Construction and Comparison of Sound Quality Index for the Vehicle HVAC System Using Regression Model and Neural Network Model

Sang-Gil Park, Hae-Jin Lee, Hyun-Jin Sim, You-Yub Lee and Jae-Eung Oh

Key Words : HVAC(차량공조시스템), Sound Quality(음질), Regression Analysis(회귀분석), Neural Network (신경망)

ABSTRACT

The reduction of the vehicle interior noise has been the main interest of noise and vibration harshness (NVH) engineers. The driver’s perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the heating, ventilation and air conditioning (HVAC) system sound among the vehicle interior noise has been reflected sensitively in psychoacoustics view point. Even though the HVAC noise is not louder than overall noise level, it clearly affects subjective perception to drivers in the way of making to be nervous or annoyed. Therefore, these days a vehicle engineer takes aim at developing sound quality as well as reduction of noise. In this paper, we acquired noises in the HVAC from many vehicles. Through the objective and subjective sound quality (SQ) evaluation with acquiring noises recorded by the vehicle HVAC system, the simple and multiple regression models were obtained for the subjective evaluation ‘Pleasant’ using the semantic differential method (SDM). The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriateness and accuracy. Furthermore, the neural network (NN) model were obtained using three inputs (loudness, sharpness and roughness) of the SQ metrics and one output (subjective ‘Pleasant’). Because human’s perception is very complex and hard to estimate their pattern, we used NN model. The estimated models were compared with correlations between output indexes of SQ and hearing test results for verification data ‘Pleasant’. As a result of application of the SQ indexes, the NN model was shown with the largest correlation of SQ indexes and we found possibilities to predict the SQ metrics.

1. 서 론

종래 제품은 성능에만 의존하는 기계라는 개념이 었으나, 최근 소비자들의 안락하고 편리한 환경에 대한 요구가 증가하며 제품은 단순 기계가 아닌 생
박상길·이해진·심현진·이유엽·오재웅

활의 문화간 매개체로 자리잡고 가고 있다. 이와 관련하여 과거에는 제품에서 발생하는 소리에 대해 음 압 레벨의 측정에만 둘러안은 소음 저감과 함께 소비자들의 요구에 맞는 적절하고 듣기 좋은 소리를 제공하기 위한 많은 연구가 진행 중이 다(1). 차량 실내에서 음악을 들거나 편즈풀을 이용하여 토화를 하는 것은 일상이 되었으며 많은 이들이 차량 오디오를 캐치하는 등 실내 소음에 대한 관심이 높아지고 있다. 더욱이 급속한 온라인 문화로 인해 소수 차량소음의 불명이 차량 매출 전체에 영향을 끼칠 만큼 차량 소음의 문제는 차량 개발에 있어 고려해야 할 중요한 인자가 되었다(2).

자동차의 소음 발생원은 엔진, 타이어 등 많은 원인이 있지만 자동차 실내 소음저감 기술 개발로 인해 많은 개선이 나타났다. 하지만 이에 마주쳤던 2차 소음 특히, 차량 공조소음과 같은 소음들은 운전자의 인식 레벨로 포함되고 있어 여전히 연구 대상이 되고 있다(3).

사람이 소리를 듣는 것은 다분히 감정적이고 주관적이다. 따라서 소음 측정의 척도로 주로 사용되는 dB(A)와 같은 약간의 척감만큼 고려한 수치로 표현하기 어렵기 때문에 다와 장소, 제품에 따라 주관적이고 사람의 감정에 맞는 주관적 척도가 요구된다.

