표현될 수 있다.}
\]

\[
\begin{align*}
\dot{x}(t) &= \bar{A}_m x(t) + \bar{B}_1 \bar{p}_1(t) + \bar{B}_2 \bar{p}_2(t) + \bar{B}_w w(t) \\
\tilde{\epsilon}_m(t) &= \bar{C}_m \bar{x}(t) + K_p D_m \bar{H}_2 \bar{p}_1(t) - K_p H_4 \bar{p}_2(t) \\
\bar{q}_1(t) &= \bar{E}_1 \bar{x}(t), \quad \bar{p}_1(t) = \bar{A}_1 \bar{q}_1(t), \quad \| \bar{A}_1 \|_2 \leq 1 \\
\bar{q}_2(t) &= \bar{E}_2 \bar{x}(t), \quad \bar{p}_2(t) = \bar{A}_2 \bar{q}_2(t), \quad \| \bar{A}_2 \|_2 \leq 1
\end{align*}
\]

\[\quad \text{(19)}\]

\(\text{출력} \ \tilde{\epsilon}_m(t) \)는 가상 시스템 설계에서와 같이 입력 \((e(t) - \hat{e}(t)) \)을 가진 가정 함수의 제어 출력으로 간주될 수 있다. 트랙 추종 시스템이 가상 시스템을 최대한 근사화하기 위해 입력 \(w(t) \)에 대한 출력 \(\tilde{\epsilon}_m(t) \)의 시스템 제어는 최소화한다. 따라서, 식 (19)을 만족하는 모든 \(\bar{p}_1(t), \bar{p}_2(t), w(t) \)에 대해 다음을 만족하는 부분 제어기 \(C_m(s) \)를 설계한다.

\[
\min_{\gamma_3} \text{subject to} \quad \| \tilde{\epsilon}_m(t) \|_p < \gamma_3 \| w(t) \|_p \quad \text{(20)}
\]

\[
\text{그러면, 불확실한 주파수의 영향을 최대한 줄이기 위한 제한 조건에 대한 보다 일 conservative한 결과를 얻을 수 있다. 가상 시스템 설계에서와 같이 다음을 만족하는 상수 \(\lambda_3 > 0 \)와 행렬 \(X_S > 0 \)이 존재하면 식 (19)을 만족하는 모든 \(\bar{p}_1(t), \bar{p}_2(t), w(t) \)에 대해 \(\| \tilde{\epsilon}_m(t) \|_p < \gamma_3 \| w(t) \|_p \)를 만족하게 된다.}
\]

\[
\begin{bmatrix}
\dot{X}_S + X_S \dot{r}_S & I & H_3 & X_S \dot{r}_S & \lambda X_S \dot{r}_S & \lambda X_S \dot{r}_S^T & \lambda X_S \dot{x}_S^T & \lambda^2 X_S \dot{x}_S^T \\
\dot{R}_S & \-\mu_1 & 0 & 0 & K_p P_m & 0 & 0 & 0 \\
\dot{R}_S^T & 0 & \-\lambda_2 & 0 & K_p P_m & 0 & 0 & 0 \\
\dot{R}_S^T & 0 & 0 & \-\lambda_2 & K_p P_m & 0 & 0 & 0 \\
\dot{C}_S X_S & K_p P_m & K_d P_m H_2 & K_d H_4 & \-I & 0 & 0 & 0 \\
\dot{C}_S X_S & K_p P_m & 0 & K_d H_4 & \-I & 0 & 0 & 0 \\
\dot{a}_S X_S & 0 & 0 & 0 & 0 & \-\lambda_2 & 0 & 0 \\
\dot{a}_S X_S & 0 & 0 & 0 & 0 & 0 & \-\lambda_2 & 0 \\
\end{bmatrix} < 0
\]

\[\quad \text{(21)}\]

트랙 추종 시스템에 대한 지역 안정 제한조건과 종합화의 주파수 불확실성에 대한 영향을 최대한 줄이기 위한 제한 조건을 가진 강한 제어 문제는 다음의 최적화 문제로 표현될 수 있다.

