ABSTRACT

In this study, three-dimensional rotodynamic analyses have been conducted using equivalent beam, hybrid and full three-dimensional models. The present computational method is based on the general finite element method with rotating gyroscopic effects of the rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis tools and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test data conducted herein.

1. 서 론

고속으로 회전하는 로터시스템(rotor system)은 회전기계의 핵심적인 구동 중심부로서 대부분의 회전기계 신뢰성 문제와 직결되어 있기 때문에 매우 중요하다. 예를 들어, 하드디스크(1)와 같은 저장장치나 항공우주용 터빈(2) 및 선박추진기(3)과 같이 규모가 큰 장비에 장착된 로터시스템의 경우도 가전력(excitation)이 발생하는 동안 안정된 회전 성능과 정상적인 기능이 확장 보장될 수 있어야 한다. 일반 동공학 문제와 비슷하게 로터시스템의 경우도 여러 가지 원인에 의해 조화(sinusoidal), 주기(periodic), 외상(transient) 및 랜덤(random) 형태의 다양한 동적 하중이 작용할 수 있다. 회전체의 회전을 고려한 축계의 고유동수를 임계속도(critical speed)라 하며, 이 부근의 속도로 회전하게 되면 공전장성이 유발되게 된다. 공전장에서는 회전축의 선화운동응답(whirling response)도 점점 증가하여 구조물의 파괴나 베어링 마모, 축의 급격한 손상을 가져오게 되므로 중요하게 다루어야 한다.

로터시스템의 임계속도 연구는 그 중요성 때문에 기존보다도 다양한 연구사례가 있다. Nelson(4)의 경우는 회전축을 범 요소beam element로 등가 시켰다.
으며 디스크 부분은 단순 부가 질량(lumped mass) 으로 등가 시켜서 해석한 사례가 있다. Prohi(6)은 회전체의 임계속도를 구하기 위해 정전 행렬법(transfer matrix method)을 사용하였고, Guenther 와 Lovejoy(6) 등은 단편 경사된 축의 회전행렬 해석에 관련된 연구를 수행하였다. 그러나 최근에는 로터시스템의 형상이 갈수록 복잡해지고 있기 때문에 일반적인 3차원 유한요소법을 활용한 연구의 필요성이 대두되었다. 비교적 최근에 Pranabesh(7) 등은 Lund 해석 를 활용하여 복잡한 터보기계의 해석하였고, Fleming(8)은 DyRoBes 프로그램을 활용하여 비선형 베어링을 고려한 로터시스템을 해석하였다. 또, Brune(9) 등은 SAMCEF 소프트웨어를 활용하여 로켓의 터보펌프에 대한 로터동역학 해석을 수행하였으며 실험결과와 비교하였다.

로터헤드부에 고전적으로 사용되었던 등가보(equivalent beam) 모델의 경우 모델링이 용이하며, 계산시간이 매우 효율적인 장점이 있지만, 형성이 복잡한 모델이나 두께가 큰 회전체가 포함된 경우 해석결과에 오류가 있을 수 있다. 이에 반해 일반적인 3차원 유한요소해석은 계산이 많이 걸리는 단점이 있지만 매우 복잡한 형상에 대해서도 정확한 해석 모델 구축이 가능하다. 이 연구에서는 유체로서 개발되었으며 일반적인 유한요소법으로 입력의 형상에 대한 로터동역학 해석이 가능한 SAMCEF 프로그램(10)을 활용하였다. 모델링 및 전산설계기법의 검증을 위해 참고문헌에 기재되어 있는 벤치마크 모델(11)을 고려하였으며, 등가보 모델, 3차원 모델 및 로터 축은 등가보로 모델링하고 나머지는 3차원 요소로 모델링한 혼합(hybrid) 모델에 대한 비교결과를 제시하였다. 또한 형성이 복잡한 실제적인 3차원 로터시스템에 대한 진동실험을 수행하고 전산해석 결과와 비교 및 검토하였다.

