고속 엘리베이터의 전후 진동제어를 위한 동적 모델링 및 능동 제어 기 설계

Dynamic Modeling and Controller Design for Active Control of High-speed Elevator Front-back Vibrations

백 광 현†, 김 기 영*, 곽 문 규**
Kwang-Hyun Baek, Ki Young Kim and Moon K. Kwak

(2010년 12월 2일 접수; 2010년 12월 31일 심사완료)

Key Words: Elevator Front-back Vibration(엘리베이터 전후진동), Active Roller Guide(능동 롤러 가이드), Active Vibration Control(능동 진동제어)

ABSTRACT

Front-back vibrations of high-speed elevator need to be suppressed as in the case of lateral vibrations. The dynamic model for the front-back vibrations is different from the lateral vibration model since the supporting structure varies. In this study, a dynamic model was derived using the energy method. Based on the free vibration analysis, it was observed that the fundamental frequency for the front-back vibration is slightly lower than the fundamental frequency of the lateral vibration, which means that the active vibration control should be carried out in both directions. The PPF control algorithm was applied to the numerical model under measured rail irregularities. The numerical results show that the active vibration control of elevator front-back vibration is also possible.

1. 서 론

최근의 초고층 건축물에선 초고속 엘리베이터가 거의 필수 불가결한 요소가 되고 있다. 이 연구에서는 이러한 초고속 엘리베이터의 운행시 발생하는 전후진동이 능동적인 방법으로 제어 가능한지를 알아보았다. 엘리베이터가 고속으로 운행될 때에는 가이드 레일의 변형이 작을 경우에도 진동의 퍼짐이 커질 수 있으며, 속도가 빨라질수록 엘리베이터 자체의 고유진동수로 공진될 가능성이 커지게 된다. 또 한 여러 대의 고속 엘리베이터를 운영할 경우 교차 운행시 발생하는 공압에 의해 진동이 커질 수 있다. 이와 같이 고속 엘리베이터는 저속 엘리베이터에 비해 진동 문제를 내포하고 있어서 보다 능동적인 진동 저감 대책이 필요하다. 기존 엘리베이터의 경우와 마찬가지로 소음과 진동은 승차감과 상품성의 척도로써 다루어지기 때문에 현재 국내외 엘리베이터 업체들이 다양한 진동 저감 기술을 개발하고 있다.

엘리베이터의 승차감과 관련된 진동 문제는 일반적으로 횡진동과 전후진동으로 구분되어진다. 엘리베이터 횡진동에 대해서는 곽 등(1)의 논문에서 자세히 다루어져 있다. 이 논문에서는 전후진동을 능동적 방법으로 억제하기 위하여 엘리베이터에 대한 동적 모델링을 하고 이를 기반으로 설계된 제어기의 성능을 추정하였다.

고속으로 운행 중인 엘리베이터에 전후 진동을

† 교신저자; 정회원, 단국대학교 기계공학과
E-mail : khbaek@dankook.ac.kr
Tel : (031)8005-3501, Fax : (031)8005-3509

* 정회원, 동국대학교 대학원 기계공학과,
현 현대엘리베이터

** 정회원, 동국대학교 기계로봇에너지공학과

74/한국소음진동공학회논문집 제 21 권 제 1호, 2011년
유발하는 주요 요인은 횡진동의 경우와는 달리 레일의 굴곡을 예로 들 수 있다. Fig. 1은 일반적인 엘리베이터의 구조를 보여주고 있는데 엘리베이터의 전후 진동은 프레임이 앞뒤로 진동하면서 발생하게 된다.

횡진동의 경우와 마찬가지로 가이드 롤러에 감쇠 장치를 부착하여 전후 진동을 감소시키는데 전후 진동 방향으로 가이드 롤러가 횡방향에 비해 2배로 설치되어 있어 전후 진동 수준은 횡진동에 비해 비교적 낮은 것으로 관찰되고 있다. 그러나 엘리베이터가 고속으로 운행되는 경우에는 가이드 레일의 작은 굴곡이 전체 진동에 큰 영향을 주기 때문에 전후 진동 또한 최소화하는 노력이 필요하다.

가이드 롤러의 스프링-댐퍼 시스템에 의한 수동적인 방법으로는 초고속 엘리베이터에 적합한 승차감을 제공하기 어렵기 때문에 못생기기 때문에 전후 진동 수준은 횡진동에 비해 비교적 낮은 것으로 관찰되고 있다. 그러나 엘리베이터가 고속으로 운행되는 경우에는 가이드 레일의 작은 굴곡이 전체 진동에 큰 영향을 주기 때문에 전후 진동 또한 최소화하는 노력이 필요하다.

