Effects of the *Guibi-tang* and *Yishingyojae-dan* on the Regional Brain Monoamines Contents of Immobilization Stressed Mice

Kwang-Hoon Jo · Yeon-Seob Kim · Dae-Kyoo Chung

Dept. of Oriental Neuropsychiatry, College of Oriental Medicine, Kyungsan University, Kyungbuk, Korea,
Dept. of Anatomy, College of Oriental Medicine, Kyungwon University

Objectives: This study aimed to evaluate the anti-stress effects of *Guibi-tang* and *Yishingyojae-dan* on the contents of monoamines in the regional brain of mice immobilized stress.

Methods: The experimental animals were immobilized in stress cylinder (height: 15cm, diameter: 3cm) for 15 minutes, and administered of *Guibi-tang*(6.0mg/10g) and *Yishingyojae-dan*(9.3mg/10g) water extracts for 7 days before stress.

The monoamines contents were measured by HPLC method in various part (frontal cortex, hypothalamus, corpus striatum and hippocampus) of mice brain.

Results:
1. In frontal cortex, the contents of norepinephrine were decreased with statistical significantly in *Yishingyojae-dan* administered group compared to control group. The contents of serotonin were decreased with statistical significance in all of the administered group compared to control group.
2. In hypothalamus, the contents of norepinephrine were decreased with statistical significantly in *Yishingyojae-dan* administered group compared to control group. The contents of serotonin were decreased with statistical significance in all of the administered group compared to control group.
3. In corpus striatum, the contents of dopamine were decreased with statistical significantly in *Yishingyojae-dan* administered group compared to control group. The contents of serotonin were decreased with statistical significance in all of the administered group compared to control group.
4. In hippocampus, the contents of serotonin decreased with statistical significantly in *Yishingyojae-dan* administered group compared to control group.

Conclusions:
This study shows that *Guibi-tang* and *Yishingyojae-dan* are significantly effective on reducing and preventing stress in mice. In addition, *Yishingyojae-dan* is more clear effective than *Guibi-tang* on the monoamines change in the mice brain.

Key Words: stress, monoamine, *Guibi-tang*, *Yishingyojae-dan*
I. 结 论

스트레스란 生體에 가해진 各種의 有害 因素에 대한 生體の 反應로 그에 따른 防禦 傳達系的 總元이다. 環境 條件의 變化에 대하여 生體는 生理的 安靜을 準備하기 위하여 調節 作用의 一環으로 內分泌系와 自律神經系를 통한 變化を 일으키게 되며, 이는 主要 視床下部–脳下垂体–副腎의 軸으로 하여 이루어지게 된다. 이러한 스트레스 刺激에 緊急하게 適應하기 위해 分泌되는 神經傳達物質 중 大腦에 存在하며 두드리지 않으면 作用하는 物質이 monoamines이다.

韓國學者에서 스트레스에 對한 理解를 보면 神経-脳一體의 사고로서 人類의 五脛을 五神과 七情에 연결하여 腎脈와 情感, 斯特雷斯的 關鍵性은 일명 하고 있다. 精神的인 生理反應의 七情이나 外界의 變化인 六氣가 하나의 刺激 因子로 作用하는 것에 대한 反應으로, 이들 刺激要因은 身體에 대하여 氣虚, 氣鬱, 血虚, 慈捲, 五麗의 虛實, 疲倦 혹은 火 등의 病的 要因을 제목하게 되고 이로 인해 變通 病態의 變化가 起来된다.

스트레스에 대한 韓國學者의 研究들은 多樣한 韓藥이의 授與에 따른 抗ストレス 效果에 대한 報告가 주류를 이루는데, 特別 轐 등은 韓藥가 腦 catecholamines 含量의 變化에 미치는 影響을 통하여, 李 등은 疏解散, 金 등은 安心緩瀉湯 등의 處方으로 腦 monoamines 含量의 變化에 미치는 影響을 통하여 抗ストレス 效果를 立証한 바 있다.

歸脾湯은 宋代 嚴의 《濟生方》에 最初로 記載된 處方으로 心脾血虛로 因한 諸般症狀 및 精神症狀에 臨床의으로 恆常의에게 應用되어 왔으며, 二神交濟丹은 明代 李의 《醫學入門》에 記載된 이후 心脾의 相互協力 相互制約 등의 交渉가 이루어지지 못하여 發生하는 諸症狀에 應用되고 있다.

II. 實 験

1. 材料

1) 藥材

實驗에 使用된 藥材는 市中에서 買入하여 精選한 後 使用하였으며, 處方은 《東醫寶鑑》에 記載된 归脾湯과 二神交濟丹에 準備하였고, 1貼의 內容과 用量은 다음과 같다.