2. 이론적 배경

2.1 로터동역학 기체 방정식

Hamilton 원리를 적용하여 탄성 로터에 대한 운동방정식을 유도하면 다음과 같다(10).

\[
[M]\{q\} + [B_s + \phi G + B_c(\phi)]\{q\} + [K_s + \phi B_{sg} + K_c(\phi)]\{q\} + \{f(q, \dot{q}, \phi)\} = \{g\}
\] \hspace{1cm} (1)

여기서, \([M]\)은 질량 행렬, \([B_c]\)는 구조 감쇠 행렬(structural damping matrix), \([G]\)는 회전요소와 연관된 자이로스코프 행렬(gyroscopic matrix), \([B_c(\phi)]\)는 회전 속도에 비례하는 상호작용 힘과 연관된 행렬, \([K_s]\)는 구조 장성행렬, \([B_{sg}]\)는 로터의 구조감쇠와 연관된 행렬, \([K_c(\phi)]\)는 회전에 기인한 변위에 비례하는 힘과 연관된 행렬, \([f(q, \dot{q}, \phi)]\)는 요소의 상호작용과 연관된 비선형 힘(non-linear forces) 벡터, \([g]\)는 외부 가속력을 의미한다. 식 (1)은 보다 단순한 형태로 다음과 같이 나타낼 수 있다(11).

\[
[M]\{q\} + [B(\phi)]\{q\} + [K(\phi)]\{q\} + \{f(q, \dot{q}, \phi)\} = \{g\}
\] \hspace{1cm} (2)

식 (1)은 여러 개의 로터를 가진 구조에서 다음과 같이 변화시킬 수 있다(11).

\[
\sum_{i=1}^{N_n} M^{s}_i(\phi_i) 0 \begin{bmatrix} \dot{q}_i^s \\ 0 \end{bmatrix} + \sum_{i=1}^{N_n} B^{s}_i 0 \begin{bmatrix} \dot{q}_i^s \\ 0 \end{bmatrix} + \sum_{i=1}^{N_n} B^{r}_i \begin{bmatrix} 0 \\ \dot{q}_i^r \end{bmatrix} + \sum_{i=1}^{N_n} [G^{s}_i(\phi_i)] \begin{bmatrix} \dot{q}_i^s \\ 0 \end{bmatrix} + \sum_{i=1}^{N_n} B^{s}_i(\phi_i) B^{r}_i(\phi_i) \begin{bmatrix} \dot{q}_i^s \\ \dot{q}_i^r \end{bmatrix} + \sum_{i=1}^{N_n} [K^{s, FR}_i(\phi_i)] \begin{bmatrix} \dot{q}_i^s \\ 0 \end{bmatrix} + \sum_{i=1}^{N_n} K^{s, RR}_i(\phi_i) \begin{bmatrix} \dot{q}_i^s \\ 0 \end{bmatrix} + \sum_{i=1}^{N_n} \begin{bmatrix} \dot{q}_i^s \\ \dot{q}_i^r \end{bmatrix} + \begin{bmatrix} \dot{q}_i^s \\ \dot{q}_i^r \end{bmatrix} + \sum_{i=1}^{N_n} \begin{bmatrix} \dot{q}_i^s \\ \dot{q}_i^r \end{bmatrix} = \{g\}
\] \hspace{1cm} (3)

여기서 \(N_n\)는 로터의 개수이고, \(\phi_i\)는 \(k\) 번 로터의 회전속도이다. \(R\)는 회전 구조부분이고, \(F\)는 비회전 구조부분을 의미한다.

2.2 임계속도의 계산

회전하는 기계장치의 설계에 있어서 주요 관심사는 임계속도 부근에서의 불안정한 진동현상이다. 이러한 현상은 전형적으로 베어링에 의해 지지되는 회전축의 자이로스코프 효과를 고려한 회전축의 근야성와 고유 진동수와 같은 속도로 회전할 때 발생한다. 회전속도가 일정한 경우(\(\phi = \Omega\)) 외력을 무시한 자유진동 상태의 로터시스템은 아래와 같은 운동방정식으로 나타낼 수 있다.

