Development of Index for Sound Quality Evaluation of Vacuum Cleaner Based on Human Sensibility Engineering

(2005년 3월 28일 접수 : 2005년 6월 1일 심사완료)

Key Words: Sound Quality(음질), Human Sensibility(인간 감성), Sound Metric(음질 요소), Subjective Evaluation(주관 평가)

ABSTRACT

In our life, we have used many digital appliances. They help us to improve the quality of life but sometimes give us unsatisfactory result. Because they produce specific noise. Especially vacuum cleaner produce much noise that is very annoying. So we need to study what sound metrics affect human sensibility. In this paper, we develop sound quality index for vacuum cleaner using the sound quality metrics defined in psychoacoustics. First, we carry out the subjective evaluation of vacuum cleaner sound to verify what vacuum sound feels good to human. And then artificial neural network estimated the complexity and the nonlinear characteristics of the relations between subjective evaluation and sound metrics. Finally the ANN is trained repeatedly to have a good performance for sound quality index of the vacuum cleaner. As a result, the sound quality index of vacuum cleaner has a correlation of 93.5% between the subjective evaluation and ANN. So, there exist three factors that is loudness, sharpness, roughness which affect the sound quality of vacuum cleaner.

1. 서 론

가전제품 중 가장 시끄러운 소음을 발생시키는 진공청소기의 음향에 대한 연구는 소음의 강도를 저감 하는 측면과 음질의 향상이라는 측면에서 고려되어 왔다. 소음의 저감 이란 소자의 최소 요구 수준 까지를 고려하는 것이며, 이것은 주로 음압의 높낮이 에 대한 평가이다. 하지만 인간이 듣는 소리의 종 고나 난은 단지 음압에 의해 표현 되는 것이 아니라 기존 심리음향에서 다루는 음질요소에 의해 표현되는 것이 아니라는 점을 고려한 후 다용 심리음향 이론을 이용한 음질 요소를 계산하여 음질표와 주관 평가 결과 간의 상관관계를 분석 하는 과정을 진행하였다. 이후 음질 요소와 청각 실험과의 비선형적인 관계를 식별하고 향상 시험하여 최적인 음질 인덱스를 개발하는 일련의 과정을 거쳤다. 이러한 과정을 통하여 개발된 진공 청소 기 음질 인덱스는 객관적인 데이터 처리의 주관적인 음질 평가 예측을 가능하게 해주며 추후 개발되
2. 청소기 소음신호 제작

2.1 청소기 소음 녹음

먼저 진공 청소기 소음 신호 제작을 위하여 3대분량의 청소기 소음 신호를 연구실에서 녹음하는 과정을 진행하였는데, 청소기는 오디오 사의 Dummy Head (artificial head)를 이용하여 녹음 하였다. 일반 가정집이나 사무실에서 사용되는 청소기는 어느 정도의 전향효과를 가지고 소음이 발생하기 때문에 무향설이 아닌 일반 사무실 (6m × 10m × 4m)에서 녹음하였다. 전향 효과를 주기 위해 사용된 청소 기 신호는 일반적인 사무실 주거환경을 기준으로 하여 실제 사용되어지고 있는 사무실 모델로 하여 녹 음하였다. 녹음환경의 바닥에는 일반 데코타일, 벽면은 방음처리가 되어있는 벽재이며, 좌우벽면에는 1.2 m × 1m 책상이 설치되어 위치하고 정면의 창문에는 블 라인드가 내려진 상태에서 Dummy Head를 이용하여 청소기 운전소음을 녹음하였다. 구체적 위치는 Fig. 1과 같다.

청소기 신호에 대한 녹음은 인공헤드를 이용하여 2 채널로 녹음하였으며 측정 높이는 인간의 청각과 유 사하게 하기 위해서 인공헤드의 높이를 1.5m으로 하여 측정하였고 청소기 본체의 노출을 전 1m 지점 두 곳에 두고 녹음을 하였다. 실험에 사용된 3개의 진공 청 소기는 파크 성분 (1000 Hz)의 음을 사용하여 60dB를 발생하는 특정을 가지고 있는 청소기에 일반적인 청소기 파크성분의 소음이 발생하여 미치는 영향을 고려하기 위하여 실험에 사용되었다. 또한 청소기 노 즘의 공력 소음이 전체 청소기 신호의 음질에 미치는 영향을 고려하여 각 청소기별로 노출의 종류를 달 리하여 녹음하였으며 (4) 노즐 (nozzle)의 종류는 A타 일, B타일, C타일 3가지를 사용하였다. 따라서 이 연구에서 사용된 청소기 신호는 각 9가지 (3×3×9)가 되며 두 가지 변조 조건에 의하여 총 108개의 신호를 제작하여 실험에 사용하였다. 아래의 Table 1은 각 변조된 신호의 종류와 개수를 나타내고 있으며, 총 108개의 신호이다.

