The Optimal Design for Noise Reduction of the Intake System in Automobile Using DACE Model

Hyoun-Jin Sim, Je-Seon Ryu, Jung-Un Jin, Kyung-Joon Cha and Jae-Eung Oh

(2005년 2월 18일 접수 : 2005년 9월 14일 실사완료)

Key Words : DACE(전산실험), Intake System(흡기계), Kriging(크리깅), Noise(소음)

ABSTRACT

We propose an optimal design to improve the capacity by reducing the noise of the intake system. The length and radius of each component of the current intake system are selected as control factors. We accept the output from computer simulator with orthogonal arrays. Then, the Kriging estimates are computed. From this, we exploit the optimal design of the intake system by adapting simulated annealing. From the results of this optimal design, we conclude that Kriging method with the orthogonal arrays is the efficient method for Design and Analysis of Computer Experiments and we propose the useful results for the low noise intake system.

1. 서론

최근 자동차의 소음 저감에 관한 연구가 활발히 진행되고 있다. 특히, 자동차의 배기계와 흡기계에서 발생되는 소음은 승차감을 저해하는 중요한 원인이 되고 있다. 자동차의 성적성은 엔진실작의 주요 조건이 되고 있다. 그 중 흡기계의 소음은 중요한 연구 대상이 되고 있다.

흡기 소음은 일반적으로 500 Hz 이내의 저주파소음으로 그 자체로서 뿐만 아니라 차량 내로 전달되어 부품음의 원인이 되는 등 승차감을 저해하는 요인이다. 흡기소음에 대한 대책은 엔진을 설계 후 시행착오적으로 이루어져 공시단축과 경비절감 등에서 매우 불합리할 뿐만 아니라 무리한 소음저감대책은 약영향을 미치는 결과를 초래하기도 한다. 그러니 전달행렬 기법(transfer matrix method), 음향 유한요소해석법(acoustic FEM) 등의 다양한 해석기법과 시뮬레이터를 이용한 실험기법들이 제안되면서 기존의 흡기 소음저감대책에 대한 불합리성이 많이 개선되고 있다. 그러나 이 또한 기존의 것에는 의존하는 시행착오적 요소를 벗어나지 못해 많은 시간과 비용이 소요되고 있다.

이 연구에서는 흡기계를 대상으로 소음 저감특성을 평가하고 나타난 문제점을 파악하여, 기존의 흡기계의 성능향상을 위한 적합 배열표를 이용한 실험 설계 방법과 최근에 많이 연구가 진행되고 있는 최적 설계분석 기법인 크리깅 방법을 도입하여 적용함으로써 새로운 가능성을 살펴보고자 한다. 상대적으로 소음저감 성능이 낮은 주파수영역을 보완하고자 허용되는 경계조건에서 흡기계의 설계변수 사양 제한조건을 고려하여 인자들의 비선형적인 최적조건을 찾고자 한다.
크리징은 남아프리카 공화국의 광산 기술자였던 D.G. Krige(1)의 이름을 본따 이름 지어졌으며, 그는 1950년대에 생물관리 광물절 등급(ore grade)에 기초된 분포로부터 최적의(true) 광물절 등급 분포를 결정하기 위한 경제적 방법을 개발했다. 최근에, 크리징은 Sacks(2) 등에 의해 발표된 최초의 논문제목인 전산실험/design and analysis of computer experiments: DACE 모형에서 적용되고 있으며, 다분야통합최적설계(multidisciplinary optimal design) 등 공학 분야에 널리 사용되고 있다.

전산실험 모형에서 최적설계분석 방법으로서 크리징이 많이 적용되고 있는 것은 기존에 주로 사용되어 왔던 메타모형(meta model)으로서의 반응표면 모형의 여러 약점을 보완해 줄 수 있는 방법이라고 여러 연구들로부터 인정되기 시작하게 되면서이다. 실제로, 1990년대에 들어서면서, 미항공우주국(american institute or aeronautics and astronautics: AIAA)을 중심으로 많은 연구가 있어 왔다. 이와 관련하여 Guin(3)는 다분야 통합 최적설계를 위해 크리징을 수행하였고, Booker(4)는 콜럼버스 최적의 실험설계를 위한 근사모형으로서 크리징을 적용하였다. Simpson(5) 등은 1990년대에 발표된 항공, 기계분야에서의 반응표면 모형을 이용한 최적화 관련 연구들을 정리하면서 이 모형의 단점을 지적하였고, 이를 보완해 줄 수 있는 대안으로서 크리징을 제안하였다.