차량 공조소음의 경우 아직 소음 레벨에 비해 크지 않지만 운전자의 감정을 낙 أنا거나 불쾌하게 만드는 등 주관적인 인지에 많은 영향을 주고 있다. 선형 연구들을 통해 차량 공조 소음은 블로워 모터의 구동과 차체 진동에 의해 구조적으로 발생하는 소음으로 판명되었다(4). 즉, 블로워 모터의 구동에 의해 생기는 소음은 차량 공조 모터의 음질(sound quality)에 영향을 주는 인자로 중요한 평가를 받고 있다. 이와 같이 차량의 음질 개선은 자동차 회사의 고유한 특징과 이미지를 나타내는 “Brand Sound” 구현을 목표로 하여 주로 소음원으로 간주된 엔진 소음 등이 많은 연구를 통해 저감되어 2차 소음원인 차량 공조시스템의 소음저감과 음질향상에 대한 연구가 주목을 받고 있다. 이러한 음질 개선을 위한 많은 연구를 목적으로 창고 소음의 제한 모형을 수립되어 왔고, 본인의 자료에 따라 창고 모형과 주관적 음질 평가 결과와 비교를 통한 연구가 활발히 진행되고 있 다(5).

청각 모형을 구축하기 위한 방법으로는 통계적 방법인 회귀 모형을 이용하는 방법과 신경망 모형을 이용한 연구가 진행되고 있지만, 두 모형의 동시에 적용한 연구는 아직 미비한 실정이다.

회귀모형은 분산산성, 독립성, 정규성 등의 가정과 다중공선성의 문제, 특이값에 민감하게 반응하는 문제점 등이 있다. 그리고 회귀모형을 적용함에 있어 최적의 회귀모형을 선택하였기에 의문점이 있음을 수도 있고, 다양한 차량의 공조 소음 특성들에 대한 정성적 평가의 문제 제기를 할 수 있으리라 판단된다. 그러나 회귀모형은 이해와 해석이 쉽고, 예측에 대한 설명력이 가능한 장점이 있어 독립적으로 적용되고 있는 방법이다.

신경망모형(neural network model)은 입력변수가 불완전하고 변동폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여 나가기 때문에 정밀한 산정의 가능성을 기대할 수 있다(6). 이러한 신경망모형에 차량 공조소음의 음질 특성을 도입하여 공조소음의 주관적 음질평가 값을 정밀하고 유용하게 예측하고, 회귀모형들과 비교하는 것은 음질인력스 평가에 대한 연구에 큰 의미가 있다.

따라서 이 연구에서는 다양한 차량의 공조시스템(HVAC) 소음을 대상으로 객관적 음질 분석과 주관적 음질평가를 실시하고, 두 결과를 바탕으로 상관관계가 높은 인자를 선정하여 회귀모형과 신경망모형을 이용한 주관적 음질 특성을 예측, 비교하는 것을 목적으로 한다.

2. 실험 및 평가

2.1 실험의 구성

청음평가에 사용된 소음은 국내 유수의 자동차 회사에서 생산된 차량의 공조소음이며, 이미 사용중인 18대의 차량에 대하여 공조기의 단수 별(step 1, 2, 3, 4) 소음을 획득하였다. 동일한 조건에서 녹음하였고, 녹음위치는 운전자석이며 장비는 Head Acoustics사의 Noisebook을 사용하였다.

2.2 음질평가

(1) 객관적 음질 분석

소리에 대한 여러 가지 느낌을 객관적으로 표현한
많은 인자들이 개발되었다. 그 중 대표적인 인자로 라우드니스(loudness), 샤프니스(sharpness), 러프니스(roughness), 변동강도(fluctuation strength) 등을 들 수 있다.

녹음된 소음에 대하여 소음분석 프로그램인 Artemis를 이용하여 객관적 음질 분석을 실시하였다. 그 결과 라우드니스는 5.48~47.1 (sone) 범위의 값을 나타냈으며, 샤프니스는 1.62~3.72 (acum), 러프니스는 0.26~6.95(asper), 변동강도는 0.0221~0.1452 (vaci)로 다양하게 분포하였다.

(2) 주관적 청음평가

청음평가 대상자는 청력이 나쁜 20~40세의 남성 23명과 여성 8명으로 구성하였다. 평가인자로 자동차 음질평가 용어를 바탕으로 (9) 공조조정을 대표할 수 있는 용어 중 사전조사를 통해 5가지를 선택하였다. 5개의 평가용어는 “조용한(quiet) 1점 - 시끄러운(LOUD) 7점”, “부드러운(soft) 1점 - 날카로운(sharp) 7점”, “매끄러운(smooth) 1점 - 거친(rough) 7점”, “기본중은(pleasant) 1점 - 불쾌한(unpleasant) 7점”, “값비싼(expensive) 1점 - 값싼(cheap) 7점”이다. 평가점수는 소수 첫째 자리까지 표기하도록 하였으며, 재생성수는 무작위로 하여 청음평가를 실시하였다.