① Prescription of Guibi-tang(GB)

<table>
<thead>
<tr>
<th>Herbs</th>
<th>Pharmacognosy Name</th>
<th>Dose(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>當帰</td>
<td>Angelicae sinensis Radix</td>
<td>4.0</td>
</tr>
<tr>
<td>龍眼肉</td>
<td>Longanae Arillus</td>
<td>4.0</td>
</tr>
<tr>
<td>山茱萸</td>
<td>Zizyphi Semen</td>
<td>4.0</td>
</tr>
<tr>
<td>遠志</td>
<td>Polygalae Radix</td>
<td>4.0</td>
</tr>
<tr>
<td>人参</td>
<td>Ginseng Radix</td>
<td>4.0</td>
</tr>
<tr>
<td>黄耆</td>
<td>Astragali Radix</td>
<td>4.0</td>
</tr>
<tr>
<td>白朮</td>
<td>Atractylodis Macrocephalae Rhizoma</td>
<td>4.0</td>
</tr>
<tr>
<td>白茯神</td>
<td>Poria</td>
<td>4.0</td>
</tr>
<tr>
<td>木香</td>
<td>Costi Radix</td>
<td>2.0</td>
</tr>
<tr>
<td>甘草</td>
<td>Glycyrrhizae Radix</td>
<td>1.2</td>
</tr>
<tr>
<td>生薑</td>
<td>Zingiberis Rhizoma</td>
<td>6.0</td>
</tr>
<tr>
<td>大棗</td>
<td>Zizyphi inermis Fructus</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Total amount 45.2

-112-

교신처 : 황선미, 대구광역시 수성구 상동 165번지 경상대학교 부속대구한방병원 신경정신과 (Tel : 053-770-2002, 016-529-7005, E-mail : haettra@hanmail.net)
2) Prescription of Yishingyojae-dan(YS)

<table>
<thead>
<tr>
<th>Herbs</th>
<th>Pharmacognosy Name</th>
<th>Dose(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>白茯苓</td>
<td>Poria</td>
<td>6.0</td>
</tr>
<tr>
<td>桑仁</td>
<td>Cocos semen</td>
<td>6.0</td>
</tr>
<tr>
<td>酸枣仁</td>
<td>Zizyphi semen</td>
<td>4.0</td>
</tr>
<tr>
<td>抱子茞</td>
<td>Lycii Fructus</td>
<td>4.0</td>
</tr>
<tr>
<td>神生</td>
<td>Massa medicata Fermentata</td>
<td>4.0</td>
</tr>
<tr>
<td>白芍</td>
<td>Atractylodis Macrocephalae Rhizoma</td>
<td>4.0</td>
</tr>
<tr>
<td>柏子仁</td>
<td>Thujae Semen</td>
<td>2.0</td>
</tr>
<tr>
<td>大枣仁</td>
<td>Euryali Semen</td>
<td>2.0</td>
</tr>
<tr>
<td>乾冬冬</td>
<td>Rehmanniae Radix</td>
<td>2.0</td>
</tr>
<tr>
<td>豆柄冬</td>
<td>Liriopis Tuber</td>
<td>2.0</td>
</tr>
<tr>
<td>重歸</td>
<td>Angelicae sinensis Radix</td>
<td>2.0</td>
</tr>
<tr>
<td>人蔘</td>
<td>Ginseng Fructus</td>
<td>2.0</td>
</tr>
<tr>
<td>陳皮</td>
<td>Aurantii nobilis Pericarpium</td>
<td>2.0</td>
</tr>
<tr>
<td>白芍</td>
<td>Paoniae Radix</td>
<td>2.0</td>
</tr>
<tr>
<td>白茯苓</td>
<td>Hoelen</td>
<td>2.0</td>
</tr>
<tr>
<td>鎖砂</td>
<td>Aromi Semen</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Total amount 48.0

2) 스트레스 채용과 뇌의 분위

생각 12마리를 한 죄로 하여 정상군(Normal), 대조군(Control) 및 실험군으로 나누고 실험군은 다시 티투영사이 추출물 투여군(GB)과 두정개 출혈 동물 투여군(YS)으로 나누었다. 정상군과 대조군에는 7일간 1회 1회간 실험에 배울 생리에 10분 배운 실험군은 티투영과 두정개 출혈 동물의 각용을 사용하였다. 실험 마침 후, 티투영을 한 후에 배웠다. 실험군은 15cm, 직경 3cm에서는 원형의 용액에 생물체를 넣고 15분간 티투영을 사용하여 다음 생물체에 decapitation으로 화양시켜 뇌를 캐내하였다. 캐내한 뇌는 Brain Maps을 참고하여 뇌막, 뇌질, 콧구멍, 뇌실 뇌를 분리하여 죄로 화학실험으로 두께를 측정한 다음 monoamine을 대기하기 위한 세럼을 바탕이 되는 deep freeze에 넣어 보관하였다. 캐내한 뇌조직은 분석에 5일 이내에 시행하였다.