Simpson은 그의 박사학위 논문에서 크리징 방법을 적용하기 위한 여러 가지 실험설계 방법들을 소개하고 있으며, Chen(6) 등은 모형의 특성, 즉, 설계의 개수, 문제의 비선형성 그리고 설계변수의 개수 등에 따른 메타모형의 적합성을 총 14개의 다양한 함수들을 이용하여 테스트하였다고 하였다. 또한 Sasena(7)은 크리징 방법을 spline 함수와 비교하였다. 봉제성(8) 등은 자동통계학에서 적용되어 오고 있던 방식과 크리징 전산실험 모형에서 사용되고 있는 크리징 방식의 차이점에 대하여 설명하였다.

2. 실험대상 및 실험설계 대상

Fig.1은 이 연구대상인 홈기계의 실제 모형이다. 자동차의 홈기계를 구성하는 요소인 피나플, 플러닝, 에어크리셔너, 파이프, 공명기 등 메니폴드, 플러닝은 전진등을 고려하여 실험설계가 이루어져 있으므로 설계인자에서 제외하였다. 공명기는 기본적인 홈기계의 구성이 이루어진 뒤에 실험에 대한 설계가 이루어지므로 설계인자에서 제외하였다.

Fig.2는 홈기계의 성능평가를 위해 Fig.1을 단순화한 그림이며, 각 설계변수와 수준은 Table 1에서 제시된 바와 같다. 현재 사양은 굵은 글씨체로 표시하였고, 설계변수 A의 경우는 굵은색 윗으로 현재 사양보다 증가된 값을 수준으로 설정하였다. 따라서 설계는 강건 설계에서 중요한 작동 범위와 구체적 설계계획을 적용하였다.

Fig.2는 홈기계의 성능평가를 위해 Fig.1을 단순화한 그림이며, 각 설계변수와 수준은 Table 1에서 제시된 바와 같다. 현재 사양은 굵은 글씨체로 표시하였다.

![Fig.1 Overview of intake system](image1)

![Fig.2 Simplified model of intake system](image2)

<table>
<thead>
<tr>
<th>Table 1 Control factors and level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control factor</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
</tbody>
</table>
3. 크리깅 기법

전산실험(computer experiments)은 여러 가지 입력값(input)을 갖는 컴퓨터 코드들(computer codes)의 수행이다. 많은 컴퓨터 실험의 특성은 결과값(output)이 "경험치"이라는 것이다. 즉, 같은 입력값을 갖는 코드는 동일한 관측값을 제공하는 것이다. 전산 실험을 수행하는 데 있어 계산적으로 비용이 많이 들며, 실험의 일반적인 목적은 데이터에 대한 결과값에 대하여 계산적으로 비용이 덜 드는 예측값을 적합시키는 것이다. 따라서, 전산실험에서의 실험설계와 분석의 목적은 확률과정의 실현값으로서 결정적 결과값을 모형화하는 것이며, 효율적인 예측을 위해 (입력값을 선택하는) 실험설계를 위한 통계적 기반을 제공하는 것이다.

이 장에서는 자동차 휘게의 소음률을 줄이고자 하는 데에 목적이 있는 바, 이에 적용하기 위한 크리깅 방법의 수학적 모형과 크리깅 추정량 산출방법에 대하여 살펴보고, 이에 대한 산출과정을 정리한다. 또한, 크리깅 추정량을 산출하기 위한 방법으로서 메타 허리스틱 방법(김영근 등, 1997)이 유전자 알고리즘과 닮음모델 모사기법의 적용 방법에 대하여 소개하고자 한다.

3.1 수학적 모형

 컴퓨터 실험에서 관측값은 입력값 x의 여러 가지 선택에 따라 그 모형을 수행함으로써 반응값 y로서 생성된다. 즉, 주어진 입력 변수 x에 대하여 수치적으로 미분계산자를 이용하여 반응변수 y에 대한 예측값을 얻을 수 있다.