\[
[M]\{\dot{q}\} + [B(\Omega) + \Omega G^{s}]\{q\} + [K(\Omega) + \Omega B^{s}]\{q\} = \{0\}
\] \hspace{1cm} (4)
일반적으로 임계속도 \(\Omega_c \)는 회전속도에 따른 고유 진동수로 정의된다. 두 가지 다른 임계속도가 나타나게 되는데, forward critical speed (FCS)는 고정된 관절 지점에서 정방향의 회전운동이 보일 때의 속도이고, backward critical speed (BCS)는 역방향의 회전운동이 관찰 될 때의 속도이다. 일반적으로 FCS는 고속 회전 로터시스템의 설계에 필수적인 안정성 개념으로 회전속도 불균형 (unbalance)에 의해 자주 유발되는 현상이므로 가장 주의를 요한다. SAMCEF에서는 시스템의 고유치와 고유벡터를 전형적인 수치 반복법 (iterative method)과 근사법 (approximate method)으로 구할 수 있다. 반복법은 각의 정확한 해를 제공해 주는 대신 보다 많은 계산시간을 요구하며, Lanczos방법과 bi-iteration방법 등이 있다. 축약기술을 사용하는 근사법은 적은 계산시간으로 많은 수의 고유치와 고유벡터를 구할 수 있다.

회전하는 구조를 보존형 시스템으로 나타내며 \(x, y \) 방향으로의 자유도 사이에 강성연계 (stiffness coupling)는 없다. 이것은 임계속도를 용이하게 결정할 수 있게 해준다. 이와의 반응은 자유도 벡터를 변위와 연관시켜 \(x, y \) 성분으로 분해하여 나타낸 것이다.

\[
\begin{bmatrix}
M & 0 \\
0 & M
\end{bmatrix}
\begin{bmatrix}
\ddot{q}^x \\
\ddot{q}^y
\end{bmatrix} + \Omega^2
\begin{bmatrix}
0 & G \\
-G & 0
\end{bmatrix}
\begin{bmatrix}
\ddot{q}^x \\
\ddot{q}^y
\end{bmatrix} + \begin{bmatrix}
K_x & 0 \\
0 & K_y
\end{bmatrix}
\begin{bmatrix}
\dot{q}^x \\
\dot{q}^y
\end{bmatrix} = \begin{bmatrix} 0 \\
0 \end{bmatrix}
\]

(5)

초기 가정을 고려하면 위 식의 고유치는 순수한 허수로 나타난다. 그리고 응답변위는 다음과 같이 조화함수 형태로 가정할 수 있다.

\[
\ddot{q}^x(t) = u \cos(\Omega t) \\
\ddot{q}^y(t) = v \sin(\Omega t)
\]

(6)

(7)

여기서, \(\lambda \)는 회전속도와 진동수를 연결하는 비례상수이다. 만약 \(\lambda \)를 \((u', v') \)와 같이 정의한다면 식 (5)는 다음과 같은 형태로 나타낼 수 있다.

\[
\begin{bmatrix}
[K] - \Omega^2 [M] = \lambda [G] \end{bmatrix} \begin{bmatrix}
\ddot{y}
\end{bmatrix} = \{0\}
\]

(8)

식 (8) 형태는 다음과 같은 대칭 고유치 문제와 비슷하다.

\[
([K] - \Omega^2 [M]) \{y\} = \{0\}
\]

(9)

따라서, 식 (8)에서 임계속도는 대칭형렬 시스템에 대한 기존 알고리즘을 이용하여 구할 수 있다. 여기서 \(\lambda = +1 \)일면 forward critical speeds (FCS)에 해당하고 \(\lambda = -1 \)일면 backward critical speeds (BCS)에 관계된다.

2.3 조화응답해석

선형 구조인 경우 외력에 의해 가진되는 로터시스템의 동역학 관계식은 다음과 같다.

\[
[M] \dddot{q}(t) + [B(\Omega)] \ddot{q}(t) + [K(\Omega)] q(t) = \{f(t)\}
\]

(10)

위 식에서 조화가진 (harmonic excitation) 동하중은 아래와 같은 형태로 가정한다.

\[
\begin{align}
q(t) &= R(e^{i\Omega t}) \\
q(t) &= q_1 + iq_2
\end{align}
\]

(11)

(12)

\(\lambda = 0 \)중력에 의한 가진이고, \(\lambda = 1 \)인 경우는 불균형 (unbalance)에 의한 가진과 관계된다. 이 경우 변위 또는 조화 반복되는 \(f(t) \)의 함수가 된다.

\[
\ddot{q}(t) = R(q e^{i\Omega t})
\]

(13)

(14)

위 관계로부터 식 (10)은 다음과 같이 나타낼 수 있다.

\[
(-\lambda^2 \Omega^2 [M] + i\lambda \Omega [B(\Omega)] + [K(\Omega)] q(t) = \{f(\Omega)\}
\]

(15)

위 식의 해를 수치적으로 구하면 임의의 회전속도에 대한 조화응답을 구할 수 있다.