3) 뇌조직 조제의 전처리 방법

분리된 뇌조직은 perchloric acid 600μl (0.17M perchloric acid 510μl+2μM DHBA 90 μl)에 넣어 sonicator로 고사한 4℃에서 10분간 고속주사기 11,000rpm으로 30분간 회전 분리하여 상청액을 빠르게 있고 상청액을 millipore filter(0.2 μm)로 투여하여 HPLC로 분석하여 사용하였다.

4) Monoamines定量 방법

Monoamines定量은 DHBA에 의한 internal standard 방법을 사용하였다. 측정된 수치를 ng/g으로 계산하여 측정한 두 가지로 사용하였다.

Monoamines을 표준화하기 위하여 perchloric acid 600μl (0.17M perchloric acid 510μl+2μM DHBA 90 μl)에 넣어 sonicator로 고사한 4℃에서 10분간 고속주사기 11,000rpm으로 30분간 회전 분리하여 상청액을 빠르게 있고 상청액을 millipore filter(0.2 μm)로 투여하여 HPLC로 사용하였다.
酸溶液 600μl (0.17M perchloric acid 510μl + 2μM DHBA 90μl)에 norepinephrine (Sigma H-8876, U.S.A.), dopamine (Sigma H-8302, U.S.A.), serotonin (Sigma H-7752, U.S.A.)을 각각 1ng씩 넣어 standard로 사용하였고, 특히 DHBA는 internal standard로 사용하였다.

HPLC의 분석을 위한 유효으로서은 sodium phosphate monobasic (NaH2PO4), sodium 1-octanesulphonate (SOS), ethylenediaminetetraacetic acid (EDTA)는 특수으로 사용하였고, acetonitrile (CH3CN)은 HPLC용 (Merck Co.)으로 사용하였으며, 용은 초온수를 사용하였다. 주조내에서의 monoamine 추출은 유효으로서은 perchloric acid (PCA)를 사용하였다.

5) 分析條件

脳組織 중의 monoamine含量을 檢測하기 위한 HPLC의 條件은 Table 1과 같다.

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>ESA Pump (ESA, U.S.A.)</td>
</tr>
<tr>
<td>Detector</td>
<td>ESA 5200A Electrochemical Detector</td>
</tr>
<tr>
<td>Column</td>
<td>μ-Bondapak C18 Column (WATERS, U.S.A.)</td>
</tr>
<tr>
<td>Integrator</td>
<td>HP 3395 (HEWLETT PACKARD, U.S.A.)</td>
</tr>
<tr>
<td>Mobile phase</td>
<td>0.02M sodium phosphate-0.0003M EDTA-0.0008M octanesulfonic acid-9.5% acetonitrile (PH 3.6)</td>
</tr>
<tr>
<td>Flow rate</td>
<td>1.0μl/min</td>
</tr>
<tr>
<td>Sample volume</td>
<td>10μl</td>
</tr>
<tr>
<td>Chart speed</td>
<td>0.35cm/min</td>
</tr>
</tbody>
</table>

Table I. Analytical Condition for Brain Monoamine Contents in Mice

Fig. 1. HPLC chromatogram of monoamine standards

2. 前頭大脳皮質内 monoamines含量의 變化

拘束스트레스에 依하여 對照群에서는 正常群에 比하여 norepinephrine, dopamine, serotonin의 含量 모두가 增加하였으며, 實験群에서 norepinephrine含量은 二神交渉丹抽出物投與群에서 172.0±48.6ng/g brain tissue로 對照群에 比하여 明顯한 減少를 보였다. Dopamine의 含量은 對照群에서 모두 減少하였으나 有意性은 없었으며, serotonin의 含量은 麻醉湯抽出物投與群에서 617.3±46.6ng/g brain tissue, 二神交渉丹抽出物投與群에 서도 541.6±94.7ng/g brain tissue로 對照群보다 有意性 있는 減少を 나타내었다 (Table II, Fig. 2, 3, 4).
Table II. Effects of the Guibi-tang and Yishingyaoae-dan on the Monoamines Contents in Frontal Cortex of Immobilization Stressed Mice (ng/g wet brain tissue)

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of mice</th>
<th>Norepinephrine</th>
<th>Dopamine</th>
<th>Serotonin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>12</td>
<td>134.7±26.2<sup>a</sup></td>
<td>229.9±27.7</td>
<td>522.5±95.5</td>
</tr>
<tr>
<td>Control</td>
<td>12</td>
<td>329.4±51.0</td>
<td>406.0±40.0</td>
<td>782.1±44.6</td>
</tr>
<tr>
<td>GB</td>
<td>12</td>
<td>271.1±26.0</td>
<td>321.0±35.2</td>
<td>617.3±46.6<sup>a</sup></td>
</tr>
<tr>
<td>YS</td>
<td>12</td>
<td>172.0±48.6<sup>b</sup></td>
<td>344.7±33.8</td>
<td>541.6±94.7</td>
</tr>
</tbody>
</table>