Sacks은 전산실험에서의 모형을 다음과 같은 선형 모형(linear model)과 잔차(departure)의 합으로 표현하였다. 즉,

\[y(x) = f(x) + \delta(x) \] \hspace{1cm} (1)

여기에서 \(y(x) \)는 관심 있는 미지의 함수이며, \(f(x) \)는 x의 선형함수(linear function)이고 \(\delta(x) \)는 평균 0, 분산이 \(\sigma^2 \)의 정규분포에 따른 변동의 실험값이다. 식 (1)의 \(f(x) \)는 반응 표면(response surface)의 따라 모형(polynomial model)과 비슷한 형태를 가지며, 설계 공간(design space)에서 전체적(general)의 모형이다. 또한, \(\delta(x) \)
3.2 상관함수

식 (1)에서의 \(\delta(x) \)의 공분산 행렬은

\[
\text{Cov}(\delta(x^i), \delta(x^j)) = \sigma^2 R(R(x^i, x^j))
\]

으로 표현될 수 있으며, 이때 \(R \) 은 상관행렬(correlation matrix)이므로 \(R(\cdot, \cdot) \)은 \(\chi \)개의 추출된 데이터 점들 중 두 점 \(x^i \)와 \(x^j \) 사이의 상

관함수(correlation function)이다. 따라서, \(R \)은 대각

이 모두 1인 \(n \times n \) 대칭이며, 양정치 행렬(positive
definite matrix)이 되도록 상관행렬에 대하여 제한된

특정 모형들이 있으며, 사용자가 의해 결정된다

(Sacks 등, 1989; Mitchell 등, 1992). 여기에서, \(n \)

은 설계 변수/design variable\)의 개수이며, \(\theta \)

는 모

형에 적합하도록 사용되어지는 미지의 상관 계수이

고, \(d_k = 1 \) \(x^k = x^j \)는 두 점 \(x^i \)와 \(x^j \)의 \(k \)

번째 연산자로서의 관리이다.

또 다른 관점에서는 \(n \)개의 추출된 점 \(x^1, \ldots, \)

\(x^n \)가 추정하려는 점 \(x \)에서의 반응값 사이에

의 상관벡터(correlation vector) \(r(x) \)가 있으며, 이는

\[
r(x) = [R(x, x^1), \ldots, R(x, x^n)]
\]

으로 표현되어진다.

3.3 크리깅 추정량

식 (1)은 미지의 추정되어야 할 값을 의미하고 있으며, 계산되어지는(즉, 가정되어지는) 모형은

\[
\hat{y}(x) = E[y(x) | y(x^1), \ldots, y(x^n)]
\]

로서 정의된다. \(y(x^1), \ldots, y(x^n) \)는 \(\chi \)개의 관측된

반응값이고 \(y(x) \)는 추정하기 위한 점 \(x \)에서의 반응값이며, \(\hat{y}(x) \)는 \(y(x) \)의 추정량이다. 설계 변수 \(x = \{x^1, \ldots, x^n\} \)와 반응값 \(y = \{y(x^1), \ldots, y(x^n)\} \)이 주어져 있을 때, 관측되지 않은 입력값 \(x \)에서의 반응값 \(y(x) \)의 선형 예측 모형

\[
\hat{y}(x) = c'(x) y_x
\]

을 고려하면. 이때, \(c(x) \)를 확률적으로(random)이

라고 가정하며, 확률 과정에 대하여 예측값의 평균제

공 오차(mean squared error)를 최소화하는 과정을

고려한다.

즉, \(\hat{y}(x) \)의 평균 제곱 오차

\[
\text{MSE} [\hat{y}(x)] = E[c'(x) y_x - y(x)]^2
\]

을 최소화하도록 \(n \times 1 \) 벡터 \(c(x) \)를 선택함으로써

이해된다.