이와 같은 국외 연구로는 Automotive의 소유 및 진동 원인에 대한 연구 결과(7)가 제시된 바 있으며, 동적 모델링과 실험을 포함한 엘리베이터의 능동 진동제어에 대하여 기초 연구 결과(8)가 비교적 최근에 발표되었다. 그러나 현재까지 엘리베이터의 전후진동 제어를 위한 동적 모델링에 대한 본격적인 연구는 많지 않으며 이 연구는 엘리베이터의 횡진동에 관한 것이며 동적 모델링의 주요 특성과 다르므로 전후 진동에는 적용할 수 없다.

이 연구에서는 에너지 방법을 이용하여 엘리베이터의 전후진동 제어를 위한 동적 모델링을 하고 수치모사를 통해 고유진동수와 고유 모드를 포함하는 주요 진동 특성을 분석하였다. 동적 모델을 기반으로 PPF(positive position feedback control) 제어기를 설계하고 수치모델에 적용하였다. 수치 계산 결과는 가이드 레일의 굴곡에 의한 엘리베이터의 전후진동이 능동적으로 저감되는 것을 보여주고 있다.

2. 엘리베이터 동적 모델링

Fig. 1은 실제 운행되는 엘리베이터의 구조를 보여주고 있으며 이와 같은 시스템의 전후진동 동적 모델링 및 수식 유도에 필요한 주요 변수와 기하학적 위치 등을 Fig. 2에 나타내었다. 고무로 입혀진 가이드 롤러의 외륜은 케이지를 지지하는 방식 고무와 함께 스프링-댐퍼로 모델링하였다.

Fig. 2와 같은 모델의 운동에너지, 탄성에너지, 가상임은 다음과 같이 유도될 수 있다.
\[T = \frac{1}{2} m_c \ddot{z}_c^2 + \frac{1}{2} J_c \dot{\phi}_c^2 + \frac{1}{2} m_b \ddot{z}_b^2 + \frac{1}{2} J_b \dot{\phi}_b^2 + m_g (\dot{z}_c + (h_p + l_g) \dot{\phi}_c + r_g \dot{\phi}_1)^2 + J_g (\dot{\phi}_c + \dot{\phi}_1)^2 + m_g (\dot{z}_c + (h_p + r_g) \dot{\phi}_c + r_g \dot{\phi}_2)^2 + J_g (\dot{\phi}_c + \dot{\phi}_2)^2 + m_g (\dot{z}_c - (h_q + r_g) \dot{\phi}_c - r_g \dot{\phi}_3)^2 + J_g (\dot{\phi}_c + \dot{\phi}_3)^2 + m_g (\dot{z}_c - (h_q + l_g) \dot{\phi}_c - l_g \dot{\phi}_4)^2 + J_g (\dot{\phi}_c + \dot{\phi}_4)^2 \]

\[V = k_{b1} (\phi_b - \phi_c)^2 + k_{b2} (z_b - l_b \phi_b - z_c + l_c \phi_c)^2 + k_{b3} (z_b + h_b \phi_b - z_c - h_c \phi_c)^2 + k_{s1} (\dot{\phi}_1)^2 + k_r [R_{1z} - (z_c + (h_p + l_g) \phi_c + l_g \phi_1)^2 + k_{s2} (\dot{\phi}_2)^2 + k_r [R_{2z} - (z_c + (h_p + l_g) \phi_c + l_g \phi_2)^2 + k_{s3} (\dot{\phi}_3)^2 + k_r [R_{3z} - (z_c - (h_q + l_g) \phi_c - l_g \phi_3)^2 + k_{s4} (\dot{\phi}_4)^2 + k_r [R_{4z} - (z_c - (h_q + l_g) \phi_c - l_g \phi_4)^2 \]

\[\delta W = M_{1z} \delta \phi_1 + M_{2z} \delta \phi_2 + M_{3z} \delta \phi_3 + M_{4z} \delta \phi_4 + f_{wz} (\delta z_c - h_w \delta \phi_c) \]

여기서 \(m_c, m_b, m_g, J_c, J_b, J_g \)는 각각 프레임, 케이지, 롤러 가이드의 질량과 질량중심에 관한 질량관성모멘트를 나타낸다. \(k_s, k_r, k_{s1}, k_{s2}, k_{s3} \)는 스프링의 강성율, \(c_s, c_r, c_{s1}, c_{s2}, c_{s3} \)는 점성감쇠계수를 나타낸다(나머지 변수들은 Fig. 2 참조.). 위의 세식을 라그랑지방정식에 적용, 유도된 운동방정식은 다음과 같다.