2.4 천이응답해석

SAMCEF에서는 천이응답해석을 위한 시간 적분법으로 직접적분법 (direct integration)을 이용한다. 순수 내재적 알고리즘 (implicit algorithms)이나 내재적-외재적 혼합수정법 (implicit-explicit multi corrector schemes) 등이 모두 사용될 수 있다. 이 런 종류의 알고리즘들은 과도한 가진이 들어오는 경우에도 안정적인 해석이 가능하게 한다. Newmark 방법

한국소음진동공학회논문집/제 17 권 제 2 호, 2007년/107
법을 적용하면 지배방정식은 다음과 같은 식으로 수치적분 할 수 있다.

\[
M\ddot{q}_{n+1} + (1 - \alpha)B(\phi(t_{n+1}))\dot{q}_{n+1} + \alpha B(\phi(t_{n}))\dot{q}_{n} + (1 - \alpha)K(\phi(t_{n+1}), \phi(t_{n+1}))\dot{q}_{n+1} + \alpha K(\phi(t_{n}), \phi(t_{n}))\dot{q}_{n} + (1 - \alpha)f(q_{n+1}, \dot{q}_{n+1}) + \alpha f(q_{n}, \dot{q}_{n}) = (1 - \alpha)\ddot{g}_{n+1} + \alpha \dot{g}_{n}
\]

(16)

여기서, \(\alpha\)는 \([0, 1/3]\)사이 값으로 한다. \([t_n, t_{n+1}]\) 사이에서 \(\lambda = 1/2, \beta = 1/6\)은 속도를 선형 보간 할 경우, \(\lambda = 1/2, \beta = 1/4\)은 평균 가속도를 사용하기 위해 동기 시각 사용하고, \(\lambda = 1/2, \beta = 0\)는 중앙 차분법(central difference method) 적용시, \(\lambda = 0, \beta = 0\)은 외제적 알고리즘(explicit algorithm) 일 때 적용한다.

3. 해석결과 및 검토

3.1 검증모델

이 연구에서의 전산해석 기법 검증을 위해 기존에 검증결과가 제시되어 있는 벤치마크 로터모델에 대한 해석을 수행하였다. Fig. 1은 검증모델의 기하학적 형상, 구조 물성치 및 지지 베어링의 구조 물성치를 보여주고 있다.

Fig. 2는 Fig. 1의 로터모델에 대한 3가지 다른계 넘의 유한요소 모델을 보여주고 있으며, Fig. 3은 참근문헌 (11)에서 수행한 유한요소 모델링 개념의 해석결과와 비교한 것이다. 이 연구에서 적용한 모델링 기법에 대해 간략하게 설명하면, Fig. 2(a)의 equivalent beam model은 디스크의 질량과 관련된 메트를 집중질량으로 동가 시켰으며, 로터 축은 탄성 보(beam) 요소로 모델링하고, 베어링 요소를 양 끝의 지지 노드에 부여한 경우이다. Fig. 3(a)의 비교 결과를 보면 등가 보 모델 개념으로 해석한 두 결과가 매우 잘 일치하고 있음을 알 수 있다. Fig. 2(b)은 혼합(hybrid) 모델링의 경우를 보여주고 있다. 이는 로터 축은 탄성 요소로 모델링하고 디스크 내경과 같은 반지름의 원통을 범 요소에 고정시키고 강성은 아주 높게 설정하였으며, 밀도는 작은 값을 부여하여 질량효과가 거의 없도록 하였으며, 서로 닫는 부분의 노드는 접착(glue) 요소를 부가하여

Fig. 1 Geometric configuration and material properties for the benchmark rotor model

Fig. 2 Finite element models for rotor dynamic analyses
고정될 수 있게 한 것이다. 로터 부품은 6면체 고체 (solid) 요소를 사용하여 모델링 하였다. 베어링 지지 경계조건은 Fig. 3(a)의 경우와 동일하게 부여하였다.