이제, 임의의 \(k \)에 대해,

\[
f(x) = \{f(x^1), \ldots, f(x^n)\},
\]

그리고

\[
F = \begin{bmatrix} f(x^1) \\ \vdots \\ f(x^n) \end{bmatrix}
\]

이라 하면, 식 (2)에는 의하여 식 (3)은

\[
E[c'(x) y_x - y(x)]^2 =
\]

\[
(\hat{c}(x) F)\beta - f'(x) \beta)^2 + \sigma^2
\]

\[
[1 + \hat{c}'(x) R c(x) - 2 \hat{c}'(x) r(x)]
\]

이 되고, 불편 제한 조건은

\[
F' c(x) = f(x)
\]

이므로,

\[
\text{MSE} [\hat{y}(x)] = \sigma^2 [1 + c'(x) R c(x) - 2 c'(x) r(x)]
\]

이 된다. 식 (4)와 라그랑주 동분 삼수 \(\mu(x) \)를 이용하여

\[
\sigma^2 [1 + c'(x) R c(x) - 2 c'(x) r(x)]
\]

\[
- \mu(x) (F' c(x) - f(x))
\]

을 최소화하도록 \(c(x) \)에 관하여 편미분하면

\[
R c(x) - r(x) - \mu(x) F = 0
\]

이이며, 이를 행렬로 표현하면

\[
\begin{bmatrix} 0 & F' \\ F & R \end{bmatrix} \begin{bmatrix} -\mu(x) \\ c(x) \end{bmatrix} = \begin{bmatrix} f(x) \\ r(x) \end{bmatrix}
\]
\[y(x^0) = f(x^0) + r(x^0) R^{-1}(y_* - F\beta) \] \hspace{1cm} (5)

다음, 여기서 \(\beta = (F^T R^{-1} F)^{-1} F^T R^{-1} y_* \)은 회귀 계수 \(\beta \)의 일반화된 최소 제곱 추정값이다. 식 (5)에서 두 항은 상호 연관되어 있지 않으며, 두 단계 항은 전자 부드러운 면으로 해석되어질 수 있다. 그러므로 최적값은 다음의 두 관계에 의거할 수 있다. 즉, 일반화된 최소제곱 예측값을 얻은 다음 회귀모형이 없는 것처럼 전략을 보완할 수 있다. 마지막으로 상관관계 \(\theta_k \)를 결정함으로써 최적적인 크리깅 모형을 결정할 수 있다. \(\theta_k \)는 어떠한 값을 취하든 각 심사점들을 보완하는 크리깅 모형을 얻어낼 수는 있지만 가정 적합한 크리깅 모형은 최대우도 추정법(maximum likelihood estimation) 과정을 통해 결정하게 된다.

3.4 최대우도 추정법

최대 우도 추정법은 각 데이터 점에서의 오차가 정규분포를 따른다고 가정할 수 있는 경우, 이러한 오차를 최소화 할 수 있는 인자를 결정할 때 사용되는 추정법으로서, \(n \) 개의 심사점들을 이용하여 특정 인자 \(\theta \)를 결정하고자 할 경우에는 다음과 같이 우도함수(likelihood function)를 얻어낼 수 있다.

\[L(x^1, \ldots, x^n; \beta, \sigma^2) \]

\[= \exp\left(- \frac{(y - f(x))^T R^{-1}(y - f(x))}{2\sigma^2} \right) \] \hspace{1cm} (6)

식 (6)을 최대화시키는 \(\beta \)와 분산 \(\sigma^2 \)의 추정값은 일반화된 최소제곱법(generalized least square method)을 사용하여 유도해낼 수가 있다. 이와 같이 유도된 \(\beta \)의 추정값은 \(\beta \)을 적용하고 \(\sigma^2 \)의 추정값은 다음과 같이 산출할 수 있다. 즉, \(\sigma^2 \)의 최대 우도 추정량을 산출하기 위해 식 (6)을 \(\sigma^2 \)에 관해 편미분하여 정리하면, \(\sigma^2 \)의 최대우도 추정량 \(\sigma^2 \)은

\[\sigma^2 = \frac{(y - f(x))^T R^{-1}(y - f(x))}{n} \] \hspace{1cm} (7)

이다. 먼저의 상관관계인 \(\theta_k, k = 1, 2, \ldots, n_\theta \)는 식 (6)의 분모를 최소화시키는 값으로 최적화 문제를 통해 결정된다. 즉 식 (7)을 식 (6)에 대입하면,

\[\theta = (\theta_1, \theta_2, \ldots, \theta_{n_\theta}) \in \mathbb{R}^{n_\theta} \] \hspace{1cm} (8)

을 최대화하는 문제와 같다. 이때 모든 \(k \)에 대하여 \(\theta_k > 0 \)이다.