\[
\begin{align*}
\text{식 (11), (21)을 만족하는} \quad A_{co}, B_{co}, C_{co}, X_D, X_S \quad \\
\text{에 대해} \quad \mu_3 \text{를 최소화하라.} \quad (\mu_3 = \gamma_3^2) \quad \text{(22)}
\end{align*}
\]

Fig. 3 Block diagram of the difference system
위의 최적화 문제는 풀기 어려운 nonconvex 문제이므로 이 논문에서는 $X = X_D = X_S$ 제약을 도입하고 식 (11)과 식 (21)의 비선형 항목을 침환하여 선형 항목으로 변환함으로써 수학적으로 다룰 수 있는 제
거하기 설계 문제로 변화한다. 최종적으로, 식 (22)는 하나의 LMI convex 최적화 문제가 되고 트랙 추종 제어기 설계는 LMI convex 최적화 문제를 다룰 수로
써 완성된다.\(^{1,11}\)

4. 모의 실험 결과

3절에서 제안한 제어기 설계 방법의 타당성을 보이기 위해 이 논문에서는 광 디스크 드라이브의 트랙 추종 시스템에 적용하였다. 일반적으로 선속도가 일정한 CLV 방식으로 데이터를 기록하고 재생이 어려운 디스크도 CLV로 재생한다. 실험에서는 디스크 회전 주파수를 각속도의 변화에 따라 안쪽 트랙에서 바깥쪽 트랙으로 3600 rpm에서 1800 rpm으로 서서히 감소하게 하였다. 이를 경우 정해외외면의 공정 주
파수는 2700 rpm (282.7 rad/s)이 되고 3600 rpm, 1800 rpm과 공정 주파수의 차가 불확실한 주파수의 최대 크기가 된다. 따라서, 정함과 외란은 다음과 같은 형태를 가진다.

$$w(t) = a \sin(\omega \cdot t + \phi), v = 2827 + \delta v(t), |\delta v(t)| \leq 94.25$$

(23)

여기서, a 는 최대 편심량으로 디스크 규격에 의하
면 100 \(\mu m\) 보다 작다. 트랙킹 액추에이터의 동작은 동적 구조 분석에 의해 측정된 주파수 응답 토태로 2차 시스템으로 모델링될 수 있다. 데이터 시트에 의하면 액추에이터의 공정 주파수와 감쇄 상수가 40 Hz, 0.044이고, 10 % 내에서 변하기 때문에 트랙킹 액추에이터의 다음과 같이 모델링하였다.

$$P(s) = \frac{[60,75]}{s^2 + (21,24)s + [546000,7200]} \text{[m/V]}$$

(24)

±0.4 \(\mu m\) 범위의 트랙킹 에러가 ±2 V로 중복되기 때문에 중복 계인 K_p는 5×106 [V/m]이다. 트랙 추종 제어기를 제외한 트랙 추종 시스템 (3)은 다음의 행렬들에 의해 구성되어진다.

$$A = \begin{bmatrix} 0 & 3200 \\ -19.78 & -22.5 \end{bmatrix}, H_1 = \begin{bmatrix} 0 & 0 \\ -2.72 & -1.5 \end{bmatrix}, E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} -0.0195 \end{bmatrix}, H_2 = \begin{bmatrix} -7.8125 \times 10^{-4} & 0 \end{bmatrix}$$

(25)

디스크에 기록된 데이터를 정확하게 재생하거나 기
록하기 위해 트랙킹 에러는 트랙 위치 16 \(\mu m\)에 대해 ±0.1 \(\mu m\) 유지되어야 한다. 광 디스크 드라이브의 트랙킹 에러는 여러 부분에서 발생하여 더해지기 때문
에 제어기 설계에서 고려하여야 하는 트랙킹 에러의 범위는 최대 허용 범위의 1/3이어야 한다. 따라서, 트
랙 추종 시스템은 트랙킹 에러가 모델링 불확실성이 나 정해외외면에 대해 ±0.033 \(\mu m\) 이내로 유지되도록 설계되어야 한다. 트랙 추종 제어가 불안정한 경우
일반은 다음 트랙으로 넘어갈 수 있기 때문에 상승
시간을 2.75 ms, 안정화 시간 6 ms 이내로 하여 트랙
추종 시스템이 빠르고 안정적인 과도 응답 특성을 갖
도록 하여야 한다. 그리고, 극점의 최대 크기를 제한
하여 트랙 추종 제어기가 높은 주파수 싸움과 빠른 동역학을 가지지 않도록 한다.