\[M\ddot{x} + C\dot{x} + Kx = B_c f_c + f_r + B_w f_w \]

\[x = \begin{bmatrix} z_c & \phi_c & z_b & \phi_b & \phi_1 & \phi_2 & \phi_3 & \phi_4 \end{bmatrix}^T \]는 프레임, 케이지의 전후방향 변위와 회전각, 각 롤러 가이드의 회전각으로 이루어진 벡터를 나타내며 계어력벡터 \(f_c = [M_{1z}, M_{2z}, M_{3z}, M_{4z}]^T \)는 각 롤러 가이드에 작용하는 계어모멘트로 구성되고 \(f_r \)는 가이드 레일의 변형으로 인한 외력을, \(f_w \)는 공기 압력 변동으로 인한 교란을 나타낸다. 기타 행렬 및 벡터는 다음과 같이 정의 된다.

\[M = \begin{bmatrix} M_{11} & M_{12} & 0 & 0 & M_{15} & M_{16} & -M_{15} & -M_{16} \\ M_{12} & J_{ct} & 0 & 0 & J_{gr} & J_{gt} & J_{gs} & J_{gt} \\ 0 & 0 & m_b & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & J_b & 0 & 0 & 0 & 0 \\ M_{15} & J_{gt} & 0 & 0 & J_{gg} & 0 & 0 & 0 \\ M_{16} & J_{gs} & 0 & 0 & J_{gg} & 0 & 0 & 0 \\ -M_{15} & J_{gt} & 0 & 0 & 0 & J_{gg} & 0 & 0 \\ -M_{16} & J_{gs} & 0 & 0 & 0 & 0 & J_{gg} & 0 \end{bmatrix} \]
고속 엘리베이터의 전후 진동 제어를 위한 동적 모델링 및 능동 제어기 설계

\[
C = \begin{bmatrix}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} & C_{17} & C_{18} \\
C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} & C_{27} & C_{28} \\
C_{13} & C_{23} & C_{33} & C_{34} & 0 & 0 & 0 & 0 \\
C_{14} & C_{24} & C_{34} & C_{44} & 0 & 0 & 0 & 0 \\
C_{15} & C_{25} & 0 & 0 & C_{55} & 0 & 0 & 0 \\
C_{16} & C_{26} & 0 & 0 & 0 & C_{66} & 0 & 0 \\
C_{17} & C_{27} & 0 & 0 & 0 & 0 & C_{77} & 0 \\
C_{18} & C_{28} & 0 & 0 & 0 & 0 & 0 & C_{88}
\end{bmatrix}
\]

(6)

\[
K = \begin{bmatrix}
K_{11} & K_{12} & K_{13} & K_{14} & K_{15} & K_{16} & K_{17} & K_{18} \\
K_{12} & K_{22} & K_{23} & K_{24} & K_{25} & K_{26} & K_{27} & K_{28} \\
K_{13} & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 & 0 \\
K_{14} & K_{24} & K_{34} & K_{44} & 0 & 0 & 0 & 0 \\
K_{15} & K_{25} & 0 & 0 & K_{55} & 0 & 0 & 0 \\
K_{16} & K_{26} & 0 & 0 & 0 & K_{66} & 0 & 0 \\
K_{17} & K_{27} & 0 & 0 & 0 & 0 & K_{77} & 0 \\
K_{18} & K_{28} & 0 & 0 & 0 & 0 & 0 & K_{88}
\end{bmatrix}
\]

(7)

\[
B_c = \begin{bmatrix}
0 & 4 \\
4 & 0
\end{bmatrix}, \quad B_w = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}^T
\]

(8)

\[
f_r = \begin{bmatrix}
f_{r0} \\
0 \\
0 \\
f_{r1} \\
f_{r2} \\
f_{r3} \\
f_{r4}
\end{bmatrix}
\]

(9)

여기서

\[
M_{11} = m_c + 8m_g, \quad M_{12} = 4m_g(h_p - h_p), \quad M_{15} = 2m_g r^2 g,
\]

\[
J_{ct} = J_c + 8J_g + 4m_g(h_p + r_g)^2 + 4m_g(h_q + r_g)^2,
\]

\[
J_{gt} = 2J_g + 2m_g r_g(h_p + r_g), \quad J_{gs} = 2J_g + 2m_g r_g(h_q + r_g),
\]

\[
J_{g9} = 2J_g + 2m_g r^2 g,
\]

\[
J_{c1} = 8c_r + 4c_f + 2c_h + 2c_b + 2c_b + 2c_b h_c + 2c_b h_c,
\]