3.5 유전자알고리즘을 적용한 상관관계수의 계수 추정

이 연구에서는 유전자 알고리즘(genetic algorithm) 방법을 사용하여 식 (8)의 최적화 문제를 해결하였다. 우선, 상관관계수의 계수를 추정하기 위하여 반변이도 모형 추정 방법과는 달리 데이터로부터 직접적으로 실출한다. 최적의 상관관계수를 결정하기 위해 초기 엽색체 모집단을 구성한다. 각 엽색체는 데이터에서의 실제 변수 수의 개수 \(n_\theta \)에 대하여 \((\theta_1, \ldots, \theta_{n_\theta}) \)와 같이 구성되며, 엽색체 후보는 엽색체의 수 \(m \)개 만큼 생성된다. 이때, 상관관계수의 선택범위가 결정되어 있어야 하며, 범위 내 변수를 후보 엽색체로서 구성한다.

다음으로 반복적산의 수 \(gen \)이 결정되면, 두 개의 지점 \(x^i, x^j, i, j = 1, 2, \ldots, n \)에서의 \(k \)번째 원소 \(x^i_k \)와 \(x^j_k \)에 대하여 거리 \(d_k \)를 산출하고, 후보 엽색체의 곡 \(\theta_k d_k \)을 계산한다. 모든 \(k \)에 대하여 \(\sum \theta_k d_k \)를 산출하면, 상관행렬 \(R \)의 \((i, j) \)번째 원소를 구할 수 있다. 위와 같이, 모든 점에 대하여 두 개의 지점별 거리를 구할 수 있고, 따라서 상관행렬 \(R \)을 산출할 수 있다. 이제, 식 (8)의 목적함수 \(\phi(\theta) \)를 최대화하는 \(\theta = (\theta_1, \ldots, \theta_{n_\theta}) \)를 얻기 위해 일반화된 회귀계수 \(\beta \)를 산출하고, 이를 통해 식 (7)에서의 \(\sigma^2 \)를 산출한다. 다음으로 목적 함수 \(\phi(\theta) \)의 값을 산출하게 된다. 이 과정이 엽색체를 평가하는 과정이다.

선택과 교배, 그리고 돌연변이 과정은 좋은 형질의 엽색체를 그대로 선택하고 나머지는 확률적으로 확률 바꾸기법을 적용하였으며, 확률바꾸기법에 따라 선택된 유전자에 대하여는 산출적 교배 방법을, 그리고
3.6 최적수준 탐색에서의 달걀질 모사 기법 적용

3.5절에서 최적의 상관계수를 산출하면, 이를 통해 최적의 상관행렬의 함수 \(R \)를 결정하고, 이를 통해 엄밀의 새로운 지점과 관측지점과의 상관俁적 \(r \)을 결정하며, 크리깅 추정량을 산출한다. 샘플링된 지점으로부터 최적의 상관계수를 결정하여 Fig. 3의 프로세스를 통해 상관함수 \(R \)이 산출된다. 다음으로, 새로운 지점 \(x \)를 결정한다. \(x \)는 실험공간에서 임의의 점으로 선택하고, 새로운 지점과 관측지점과의 상관계수 \(r \)을 결정할 수 있으며, 데이터와 상관함수 \(R \)로부터 크리깅 추정량을 산출하게 된다.

온도 스케일링 과정에서 초기온도 \(T \)와 최저온도 \(T_{min} \) 그리고 온도 변화율 \(T_r \)를 결정한다. \(T_r \)은 온도의 하강 속도를 의미하며, 보통 0.95와 0.99에서 결정된다. 내부사프 \(L \)은 1로 결정하였는데, 이는 온도 스케일링 과정에서 온도의 하강 수준을 약간 하여, 충분한 회수의 수행을 가능하게 내부조의 과정은 생략하는 의미가 된다.

다음으로, 초기값 \(x \) 주변에 있는 \(y \)의 값을 선택하는데, \(x \)의 각 원소 \(x_i, i = 1, \ldots, n_d \)에 대하여 \(y \)는 평균이 \(\bar{y} \)이고, 분산은 설계 변수 영역 내에서의 일반 분포(Uniform distribution)의 분산으로 하여 정규분포를 따른 난수를 발생시킴으로써 결정되도록 하였다.