Table 1에서 스펙트럼 변조 신호는 각 변조구간 (Bark 단위)별로 ±2 dB의 변조를 주어 9×2×18개 의 신호를 제작하여 54개의 변조신호를 제작하였으 며, 파크성분 변조신호는 파크를 제거한 신호 9개와 파크의 크기를 60 dB를 중심으로 ±3 dB, ±6 dB의 변조를 준 신호를 포함하여 45개의 신호를 제작하였 다. 따라서 전체 실험에 사용된 신호는 원신호 9개, 스펙트럼 변조신호 54개, 파크성분 변조신호 45개로 총 108개의 신호가 된다.

변조 신호는 일반적으로 청소기 소음에 문제가 되 는 10 kHz 주변의 peak 성분과 저주파수 영역의 스펙트럼, 중간주파수 영역의 스펙트럼, 고주파수 영역의 스펙트럼의 크기를 변조하여 제작하였다. 각 변조 성분들은 청소기소음의 음질에 중요한 영향을 미치는 인요소로 적절한 청소기 소음의 발생을 위하여 제어되어야 하는 성분들이다. (5) 따라서 각 변조성분의 변화 에 따른 사람의 청소기 음질인식 변화를 음질인텍스 개발과정에 고려하기 위하여 변조신호를 제작하여 실험에 사용하였다.

2.2 청소기 소음신호 제작

두 가지 방법으로 제작된 진공청소기 변조신호는 넓은 영역에 걸쳐 분포하는 음질인자 값을 갖도록 제 작되어야 한다. 이는 신경회로망의 가중치 값들이 라 우드니스와 사프니스, 레프니스, 변동강도 등의 각 음 질인자 값들에 의하여 학습되기 때문에 다양한 음질 인자 값들에 의하여 학습된 신경회로망이 새로운 진

Table 1 Different type of signals used in this paper

<table>
<thead>
<tr>
<th>Origin</th>
<th>Spectrum changing (Bark)</th>
<th>Peak removed</th>
<th>Peak change</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 ~ 12</td>
<td>±2 dB ±2 dB ±2 dB</td>
<td>±3 dB ±6 dB</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9×2 9×2 9×2 9×1(개)</td>
<td>9×4</td>
<td></td>
</tr>
</tbody>
</table>
공정직기 데이터의 입력에 대하여 좀 더 도움이 되는 에측 결과를 보이기 때문에다. 구체적인 변조신호 제작 방법은 아래와 같다.

(1) 피크성분(peak noise)의 크기 조절
먼저 녹음된 진공청소기 소음 신호는 감만 필터를 이용하여 10 kHz 주변의 피크성분 즉, 토온소음(Tonal noise)의 크기를 조절하였다. 청소기 소음의 스펙트럼 중 10 kHz주변의 성분은 Fig. 2와 같이 나타난다. 약 10 kHz주변의 수음 성분이 진공건의 시간에 걸쳐서 존재하는데 이는 고주파영역에서 ‘정’하는 소리를 발생시키는 주법이며 제어되어야 할 대상이다. 이를 CADA-X 프로그램을 이용하여 제거한 신호는 Fig. 3과 같다. 그리고 CADA-X의 감만필터를 이용하여 추출한 토온소음(Tonal noise)은 평균 토온소음 크기(60 dBA)를 중심으로 ±3 dB의 크기로 변화를 주어 54 dBA, 57 dBA, 60 dBA, 63 dBA, 66 dBA 총 5가 지로 변화시켰다. 추출된 토온소음을 66 dBA로 변