Fig. 3 (b)의 결과를 보면 9번째 10번째의 고차 모드를 제외하고는 참고문헌의 결과와 잘 일치하고 있을음을 보 수 있다. Fig. 2(c)의 완전 3차원 모델의 경우는 모든 구조부분을 6면체 고체 (solid) 요소로 모델링한 경우이다. 축과 디스크가 닫는 면의 노드 (node)들은 접착 (glue) 요소를 부여하여 서로 고정될 수 있도록 하였다. 베어링 요소는 그림과 같이 축 양끝의 외경에 위치한 노드 점들을 강체요소로 연결하여 한 점으로 모은 뒤 부여하였다. Fig. 3 (c)의 결과를 보면 전반적으로 참고문헌의 해석결과와 잘 일치하고 있으며, 혼합 모델에서의 값이 9번째 10번째의 고차 모드에서 약간의 차이를 보이고 있다.

Fig. 4는 200g의 불균형 절량이 Fig. 1에서 두 번째 디스크 (D2)에 가해진 경우 로터 회전속도에 대한 두 번째 디스크 무게 중심 지점에서의 동적응답 Fig. 4 Comparison of unbalance response for rotor RPM

(c) Full 3D model

Fig. 3 Comparison of Campbell chart for different FE modeling concepts

Fig. 5 Geometric configuration of a complex rotor model
크기를 비교한 것이다. 앞서의 경우와 마찬가지로 20,000 rpm 이상의 고주파수 영역을 제외하고는 강고한 차간과 거의 동일하게 공전주파수를 예측하고 있음을 알 수 있다.

3.2 실제 제작모델에 대한 진동실험 및 해석
Fig.5는 특정한 목적을 가지고 실제 제작 및 시험된 초고속 회전 3차원 로터시스템의 CAD형상을 보여주고 있다. 해석에 고려한 모델은 디스크(disk), 샤프트(shaft), 임펠러(impeller), 터빈(turbine) 및 애어포일 배어링으로 구성된 실제적인 로터시스템 형상이다. 3차원 모델의 경우 경계조건의 영향을 많이 받게 되는데, 이 연구에서 생성시간 모델은 실제 제작 환경과 유사한 환경에서의 해석을 위해 여러 가지 경계조건을 부여하였다. 우선 디스크, 임펠러, 터빈과 축이 끼워 맞춤으로 설계된 부분은 접착요소(glue element)를 부여하였고, 한 방향으로 구속되는 디스크와 축 사이, 축과 임펠러 사이, 임펠러와 터빈 사이는 gap 요소를 부여하였다. 배어링 요소의 경우 배어링이 위치되어야 할 부분 요소에 배어링의 강성이 값과 감쇠 값을 부여하여 모델링하였다. 이와 같은 세부적인 경계조건은 동정 보요요 모델에서 는 구현하기 어려운 조건에 해당된다.

Fig.6은 Fig.5의 3차원 로터시스템에 대해 배어링을 제외하고 충격가진시험(impact excitation test)을 수행한 결과이며, 첫 번째 극점모드는 1,912 Hz, 두 번째 극점모드는 4,768 Hz의 고유주파수를 나타내었으며, 대략적인 고유모드 형상은 그림과 같다.

Fig.7은 회전하는 로터시스템에 대한 안정성 실험을 위한 데이터를 추출한 지점을 보여주고 있 다. 이 실험에서는 전방 수평 및 수직의 변위를 \(F_x \) 및 \(F_y \) 그리고 후방의 수평 및 수직 변위를 \(R_x \) 및 \(R_y \) 로 표기하였다. Fig.8은 Fig.6과 같은 정지상태의 진동시험에 아니라 Fig.7의 위치에서 변위를 측정한 회전 동작시험의 결과이다. 100,000 rpm 근처에서 backward critical speed(BCS)을 확인할 수 있다.