즉, \(y_k = x_k + rnorm(0, (b_k - a_k) / 12) \), 여기에서 \(y_k \)는 \(y \)의 \(k \)번째 요소이고, \(x_k \)는 \(x \)의 \(k \)번째 요소이며, \(a_k \)와 \(b_k \)는 \(k \)번째 설계변수 영역의 최소값과 최대값이다.

또한 \(rnorm(\mu, \sigma^2) \)는 평균이 \(\mu \), 분산이 \(\sigma^2 \)인 정규분포를 따르는 난수이다. 따라서, 새로운 값 \(\tilde{y} \)에서도 마찬가지로, 샘플링된 지점 사이에서의 상관계수 벡터 \(R \)을 산출하고, 크리깅 추정량을 산출하게 된다. 마지막으로, 두 점 \(x \)와 \(y \)에서의 크리킹 추정 값을 비교하고, 새로운 점이 크거나, 혹은만 확률값이 임의의 난수보다 클 때(즉, 확률적으로, 새로운 값을 기존의 값 \(x \)로 대체된다. 이러한 과정을 통해 실험에서의 최적 수준을 얻게 된다. 이에 대한 수행과정은 Fig. 4와 같다.

4. 분석결과

4.1 흡기계 데이터에서의 상관계수 추정

수학적 함수에서의 최적화를 적용 시와 같이 최적의 상관계수 \(\theta = (\theta_1, \ldots, \theta_n) \)을 결정하기 위해 유전자 알고리즘을 적용할 때의 염색체의 수는 \(m = 20 \).
그리고 세대수 \(\text{gen} = 1000 \)으로 하였고, 식 (8)에서의 목표함수 \(f(\theta) \)를 최대화하도록 하였다. 선택 과정에서는 (0, 1)에서의 난수 \(r \)을 발생시킨 후, \([20 \times r] \) 개수는 우수한 형질의 염색체를 그대로 유지하고, 나머지는 확률적으로 선택하도록 하였다. 여기서 \([\cdot] \)은 \(\cdot \)을 넘지 않는 최대 정수이다. 교배 연산자의 가중치는 \(a = 0.7 \), 교배율 \(p_c = 0.3 \), 그리고 돌연변이율은 \(p_e = 0.1 \)로 하였다.

Fig. 5는 흡기계 데이터에서의 상관함수의 계수 추정에서의 세대별 진화과정을 보여주고 있다. 이를 통해 최적의 상관계수는 Table 3과 같은 결과를 얻었으며, 목표함수 \(f(\theta) \)의 값은 -0.1938이었다.

4.2 담금질 모사기법을 적용한 저소음 흡기계 인자의 선택

위에서 결정된 상관함수의 계수를 이용하여 식 (5)에서의 크리깅 산출식과 담금질 모사기법을 적용하여 흡기계에서의 최적수준을 산출하면 아래의 Table 4와 같다. 담금질 모사기법을 적용시 초기온도 \(T \)는 1, 그리고 온도 하강율은 많은 수평과정을 반복하기 위해 \(Tr \)은 0.9999, 최저온도 \(T_{min} \)은 10-6으로 하였다.

위에서 구한 최적수준을 적용하여 흡기계 성능평가 소프트웨어로 재해석을 위해 실제 TL 값을 산출한다. 이 연구에서 사용된 흡기계 성능평가 소프트웨어의 신뢰성을 검증하기 위해서 흡기계의 TL값을 실험을 통하여 구할 수 있다. 수행한 결과는 Fig. 6과 같이 며, TL의 레벨이 36.95 dB로서 현제의 실험결과보다 2.22 dB 향상된 결과를 얻을 수 있었다.

5. 결 론

최적화 수행을 위하여 3수준의 혼합직교배열 모듈과 크리깅 기법을 사용하였다. 실험설계는 먼저 직교배열표를 이용하여 주인들을 해석한 후, 크리깅 추정량을 산출하여 유의한 최적조건을 찾을 수 있었다. 이 논문에서 흡기계의 저음화 기법의 제안을 수행하여 얻은 결론은 다음과 같다.