\[
J_{c2} = 2(2c_r + c_f)(h_p - h_p) - 2c_b h_c + 2c_b h_c,
\]

\[
J_{c3} = -2(c_b + c_b + c_b h_c), \quad J_{c4} = 2(c_b h_c - c_b h_c),
\]

\[
J_{c5} = 2c_r l_g, \quad J_{c6} = 2c_r l_g, \quad J_{c7} = -2c_r l_g, \quad J_{c8} = -2c_r l_g,
\]

\[
J_{c22} = 2(c_r + c_f)(h_p + l_g)^2 + (h_q + l_g)^2 + 2c_b l_v + 2c_b h_c + 2c_b h_c,
\]

\[
J_{c23} = 2(c_b h_c - 2c_b h_c),
\]

\[
J_{c24} = -2(c_b l_v + c_b h_c + c_b h_c),
\]

\[
J_{c25} = 2c_r l_g(h_p + l_g), \quad J_{c26} = 2c_r l_g(h_p + l_g),
\]

\[
J_{c27} = 2c_r l_g(h_q + l_g), \quad J_{c28} = 2c_r l_g(h_q + l_g),
\]

\[
J_{c33} = 2(c_b h_c - c_b h_c), \quad J_{c34} = 2(c_r l_g + c_s l_g),
\]

\[
J_{c37} = 2(c_r l_g + c_s l_g), \quad J_{c38} = 2(c_r l_g + c_s l_g),
\]

\[
J_{c22} = 2(2c_r + c_f)(h_p + l_g)^2 + (h_q + l_g)^2 + 2c_b l_v + 2c_b h_c + 2c_b h_c,
\]

\[
J_{c23} = 2(k_b l_g - 2k_b h_c),
\]

\[
J_{c24} = 2(k_b l_g - 2k_b h_c), \quad J_{c25} = 2k_r l_g, \quad J_{c26} = 2k_r l_g, \quad J_{c27} = -2k_r l_g,
\]

\[
J_{c28} = -2k_r l_g,
\]

\[
J_{c22} = 2(k_b l_g - 2k_b h_c), \quad J_{c23} = 2(k_b l_g - 2k_b h_c),
\]

\[
J_{c24} = 2(k_b l_g - 2k_b h_c), \quad J_{c25} = 2k_r l_g, \quad J_{c26} = 2k_r l_g, \quad J_{c27} = 2k_r l_g,
\]

\[
J_{c28} = 2k_r l_g, \quad J_{c33} = -2(k_b l_g - 2k_b h_c), \quad J_{c34} = -2(k_b l_g - 2k_b h_c), \quad J_{c44} = 2(k_b l_g - 2k_b h_c),
\]

\[
J_{c55} = 2(k_b l_g + k_b l_g), \quad J_{c66} = 2(k_b l_g + k_b l_g), \quad J_{c77} = 2(k_b l_g + k_b l_g), \quad J_{c88} = 2(k_b l_g + k_b l_g),
\]

\[
s_{r0} = (2c_r + c_f)(h_p + l_g)(R_{12} + R_{22}) + (2k_r + k_f)(h_p + l_g)(R_{12} + R_{22})
\]
이다. 식 (4)를 제어기 설계에 적합한 상태방정식으로 변환하면 다음과 같이 쓸 수 있다.

\[
\dot{z} = \bar{A}z + \bar{B}C + d \tag{11}
\]

\[
\bar{A} = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}C \end{bmatrix}, \tag{12a}
\]

\[
\bar{B} = \begin{bmatrix} 0 \\ M^{-1}B_C \end{bmatrix}, \tag{12b}
\]

\[
d = M^{-1}\left(f_r + B_w f_w \right) \tag{12c}
\]

3. 자유진동해석

(주)현대 엘리베이터의 타워 5호기 제원으로부터 추출된 파라미터 값 및 비례감쇠로 추정된 감쇠계수는 다음과 같다.