공정 주파수 ($v_0 = 282.7$)에 대해 내부 모델 원
리를 적용하면 부분 제어기 $A_{cm}, B_{cm}, C_{cm}, D_{cm}$는 다음과 같이 선택될 수 있다.

$$A_{cm} = \begin{bmatrix} 0 & 282.7 \\ -282.7 & 0 \end{bmatrix}, B_{cm} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C_{cm} = \begin{bmatrix} 2827 & 1800 \end{bmatrix}, D_{cm} = 1$$

(26)

일반적으로 안정화 시간과 상승 시간은 감쇄 상수
ξ와 natural 주파수 ω_n에 의해 다음과 같이 표현될 수 있다.

$$\frac{3}{\xi \omega_n} \leq 0.006 \text{ and } \frac{1.8}{\omega_n} \leq 0.00275$$

(27)

따라서, 과도 응답 특성을 만족하기 위해 ξ 와
ω_n은 $\omega_n \geq 654.55 \text{, } \xi \omega_n \geq 500$를 만족하여야 한다. 그리고, 시스템의 극점은 3.14×10^6 내로 제한한다.

이를 토대로 트랙 추종 시스템의 모든 극점이 존재하
여야 하는 특정 영역은 감쇄 상수, natural 주파수의

한국소음진동공학회논문집/제 14 권 제 9 호, 2004년/833
변위, 최대 크기로부터 구할 수 있다. 특정 영역은 하
나의 부등식 형태로 표현될 수 없기 때문에 다음과
같이 타원 영역 \(\mathcal{O} \)로 특정 영역을 근사화한다.

\[
\mathcal{O} = \{ z \in C : f_D(z) = \alpha + z \beta + z^T \beta^T < 0 \} \tag{28}
\]

\[
\alpha = \begin{bmatrix} -7000 & 3889 \\ 3889 & -7000 \end{bmatrix}, \quad \beta = \begin{bmatrix} 0 & 0.5194 \\ -0.4806 & 0 \end{bmatrix}
\]

먼저 불확실한 주파수의 영향을 최대한 제거하
는가상 시스템을 먼저 설계하였다. 부분 이상 제어
기 \(\hat{A}_{cm}, \hat{B}_{cm}, \hat{C}_{cm}, \hat{D}_{cm} \)는 내부 모델 원리를 확장
하여 불확실한 주파수 \(\nu = 282.7 + j \delta(n) \)에 대한 모
델을 포함한다. 따라서, 불확실한 주파수 항목을 가지
는 행렬 \(\hat{A}_{cm}, \hat{C}_{cm} \)는 식 (26)과 다음의 형식에 의해
식 (13)과 같이 주어진다.

\[
H_3 = \begin{bmatrix} 0 & 9425 \\ -9425 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad H_4 = \begin{bmatrix} 9425 \\ 0 \end{bmatrix}
\] \tag{29}

가상 시스템은 식 (18)과 관련된 LMI 최적화 문
제를 다름으로써 설계될 수 있다. 결과로 부분 이상
제어기 \(\hat{C}_w(s) \)는 다음과 같이 구해진다.

\[
\hat{A}_w = \begin{bmatrix} 2.8 \times 10^6 & 4.1 \times 10^6 & -2.2 \times 10^6 & -3.1 \times 10^7 \\ -1.9 \times 10^6 & -2.7 \times 10^6 & 1.5 \times 10^6 & 2.1 \times 10^6 \\ -3.3 \times 10^6 & -4.7 \times 10^6 & 2.5 \times 10^6 & 3.6 \times 10^7 \\ 1.6 \times 10^6 & 2.4 \times 10^6 & -1.3 \times 10^6 & -1.8 \times 10^7 \end{bmatrix},
\]

\[
\hat{B}_w = \begin{bmatrix} 3.9 \times 10^3 & 3.7 \times 10^3 & -1.6 \times 10^4 & -2.7 \times 10^5 \end{bmatrix}^T,
\]

\[
\hat{C}_w = \begin{bmatrix} 1.4 \times 10^2 & 2.03 & -1.1 \times 10^3 & -1.6 \times 10^4 \end{bmatrix}^T
\] \tag{30}