Fig.7 Monitoring points for experimental rotor stability tests

(a) Lateral response(rear position)

(b) Vertical response(rear position)

Fig.6 Measured natural frequencies and mode shapes

Fig.8 Physical unbalance responses from experimental tests for the rotating rotor system
기말지지효과를 고려한 3차원로터동력학해석

이것은 개발장비의 운용목적 최대 회전속도까지 설계 요구조건을 만족하는 것이다.

Fig.9는 로터동력학해석을 위한 유한요소모델을 보여준다. Fig.2에서 설명한 개념과 동일하게 3가지의 다른 모델링 개념을 적용하여 해석을 수행하였다. 참고로, 모델링 결과 등가 빔모델은 156개, 혼합모델은 86,931개, 완전 3차원모델은 127,776개의 자유도(degree of freedom)를 나타내었으며, 이에 따라 계산시간의 차이도 발생하게 된다. 이로인해 베어링의 강화단계에서 관련된 문제는 실제 시험을 통해 측정된 값을 베어링 요소에 적용하였다. 이 모델의 전, 후방 2군데 지점에서 베어링으로 지지되고 있다.

Table 1의 비교 결과는 해석모델의 기본경우를 위해 Fig.6의 실험조건과 동일하게 베어링을 제외하고 고유진동 해석을 수행한 것이다. 고유진동 실험에서, 1,912 Hz의 1차 궤ทราบ도와 4,768 Hz의 2차 궤聞방도가 측정되었고, 해석모델의 경우 등가보(equivalent beam) 모델에서는 1,979 Hz, 5,905 Hz에서 각 궤聞방도가 나타났고, 혼합(hybrid)모델에서는 1,963 Hz, 4,720 Hz에서 예측되었으며, 완전 3차원모델에서는 2,005 Hz, 5,071 Hz에서 1,2차 궤聞방도가 예측되었다. 결과를 보면 1차 베어링의 경우 3가지 모델이 거의 유사한 결과를 보인다. 두 번째 모드의 경우 1차원 등가 보모델의 경우 실험결과에 비해 약 23.8%의 큰 차이를 보이고 있으며, 혼합 및 3차원모델의 경우는 실험결과와 유사한 결과를 보이고 있다.

고유진동 해석의 경우 CPU 1개를 사용한 계산시간은 베어링 모델의 경우 1초, 혼합 모델은 3분 44초, 3차원 모델은 7분 57초가 소요되었다. 이 연구에서 사용한 서버 컴퓨터의 사양은 국내에서 2006년 2월 판매가 시작된 인텔사의 Pentium D Processor 950 (3.4 GHz) CPU (dual core, socket 775)에 2GB RAM을 장착한 것이다.

Table 1 Comparison of natural frequency

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Exp (Hz)</th>
<th>1D (Hz)</th>
<th>Hybrid (Hz)</th>
<th>3D (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,912</td>
<td>1,979</td>
<td>1,963</td>
<td>2,005</td>
</tr>
<tr>
<td>2</td>
<td>4,768</td>
<td>5,905</td>
<td>4,720</td>
<td>5,071</td>
</tr>
<tr>
<td>3</td>
<td>9,324</td>
<td>7,002</td>
<td>7,476</td>
<td></td>
</tr>
</tbody>
</table>

Fig.10은 회전속도 변화에 대한 로터 안정성 해석을 수행한 결과이다. 그림을 보면 등가 보 모델의 경우 약 10만 rpm에서 BCS를 예측하고 있으며, 약 15만 rpm에서 FCS를 예측하고 있다. 혼합 모델의 경우는 약 92,000 rpm에서 BCS와 약 161,000 rpm에서는 FCS를 예측하고 있다. 또한 3차원 모델의 경우 약 10만 rpm에서 BCS를 예측하였으며, 약 17만 rpm에서 FCS를 예측하였다.