\[
m_c = 2268 \text{ kg}, \quad m_b = 1858 \text{ kg}, \quad m_g = 5 \text{ kg},
\]

\[
J_c = 10829 \text{ kgm}^2, \quad J_b = 3922 \text{ kgm}^2, \quad J_g = 0.2 \text{ kgm}^2,
\]

\[
J_{cx} = 9627 \text{ kgm}^2, \quad J_{bx} = 3350 \text{ kgm}^2, \quad r_g = 0.14 \text{ m}, \quad r_b = 1.1 \text{ m}, \quad r_s = 1.2 \text{ m}, \quad r_v = 1.2 \text{ m},
\]

\[
l_g = 0.153 \text{ m}, \quad l_s = 0.223 \text{ m}, \quad h_p = 3.309 \text{ m}, \quad h_q = 2.961 \text{ m}, \quad h_b = 1.622 \text{ m}, \quad h_r = 1.405 \text{ m}, \quad l_r = 1.074 \text{ m}, \quad l_c = 1.291 \text{ m},
\]

\[
k_s = 12.46 \times 10^7 \text{ N/m}, \quad k_r = 65 \times 10^7 \text{ N/m}, \quad k_f = 25 \times 10^4 \text{ N/m}, \quad k_{b1} = 12 \times 10^5 \text{ N/m},
\]

\[
k_{b2} = 20 \times 10^5 \text{ N/m}, \quad k_{b3} = 65 \times 10^4 \text{ N/m}, \quad k_{b4} = 65 \times 10^4 \text{ N/m},
\]

\[
c_s = 0.02 k_s, \quad c_r = 0.001 k_r, \quad c_f = 0.02 k_f, \quad c_{b1} = 0.02 k_{b1}, \quad c_{b2} = 0.02 k_{b2}, \quad c_{b3} = 0.02 k_{b3}, \quad c_{b4} = 0.02 k_{b4}
\]

위의 값을 기반으로 수행된 자유진동해석 결과,

\[
-(2c_r + c_f)(h_q + l_g)(\dot{R}_{3z} + \dot{R}_{4z})
\]

\[
-(2k_r + k_f)(h_q + l_g)(R_{3z} + R_{4z})
\]

\[
f_{ri} = 2c_r l_g R_{iz} + 2k_r l_g R_{iz}, i = 1, 2
\]

\[
f_{ri} = -2c_r l_g R_{iz} - 2k_r l_g R_{iz}, i = 3, 4
\]

(10)

 처음 네 개의 고유진동수는 각각 2.1, 3.7, 9.4, 13.0 Hz로 계산되었으며 각 경우에 대한 고유진동모드를 Fig. 3에 나타내었다. 첫 번째 고유진동모드인 Fig. 3(a)는 엘리베이터의 1차 모드가 횡진동과 유사하게 전후 방향진동에서 두 프레임과 케이지가 동일한 방향으로 움직이는 것을 보여주고 있다. 2차 고유진동모드인 Fig. 3(b)는 프레임과 케이지가 동일한 방향으로 회전하는 in-phase 회전진동을, 3차 고유진동모드인 Fig. 3(c)는 회전이 동일한 형태의 회전진동을 보여주고 있다. Fig. 3(d)는 함선이 엮어지는 형태의 회전진동모드를 보여주고 있으며, 계산된 고유진동수들은 실제 엘리베이터의 고유진동수와 거의 일치하였다.

4. 진동제어기 설계 및 수치모사

Fig. 4는 엘리베이터 타워에서 계측된 진후 방향 레일 굴곡 데이터를 보여주고 있다. 레일의 전체 길이는 180 m로 레일의 전방 약 11 m에 걸쳐 측정된 레일 변위는 약 1 mm 내외었다. 계측의 어려움으로 인하여 가이드 레일 한 개의 데이터만 획득할 수 있었다. 이 연구에서는 좌우 가이드 레일이 동일한
고속 엘리베이터의 진동 제어를 위한 동적 모델링 및 능동 제어기 설계

한국소음진동공학회논문집 제 21 권 제 1 호, 2011년/79

5. 결 론

이 연구에서는 에너지 방법을 이용해 엘리베이터
의 전후진동 동적 모델을 유도하고 고유진동 해석을 통해 전후진동 특성에 대하여 알아보았다. 측정된 엘리베이터의 레일 굴곡 데이터와 현장 조건을 고려한 운행 조건 및 계측 조건에 대한 일부 가정을 바탕으로 PPF 제어 알고리즘을 이용해 능동진동 제어의 타당성을 수치모사를 통해 알아보았다.

엘리베이터 전후진동 모델의 수치 모사를 통하여 구한 고유진동수는 횡진동 고유진동수에 근접해 있어, 전후진동에 대한 능동진동제어는 횡진동 농동진 동제어와 동시에 이루어져야 할 것으로 추정되었다. 또한 비교적 간단한 능동진동제어 알고리즘을 사용했음에도 횡진동의 경우와 유사하게 엘리베이터의 전후진동이 잘 제어될 가능성이 있음을 보여주었다.

후기
이 연구는 ㈜현대 엘리베이터의 위탁과제 “초고속 엘리베이터용 횡진동 제어기의 개발”으로 수행되었다. 관계자 여러분께 감사드립니다.

참고문헌