설계된 가상 시스템을 토대로 제어 목적을 만족하
는 트랙 추정 제어기는 특정 영역 \(\mathcal{O} \)를 정의과 외란
식 (23)에 대해 LMI 최적화 문제 식 (22)를 다름으
로써 구할 수 있다. 설계된 부분 제어기는 다음과
같다.

\[
C_w(s) = \frac{N_w(s)}{D_w(s)}
\]

\[
N_w(s) = 1.7 \times 10^5 s^2 + 1.3 \times 10^5 s^2 + 2.9 \times 10^5 s + 1.5 \times 10^6
\]

\[
D_w(s) = s^4 + 3.1 \times 10^7 s^3 + 1.2 \times 10^6 s^2 + 2.1 \times 10^5 s
+ 1.1 \times 10^6
\] \tag{31}

Fig. 4는 정정과 외란이 \(w(t) = 30 \sin(282.7t) \) \(\mu m \)
일 때의 트랙킹 에러를 나타낸다. 설계된 트랙 추종
시스템이 목표로 하는 상승 시간과 안정화 시간을 만
족한다는 것을 알 수 있고, 광학적 질감 추가 트랙에서
최대 18.75 트랙을 빠르게 하는 정정과 외란에 대
해 트랙킹 에러가 서보 설계시 트랙킹 에러 허용 범
위 \(\pm 0.033 \mu m \) 이내로 유지되는 것을 볼 수 있다.

Fig. 5와 6은 \(w(t) = 30 \sin(188.4t) \) \(\mu m \)과 \(w(t) = 30 \sin(376.8t) \) \(\mu m \)일 때의 트랙 추종 시스템의 과도 응답 특성을 나타내는데 정정과 외란의 주파수가 향상
주파수에서 최대 188.4 rad/s, 376.8 rad/s로 변하더라도
트랙킹 에러가 트랙트 허용 범위 내에 존재하는 것
을 나타낸다.

5. 실험 결과

설계된 트랙킹 제어기는 부동 소수점, 33 MHz로
구동하는 32 비트 프로세서에 의해 구현되었다. 설계

Fig. 4 Tracking error when \(e(t_0) = -0.4 \mu m \) and \(w(t) = 30 \sin(282.7t) \) \(\mu m \)

Fig. 5 Tracking error when \(e(t_0) = -0.05 \mu m \) and \(w(t) = 30 \sin(188.4t) \) \(\mu m \)

Fig. 6 Tracking error when \(e(t_0) = -0.05 \mu m \) and \(w(t) = 30 \sin(376.8t) \) \(\mu m \)
Fig. 7 Schematic diagram of the experimental digital servo system

Fig. 8 Tracking error when \(e(t_0) = -0.05 \mu m \) and \(v = 282.7 \) rad/s

Fig. 9 Tracking error when \(e(t_0) = -0.05 \mu m \) and \(v = 188.4 \) rad/s

Fig. 10 Tracking error when \(e(t_0) = -0.05 \mu m \) and \(v = 376.8 \) rad/s

한국소음진동공학회논문집/제 14 권 제 9 호, 2004년/ 835
강인 제어 문제는 LMI 최적화 문제로 변환될 수 있고 제한한 제어기 설계 방법의 타당성을 보이기 위해 광 디스크 드라이브의 트랙 추종 시스템에 적용하였 다. 설계된 트랙 추종 시스템은 목표로 하는 과도 응답 특성을 만족하고 디스크의 편심적인 흔적에 의해 발생하는 정향과 외란의 영향을 최대한 줄여 준다는 것을 알 수 있다.

참고 문헌