이 연구에서의 회전진동실험 결과는 Fig.8과 비교해 보면 회전속도 12만rpm까지 측정한 결과는 약

(a) Equivalent beam model

(b) Hybrid model (beam+solid)

(c) Full 3D model

Fig.9 Finite element models for rotor dynamic analysis

한국소음진동공학회논문집/제17권 제2호, 2007년/111
1,670 Hz (100,200 rpm) 에서 backward whirl mode 가 관찰되었으며, 실험이 가능한 최대 12만 rpm 이전 에서는 FCS가 존재하지 않는 것을 알 수 있다. 각 모델들의 안정성 해석 결과가 비슷한 경향을 보이며 BCS의 경우 실험결과와 잘 일치하는 결과를 보였 다. FCS의 경우는 실험이 수행되지 못해 정량적인 비교가 곤란하였다. 하지만, 해석결과가 검증되었다 고 볼 때 이 모델의 경우 15만~16만 rpm 부근에 FCS가 존재함을 확인할 수 있다. Fig.10에서 고차 모드의 경우는 서로 다른 유한요소 모델의 결과들이 다소 상이한 것을 볼 수 있는데, 이는 모델의 형상 이 복잡하기 때문인 것으로 사료된다.

Fig.11은 불균형 응답(unbalance response) 결과를 보여주고 있다. 실험 조건에 대한 정확한 불균형 질량을 예측하기 어렵기 때문에 공진점을 파악하 기 위해 대략적인 불균형 질량을 가정하였다. 참고로 그림의 결과는 수정 수직 성분의 응답 진폭을 합 한 것이다. 그림을 보면 1,680 Hz 부근에서 공진현 상이 발생됨을 알 수 있으며, 이는 Fig.8의 1,670 Hz의 진동실험 결과와 매우 잘 일치하는 결과이다. Fig.12는 hybrid 모델에 대해 서로 다른 회전수에서의 전이응답해석(transient response analysis)을 수행한 결과이다. 그림의 응답은 로터가 약 5회전 하는 동안에 해당하며, 상대적으로 구조변형이 심한 로터 축 지점에서의 가속도 응답에 해당한다. 그림 을 보면 회전속도가 70,000 rpm인 경우는 안정적인 응답을 보이고 있으나, 임계속도 부근인 100,000 rpm에서는 공진특성으로 인해 매우 불안정한 동작

![Fig.10 Comparison of Campbell chart for the complex rotor model](image)

![Fig.11 Unbalance response magnitude for various rotational speeds](image)

![Fig.12 Transient acceleration time responses for different rotating speeds](image)
응답을 나타내고 있으며, 이러한 불안정성 경향은 Fig. 11의 결과에서도 확인이 가능하다.

4. 결론

이 연구에서는 베어링 지지 효과를 고려하여 3차원 로터시스템에 대한 유한요소 모델링 비교 및 전산해석을 수행하였다. 벤치마크 로터 모델과 실험 제작 및 실험을 수행한 3차원 모델에 대해 동가 보, 혼합 및 3차원 유한요소 모델에 대한 해석을 수행하고 결과를 비교하였다. 고유장동 해석결과의 경우 동가 보 모델이 두 번째 모드에서도 다소 차이를 보였으나, 혼합 및 3차원 모델의 경우는 실험결과를 거의 예측하였다. 실험 모델에 대한 로터 안정성 해석의 경우 불안정성이 1차 골림모드와 밀접하게 관련되어 있어 3가지 모델링 기법은 모두 실험과 유사한 결과를 보였다. 하지만, 형상이 복잡한 경우, 주요 불안정성이 고차 모드와 연계된 경우, 서로 다른 구조 요소들의 비선형 연결 특성이 정확하게 고려되어야 하는 경우 그리고 축의 길이가 상대적으로 짧으면서 서로 다른 회전속도를 가지는 다축 로터시스템 등은 고전적인 동가 보 모델링 해석기법에 차가 유발될 수 있음에 유의할 필요가 있다. 대부분의 경우에는 이 연구에서 고려한 혼합(hybrid) 모델이 3차원 모델을 대신할 수 있는 매우 실용적인 대안이 될 수 있을 것이다.

후기

이 연구는 국립경상대학교 기계항공공학부 NURI/2단계 BK21 사업 및 스마트무인기기술개발 사업의 일환으로 수행되었다.

참고문헌

(10) SAMCEF Theoretical Manual, Rotor Module for the Analysis of Rotating System, Ver.7.1, SAMTECH Co.

한국소음진동공학회논문집/제 17 권 제 2 호, 2007년/113