Fig. 2 Original vacuum cleaner noise

Fig. 3 Vacuum cleaner noise of which tonal noise is removed by Kalman filter

Fig. 4 Vacuum cleaner’s tonal noise which is abstracted from original signal and multiplied up to 66 dBA

Fig. 5 Vacuum cleaner signal of which tonal noise’s magnitude is multiplied up to 66 dBA

Fig. 6 Vacuum cleaner signal of which low frequency band(770 Hz~1720 Hz) is attenuated by 2 dB

Fig. 7 Vacuum cleaner signal of which low frequency band (770 Hz ~ 1720 Hz) is intensified by 2 dB
화한 신호가 Fig.4이다. 이렇게 변화들 준 토온소음 은 다시 토온소음을 올린 신호에 더하여 최종적인 전체 청소기 신호를 만들었다. 이렇게 만들어진 신호는 Fig.5이다.

(2) 대역별 스트레트크 크기 조절
두 번째로 주파수 대역별 스트레트크 크기에 변화를 주어 청소기 신호를 제작하였다. 청소기 신호의 스트레트크 변화를 준 구간은 770 Hz~1720 Hz, 2320 Hz~5300 Hz, 5300 Hz~15500 Hz로 이는 바크단위로 7~12 Bark, 14~19 Bark, 19~24 Bark에 해당한다. 이와 같이 바크 단위로 스트레트크 변화를 준 것은 인간의 소리 크기인자에 대한 청각과정은 바크단위로 이루어지기 때문이다. 즉 내의 코르티기관(organ of Corti)에서 소리의 자극을 받아들이는 헤어셀(hair cell)은 바크단위로 배열되어 있으며 인간의 느끼는 소리의 주관적 지표인 음질요소(라우드니스, 샤프니스, 라프니스, 변동강도)가 바크단위로 적분하여 개인에 이루어 지기 때문에 바크 단위로 스트레트크 변화 구간 을 정하였다. 청소기 신호의 각 구간은 ±2 dB의 크기로 스트레트크 크기를 조절하였다. 본 실험에서 사용된 변조신호에 대하여 실험평가자들이 평균 ±2 dB의 소리 크기 변화에 대하여 변화를 인지하였기 때문에 각 구간에 대하여 ±2 dB의 크기로 스트레트크 크기를 조절하였다. Fig.6은 7~12 Bark 구간의 스트레트크율 2 dB 중인 신호이고 Fig.7은 2 dB 키운 신호로써 주파수 대역별 스트레트크 변조신호의 예제이다.(6)

3. 청각 평가 실험
3.1 실험방법
청각실험은 모두 11명 여자 10명에 대하여 실시하였고 실험 참여자들의 연령 분포는 20~40세이며 평균 연령은 남녀 각각 27세, 24세이다. 실험 전 청력테스트를 실시하여 청력이 이상유무를 평가한 후 정력에 이상이 없는 사람만 참여 실험을 실시하였다. 실험조건은 실험자들의 계속된 실험에 의한 피로 효과로 인해 실험조건중지가 빈번히 일어나는 것을 방지하기 위하여 '10분 청력테스트 → 5분 휴식 → 30분 실험진행 → 10분 휴식 → 30분 실험진행 → 10분 휴식 → 30분 실험진행 → 종료'의 순으로 실험을 나누어 진행하였고, 실험 참여자들은 평가 신호를 자신이 원하는 데로 재정의할 수 있도록 하였다. 평가 방식은 레이팅(rating)방식을 사용하여 4.5점에서 8.5점까지 소수점 0.01점 단위로 평가 가능하며 각 평가는 2단계로 나뉘어 1단계에서 주어진 기준신호와 비교하여 점수를 주는 절대평가를 하고 2단계에서 각 평가된 신호끼리 비교하는 비교평가를 하도록 하였다. 절대 평가에서는 평가하고자 하는 신호와 주어진 기준신호로 비교하여 각 신호가 기준 신호와 비교하며 몇 점 쌍에 해당하는지를 평가하도록 하였고, 비교평가에서는 이미 절대평가가 이루어진 신호들끼리 비교하여 각 신호 점수간의 평가점수 간격을 재조정하도록 하였다. 실험평가 과정은 아래의 Fig.8과 같다.

아래의 Table 2은 각 점수에 따른 소비자 평가를 나타낸다.
청각실험에 사용된 장비는 HEAD Acoustics사의 재생 시스템(Playback System)을 사용하였다.