2.3 상관관계

객관적 수치의 주관적 청음평가 값 사이의 상관분석(correlation analysis)은 통계분석 프로그램인 Minitab을 이용하여 Table 1에 나타내었다. 대부분 0.9 이상의 높은 상관관계를 갖고 있으나, 변동강도는 각 주관적 인자들 사이와 낮은 상관관계를 나타내므로 음질 인덱스 구축에 제외하였다. 따라서 주관적 인자들 중 가장 높은 상관관계를 갖고 있는 ‘기본중은(pleasant)’ 인자와 객관적 인자들을 이용하여 음질 인덱스를 구축하기로 한다.

3. 회귀모형을 이용한 분석

회귀분석(regression analysis)이란 변수들간의 관련성을 규명하기 위하여 어떤 수학적 모형을 가정하고, 이 모형을 측정된 변수들의 데이터로부터 추정하는 통계적 분석방법이다. 회귀분석에서 종속변수와 독립변수들이 관계가 선형인 경우를 선형회귀분석이라 하며, 독립변수의 수가 하나인 경우를 단순회귀(simple regression) 분석, 두 개 이상인 경우를 다중회귀(multiple regression) 분석이라고 한다. 이 연구에서는 음질의 주관적 예측값을 설명하려는 종속변수 사이에 객관적 음질 평균 인자를 설명하는 독립변수가 하나인 경우와 두 개 이상인 경우의 회귀모형을 사용하여 비교하였다.

3.1 단순회귀모형의 추정

단순회귀모형의 경우 주관적 인자 ‘Pleasant’와 객관적인자 사이에 상관관계가 가장 큰 변수 ‘Roughness’를 이용하여 식 (1)과 같이 나타내었다. 결정계수(R²)가 0.878으로 단순회귀모형이 전체 자료에 대해서 87.8%의 설명력을 가지고 있는 것 을 의미한다.

\[\text{Pleasant} = 2.999 + 0.454 \times \text{Roughness} \]

3.2 다중회귀모형의 추정

다중회귀분석에서 독립변수들 선정하는 방식은 단계별 변수선정법(stepwise regression)을 이용하였다. 이 방법은 통계적 유의도가 낮은 독립변수는 제거하고 최선의 회귀식을 선정하는 방식이다. Table 2

<table>
<thead>
<tr>
<th>Step</th>
<th>The estimated multiple regression models</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L+S+R</td>
<td>0.237</td>
</tr>
<tr>
<td>2</td>
<td>L+S+R+L’S</td>
<td>0.339</td>
</tr>
<tr>
<td>3</td>
<td>L+S+R+L’R</td>
<td>0.482</td>
</tr>
<tr>
<td>4</td>
<td>L+S+R+S’R</td>
<td>0.751</td>
</tr>
<tr>
<td>5</td>
<td>L+S+R+L’S+L’R+S’R</td>
<td>0.95</td>
</tr>
</tbody>
</table>

\(L : \) loudness, \(S : \) sharpness, \(R : \) roughness
3.3 화면모형의 유효성 검증

추정된 화면모형들에 대한 통계적 검증 방법은 분산 분석(ANOVA)과 화면모형의 유의성 검정(significant difference)이다. 잔차의 정규분포 성향과 연속상관의 여부 그리고 다중공선성과 표준화된 잔차와 독립변수 간의 상관도 각각을 통한 검증을 계획하게 된다.

Table 3은 분산분석을 통해 단순화면모형과 단종 화면모형의 타당성을 검증하는 것으로 유의확률이 0.0001로 5% 유의수준에서 통계적으로 타당함을 나타내고 있다.