첫째, 이 실험에서는 크리깅 방법을 도입하였다. 이 방법은 기존의 최적화 방법과는 달리 통계적 이론을 바탕으로 상관성이 강하고 비선형적인 문제를 해결하는 데 사용될 수 있다. 따라서, 좀 더 이론적으로 명확한 방법을 도입함으로써 최적설계에 대한 새로운 방법을 제안하였다.

둘째, 실험치를 직접 최적화에 적용하는 것보다 SN비를 적용하여 최적설계를 하는 것이 자료의 신뢰도 측면에서 더 좋은 결과를 얻 수 있다는 것을 확인할 수 있었다.
셋째, 휘기계 최적설계문제에서 상관합수의 계수의
최적값을 적용하여 최적수준을 결정한 결과 휘기계의
TL값은 현재의 설계보다 2.22 dB 향상된 결과를 얻
을 수 있었다.

항후 보완해야 할 점으로는 메타허리스틱 방법이
확률적으로 전역적 최적값을 산출하기 때문에 항상
유일한 값을 제공하는지는 않다는 점이다. 따라서 보다
정확한 최적값을 얻기 위해서는 보다 많은 실험을 수
행하는 것이 필요하다라고 사료된다. 그리고 항후 시스-
템의 최적화에 있어서 목적 함수 개선을 통한 설계
성능의 향상과 공정성을 적용한 경우에는 대한 최적화
연구가 보강되어야 한다.

참 고 문 헌

(1) Krige, D. G., 1951, "A Statistical Approach
to Some Basic Mine Valuation Problems on the
Witwatersrand.", Journal of the Chemical,
Metallurgical and Mining Society of South Africa,
Vol. 52, pp. 119~139.

(2) Sacks, J., Welch, W. J., Mitchell, T. J. and
Wynn, P. H., 1989, "Design and Analysis of
Computer Experiments.", Statistical Science, Vol. 4,
No. 4, pp. 409~435.

(3) Quinta, A. A., 1997, "Aircraft Multidi-
siplinary Design Optimization Using Design of
Experiments Theory and Response Surface
Modeling, Ph. D. Dissertation and MAD Center
Report No. 97-05-01", Department of Aerospace
and Ocean Engineering, Virginia, Polytechnic
Institute and State University, Blacksburg, VA.

and Analysis of Computer Experiments, Proceed-
dings of the Section on Physical and Engineering

(5) Simpson, T. W., Pepinski, J. D., Koch, P.
Indesign and the Implications for Deterministic
Computer Experiments", ASME Design Engineering
Technical Conferences, Sept. 14-17,1997, Sacramento,
California.

(6) Chen, W., Jin, R. and Simpson, T. W., 2002,
"Comparative Studies of Meta-modeling Techniques
Under Multiple Modeling Criteria. 8th ALAA/
USAF/NASA/ISSMO Symposium on Multidiscri-
plinary Analysis and Optimization", AIAA-2000-4801,

Simulations via Smoothing Splines and Kriging
Metamodels", M. S. Thesis, Department of
Mechanical Engineering, University of Michigan,
Ann Arbor, MI.

(8) Cha, K. J., Park, Y. S., Ryu, J. S. and Jin,
J. U., 2002, "The Kriging Method with Robust
Design for Low Noise Intake System", The Korean
133~143.

(9) Chambers, L., 1994, "Practical Handbook of
Genetic Algorithm", CRC Press.

Algorithm", Van Nostrand Reinhold.

(11) Metropolis, N., Rosenbluth, M. and
Rosenbluth, A. 1953, "Teller and E. Teller
Equation of State Calculations by Fast Computing
Machines.", Journal of Chemical Physics, Vol.21,
pp. 1087~1092.

(12) Oh, J. E., Han, K. H. and Son, D. Y., 1996,
"The Design Technique for Low-noise Intake
System of Vehicle", Proceedings of Autumn
Conference, Korean Society of Automotive
Engineering, pp. 317~322.

(13) Ryu, J. S., Kim, M. S., Cha, K. J., Lee, T. H.
in Geostatistics and DACE Model", KSME

(14) Joe, Y. G., Oh, J. E. and Lee, Y. Y., 2002,
"The Robust Design of Low Noise Intake System
with Experimental 4-poles", Transaction of the
Korean Society for Noise and Vibration Engineering,
Vol. 12, No. 6, pp. 405~412.