3.2 청각 실험 결과
토온소음의 크기를 조절한 신호 54개(6×9=54)와 바크 구간별 스트레트크의 크기를 조절한 신호 54개의

<table>
<thead>
<tr>
<th>1st Step (Absolute Evaluation)</th>
<th>2nd Step (Relative Evaluation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8 Block diagram of the subjective evaluation

<table>
<thead>
<tr>
<th>Table 2 References of evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>References for evaluation</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>5.0</td>
</tr>
<tr>
<td>6.0</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>8.5</td>
</tr>
</tbody>
</table>

Fig. 9 The result of subjective evaluation and mean for 108 vacuum cleaner noise
신호 총 108개의 신호를 이용하여 청각실험을 진행했다. 실험에 사용한 108개의 신호는 각각 21명의 실험 자에 의하여 평가를 받았으며 이들의 평균값은 신경 망 회로의 목표값(target)으로 사용하였다. Fig. 9은 108개의 신호를 각각 21번의 평가를 한 결과이며 중앙 집단의 실선은 이들의 평균값이다. Fig. 10은 108개 청각 신호의 평균 결과의 평균값과 95% 신뢰구간을 나타낸다. 108개 청각 신호에 대한 평균 신뢰구간은 0.254이다. 따라서 청각기 설 평가 전점치의 95%의 신뢰도로 추정하는 평가 결과값의 오차범위는 ±0.254점이다.

3.3 음질 요소와 청각실험 결과와의 상관관계
각 음질 요소와 청각실험과의 적합상관계수는 라우드니스가 76.5%, 사프리니스가 47.6%, 리프니스가 16.6%, 변동강도가 5.2%로 라우드니스가 가장 큰

Fig. 10 Mean and 95% confidence for subjective rating of all cycling signal evaluated by 21 persons

Fig. 11 The correlation between the sound metrics and subjective rating

Fig. 12 The correlation between loudness and subjective rating

Fig. 13 The correlation between sharpness and subjective rating

Fig. 14 The correlation between roughness and subjective rating

Fig. 15 The correlation between fluctuation strength and subjective rating
4. 신경회로망을 이용한 진공 청소기 음질 인덱스 개발

진공 청소기 음질 인덱스는 Fig. 9에서 구한 청소 실험 평균값을 신경회로망의 목표값으로 하고 라우드니스, 사프로니스 등의 음질 인자를 입력값으로 하는 신경회로망을 학습하여 구현하였다. 신경회로망에 대한 설계는 시험오차법(trial and error method)을 사용하였으며, 이 연구에서 신경회로망의 학습결과 라우드니스와 사프로니스, 러프니스를 입력값으로 하고 음량층의 뉴런을 8개, 출력층의 뉴런을 1개로 하는 다층신경회로망을 구성할 때에 가장 좋은 학습 효과를 보였다. 따라서 Fig. 16과 같은 신경회로망을 설계하였다. Fig. 16의 신경회로망을 사용하여 구현된 최종 신경회로망의 최적 가중치값은 아래의 Table 3과 같다.

Table 3에서 \(W^1 \)은 음량층의 가중치값, \(W^2 \)는 출력층의 가중치값, \(b^1 \), \(b^2 \)는 각각 음량층과 출력층의 bias를 나타낸다. 즉, \(W^1 \)은 입력값이 3개(라우드니스, 사프로니스, 러프니스), 음량층의 뉴런의 개수가 8개이며 8×3행렬의 형태를 띄게 되며 이에 따르는 bias값이 1×8행렬 값을 갖는다. 마찬가지로 출력층의 가중치 값(\(W^2 \))은 음량층의 출력 값 8개, 출력층의 뉴런의 개수 1개이며 1×8행렬의 형태를 띄게 되어, 이에 출력층의 bias값은 1×1값을 갖는다. 따라서 청소기 음질 인덱스는 수식적으로 다음과 같이 표시된다.

\[
\text{Vacuum__index} = \frac{t^2}{W_2} f_1 (W_1 x + b_1) + b_2
\]