추가적으로 화면모형의 정확성을 검증하는 방법으로 정규성(normality), 독립성(independence), 동분산성(homoscedasticity)을 검토해야한다. 정규성의 경우 Fig.1의 (a), 독립성의 경우 Fig.1의 (b)에서 보는 바와같이 잔차의 정규 확률도와 잔차 대적합도 산점도에 대해 시각적으로 분석할 수 있다. 오차의 독립성을 검증하기 위해 다빈 워슨(Durbin-Waston) 통계량을 활용하면 2.142로 연속상관이 존재하지 않는 2-3범위의 값을 보여주고 있다.

이 화면모형은 변수를 적절히 추가·제거해 나가 는 단계적 변수선택법(stepwise regression)을 사용하기 때문에 단종 모형과 독립변수들의 상관관계에 문제가 없는 것으로 판단되었다.

4. 신경망모형을 이용한 분석

4.1 신경망모형의 구성
이 연구에서 음절 인덱스 구축을 위한 신경망 모형의 학습을 위한 소프트웨어는 QwikNet 신경망 프로
로그램을 사용하였다. 신경망의 학습을 위한 자료는 통계적 귀무부식에서 동일한 입력력 데이터를 사용하였다.

신경망 모형을 구축하기 위해서는 먼저 학습을 통한 모형의 최적화 작업이 필요하다. 최적화 작업은 미리 설정된 오차에 오로직 학습요소를 최소화하는 것을 의미하며, 가능하면 적은 학습비용은 원래 모형의 특성에 적응하도록 하는 것이다. 이러한 신경망모형의 최적화 작업을 위한 요소로는 학습 반복말, 학습률, 모멘텀, 은닉층의 개수, 은닉층의 노드수 등이 있다.

학습률, 모멘텀, 은닉층의 노드수는 어떤 값이 가장 적당한지를 알리지 않고 있다. 다만 개개의 경우에 몇 가지 값을 대입시킨 후 가장 적당한 값을 선택해야 한다.

이 연구에서는 라우드니스, 사프니스, 리포니스 3개의 입력 변수와 출력 변수인 청음평가의 'Pleasant' 평균값의 관계를 신경망 구조로 연결하였다. 역전파 (backpropagation) 알고리즘을 사용하여 학습률을 0.1, 0.3, 0.5로, 모멘텀을 0.7, 0.8, 0.9로, 은닉층의 노드수는 3, 6, 9 가지로 나누어 총 27가지 경우를 학습시킨 후, 모형을 평가하여 최적 모형을 선택 하였다. 입력층에서 은닉층으로의 전달함수는 Tan-Sigmoid함수를 사용하였고, 은닉층에서 출력층으로의 전달함수는 선형 함수(linear function)를 사용 하였다. 학습반복횟수는 100,000번으로 설정하였으며, 에러값(RMSE)이 0.0001이하가 될 경우는 학습을 중단시키도록 설정하였다. Fig. 2는 각 노드별 가중치를 적용한 최적의 신경회로망을 보여주는 그림이다.

Table 4 The established neural network model for 'Pleasant'

<table>
<thead>
<tr>
<th>Contents</th>
<th>Hidden unit weights W^1</th>
<th>Output unit weights W^2</th>
<th>Hidden unit bias b_1</th>
<th>Output unit bias b_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metrics</td>
<td>L</td>
<td>S</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>Value</td>
<td>-2.159</td>
<td>1.891</td>
<td>-2.212</td>
<td>1.859</td>
</tr>
<tr>
<td></td>
<td>1.142</td>
<td>-2.292</td>
<td>-3.973</td>
<td>-1.285</td>
</tr>
<tr>
<td></td>
<td>1.245</td>
<td>-0.519</td>
<td>0.035</td>
<td>2.415</td>
</tr>
<tr>
<td></td>
<td>-0.67</td>
<td>-0.717</td>
<td>0.017</td>
<td>-0.549</td>
</tr>
<tr>
<td></td>
<td>0.469</td>
<td>1.852</td>
<td>-0.263</td>
<td>0.596</td>
</tr>
<tr>
<td></td>
<td>-0.403</td>
<td>-6.902</td>
<td>-0.153</td>
<td>0.768</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.065</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 Correlations between sound quality index outputs and hearing test results for 'Pleasant'
로 가장 낮아 최적의 학습 모형으로 선정되었다. 이
렇게 구축한 음질 인덱스는 Table 4와 같이 식
(3)과 같이 표현된다. \(W \) 는 가중치 행렬이고 \(b \) 는
바이어스, \(x \) 는 입력변수이다. \(f_i \) 는 Tan-Sigmoid
함수이고 \(f_i \) 는 선형 함수(linear function)로 전달
함수를 의미한다.