\(f_1, f_2 \)는 전달함수(transfer function)를 나타내며 각각 \(\text{tansig(hyperbolic tangent sigmoid)} \) 함수와 \(\text{purelin(linear)} \) 함수이다. \(\text{Tansig 함수와 purelin 함수는 아래와 같다.} \)

\[
\text{Tansig} = \frac{e^u - e^{-u}}{e^u + e^{-u}}
\]

\[
\text{Purelin} = u
\]

따라서, 신경회로망의 음량층에서의 출력 값은 아래 (3)와 같으며.

\[
a = \text{tan sig}
\]

\[
\begin{bmatrix}
 0.77 & -0.78 & -1.26 \\
 3.22 & -1.69 & 1.37 \\
 1.03 & -0.94 & -1.13 \\
 -2.21 & -0.38 & 2.07 \\
 3.08 & 0.22 & -2.88 \\
 0.49 & 0.55 & -0.06 \\
 1.57 & 0.46 & 3.44 \\
 -0.62 & -1.06 & -0.07 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 1.23 \\
 -2.71 \\
 -1.61 \\
 -2.59 \\
 3.08 \\
 -0.04 \\
 3.38 \\
 4.22 \\
\end{bmatrix}
\]

\[
 output 1_{\text{bias}} = 0.892
\]

\[
 output 2_{\text{bias}} = 826 / \text{한국소음생활과학회논문집/제 15 권 제 7호. 2005년}
\]
로 최종적인 인덱스 출력값을 얻는다.

\[
\begin{pmatrix}
-1.234 \\
-2.714 \\
-1.613 \\
-2.598 \\
3.084 \\
-0.045 \\
3.385 \\
4.217 \\
\end{pmatrix} \times a + 0.892
\]

(4)

Fig. 16 Architecture of a multi-layer neural network

Fig. 17 Correlation between subjective evaluation and neural network output

Fig. 18 Correlation between subjective evaluation and neural network output for validation data

개발된 진공 청소기의 음질 인덱스를 검증하기 위하여 사전에 108개의 진공 청소기 신품 중 99개의 데이터는 아웃데이터로 사용을 하고, 나머지 9개의 데이터는 무작위로 추출하여 청소기 인덱스 개발이 완료된 이후에 검증데이터로 사용하였다. Fig. 17은 학습과정 이후의 청사진형 결과와 신경회로망 출력값과의 상관관계이며 93.5%의 높은 상관관계를 보이고 있어 개발된 청소기 음질평가 인덱스의 활용화 가능성을 확인하였다. 개발된 청소기 음질평가 인덱스는 9개의 검증 데이터를 이용하여 실용성 여부를 확인하였다. 9개의 검증데이터로는 108개의 청소기 신품 중 신경회로망의 학습과정에 사용되지 않은 데이터로써 이를 이용하여 개발된 신경회로망에 입력값으로 사용하였을 때 출력 결과 청사진형 결과와의 상관관계는 95.9%의 상관관계를 보였다. 이로써 개발된 청소기 음질평가 인덱스의 실용성을 검증하였다. Fig. 18.는 검증데이터를 사용하였을 때 청사진형 결과와 신경회로망 출력값 간의 상관관계를 나타내며 앞서 언급한 바와 같이 95.9%의 높은 상관관계를 나타내고 있다.

5. 결 론

이 연구에서는 라우드니스와 샤프니스, 런프니스를 입력값으로 하고 청사진형 평균값을 목표값(target)으로 하는 다층 신경회로망을 이용하여 진공 청소기 음질평가 인덱스를 제작하였다. 학습과정을 통해 얻은 최적화된 신경회로망 출력값은 인공신호 및 검증을 위한 진공 청소기의 청사진형 결과와 90% 이상의 높은 상관관계를 보임으로써 진공청소기 음질평가 인덱스로의 유용성 확인과 활용성 검증을 마쳤다.

후 기

이 연구는 학술진흥재단의 BK21과 LG전자 연구자원비로 수행되었습니다. 저자에 감사드립니다.

참 고 문 헌

(4) 엄윤성, 김태식, 박병일, 1997, "전공창소기 흡입 노출의 저소음화를 위한 유동해석" 한국소음진 동공학회지, 제 7 권, 제 6 호, pp. 888~893.

(6) Peter C. Laux, 1998, "Using Artificial Neural Networks to Model the Human Annoyance to Sound" Purdue University.

(10) Hagan Demuth Beale "Neural Network Design".