\[
Pleasant = f^2(W^2 f'(W'x + b') + b^2) \tag{3}
\]

5. 회귀모형과 신경망모형의 적용
및 비교 평가

이 연구에서는 통계적 회귀모형을 이용한 음질 인
덱스 모형과 신경망을 이용한 음질 인덱스 모형을
비교·평가하기 위하여 음질 인덱스 구축에 사용되지
않았던 소음데이터를 이용하여 실제 청음평가 결과
값과 산정 모델을 이용한 추정한 값을 비교함으로써
회귀모형과 신경망모형의 적합성을 검토하였다. Fig.
4는 8개의 검증데이터를 이용한 청음평가 결과와
산정된 모형에 의해 추정된 값을 간의 상관관계를
 나타내고 있다.

단순회귀모형을 이용한 예측값과 청음평가 결과는
88.7\%의 상관관계를 보이며, 다중회귀모형은 95.2
\%의 상관관계를, 신경망모형은 98.9\%의 상관관계
를 보여주고 있다. 각 음질 인덱스에 따라 상관관계
의 차이는 발생하였지만, 높은 상관관계를 보임으로
써 음질 인덱스의 적합성을 검증 하였다. 그리고 회
귀모형과 함께 신경망모형을 보완적으로 사용한다면
차량 공조시스템의 음질 예측을 정확히 할 수 있을
것으로 사료된다.

향후 회귀모형과 신경망모형을 이용하여 추정된
주관적 점수를 참조하여 제품의 등급을 선정할 수
있다면, 음질에 의한 제품의 적정 가격대 결정에 큰
영향을 미치리라 생각된다.

6. 결 론

이 연구에서는 차량 공조시스템의 주관적 음질인
자인 ‘기분좋은(pleasant)’의 수치를 예측하기 위
하여 회귀모형과 신경망모형을 사용하였고, 두 모형
을 비교·분석하였다. 상관분석과 회귀분석을 이용하
여 식(1),(2)와 같은 단순회귀모형과 다중회귀모형
의 음질 인덱스를 구축하였다. 또한 ‘기분좋은
(pleasant)’에 대한 청음평가 결과값을 목표로 하
는 신경망모형을 이용하여 음질 인덱스를 구축하였
다. 그리고 검증데이터를 이용한 검증과정에서 신경
망모형을 이용한 음질 예측이 98.9\%의 높은 상관
관계를 보여주어 구축된 음질 인덱스의 적합성을 검
증하였다.

이러한 두 모형이 상호제한적인 관계가 아니라 상
호 보완적인 측면에서 의사결정 지원에 활용된다.
효과적으로 차량 공조시스템의 음질을 정확하게 예
측할 수 있을 것이다. 그리고 두 모형에서 나오는
결과를 비교함으로써 제품의 적정 등급을 산출하는
데에 도움을 줄 것으로 예상된다.

하지만 이 연구는 다음과 같은 한계점을 지닌다.
이 연구에서는 제한된 음질 인덱스는 대상 차량의 수
나 종류가 제한되어 있고, 실험에 참여한 평가자의
수가 많지 않아 실제로 범용적으로 이용하기에는 다
소 무리가 있다고 할 수 있다. 더 신뢰성 있고 재현
성 있는 결과를 얻기 위해서는 보다 다양한 종류의
차량을 대상으로 많은 사람들의 평가결과가 수행되
야 할 것이다.

참 고 문 헌

the Multi-dimensional Spectral Analysis”, Proceedings of the KSNVE Autumn Annual Conference, pp. 999~1004.