^a: Mean ± Standard Error
Normal : Unstressed group
Control : Stressed by immobilization for 15 minutes
GB : Administration of Guibi-tang water extracts for 7 days and immobilization stress for 15 minutes
YS : Administration of Yishingyaoae-dan water extracts for 7 days and immobilization stress for 15 minutes

*: Statistical significance compared with control data (* ; P<0.05)

Fig. 3. Change of the dopamine contents in frontal cortex of immobilization stressed mice

Fig. 4. Change of the serotonin contents in frontal cortex of immobilization stressed mice

3. 脳下部内 monoamines含量の變化
拘束ストレス下 依하여 對照群において 正常群に比して norepinephrine, dopamine, serotoninの含量 모두가 增加하였으며, 實驗群で norepinephrine 含量은 二神交渉丹抽出物投與群において 1561.0±284.1ng/g brain tissue로 対照群에 비해 有意性 있는 減少を 나타내었으며, dopamine의 含量은 二 神交渉丹抽出物投與群에서 모두 減少하였으나 有意性은 없었 다. Serotonin의 含量은 開牌湯抽出物投與群에서
1744.0±134.4ng/g brain tissue, 二神交渉丹抽出物投與群에서도 1629.0±211.4ng/g brain tissue로
對照群에 비교해有意性 있는 减少を 보였다(Table III, Fig. 5, 6, 7).

Table III. Effects of the Guibi-tang and
Zhejiangojia-dan on the Monoamines
Contents in Hypothalamus of
Immobilization Stressed Mice

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of mice</th>
<th>Norepinephrine (ng/g wet brain tissue)</th>
<th>Dopamine (ng/g wet brain tissue)</th>
<th>Serotonin (ng/g wet brain tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>12</td>
<td>1196.0±159.5a 300.7±41.3</td>
<td>1284.0±210.4</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>12</td>
<td>2405.0±178.9 897.9±88.4</td>
<td>2152.0±74.6</td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td>12</td>
<td>2230.0±133.6 781.7±44.4</td>
<td>1744.0±134.4</td>
<td></td>
</tr>
<tr>
<td>YS</td>
<td>12</td>
<td>1561.0±284.1 782.1±132.9</td>
<td>1629.0±211.4</td>
<td></td>
</tr>
</tbody>
</table>

a) : Mean ± Standard Error

Normal : Unstressed group
Control : Stressed by immobilization for 15 minutes
GB : Administration of Guibi-tang water extracts for 7
days and immobilization stress for 15 minutes
YS : Administration of Zhejiangojia-dan water extracts
for 7 days and immobilization stress for 15 minutes

*: Statistical significance compared with control data
(* : P<0.05)

Fig. 6. Change of the dopamine contents
in hypothalamus of immobilization
stressed mice

Fig. 7. Change of the serotonin content
in hypothalamus of immobilization
stressed mice

4. 線維體內 monoamines含量的 变化
拘束ストレス에 依하여 對照群에서는 正常群에
比以此 norepinephrine, dopamine, serotonin의 含量
 모두가 增加하였으며, 實験群에서 dopamine含量은
二神交渉丹抽出物投與群에서 6868.0±1004.0ng/g
brain tissue로 對照群보다 有意性 있는 減少을 나
타내었고, serotonin의 含量은 剜脾湯抽出物投與
群에서 496.5±35.4ng/g brain tissue, 二神交渉丹
抽出物投與群에서 457.2±88.1ng/g brain tissue로
對照群보다 有意性 있는 減少을 나타내었다(Table
IV, Fig. 8, 9, 10).
Table IV. Effects of the Guibi-tang and Yishingyojae-dan on the Monoamines Contents in Striatum of Immobilization Stressed Mice (ng/g wet brain tissue)

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of mice</th>
<th>Norepinephrine</th>
<th>Dopamine</th>
<th>Serotonin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>12</td>
<td>137.7±29.3"</td>
<td>6856.0±970.5</td>
<td>353.0±69.0</td>
</tr>
<tr>
<td>Control</td>
<td>12</td>
<td>219.6±56.6</td>
<td>14440.0±2589.0</td>
<td>686.9±49.4</td>
</tr>
<tr>
<td>GB</td>
<td>12</td>
<td>176.0±27.2</td>
<td>10030.0±1557.0</td>
<td>496.5±35.4*</td>
</tr>
<tr>
<td>YS</td>
<td>12</td>
<td>193.1±22</td>
<td>6888.0±1004.0</td>
<td>457.2±88.1*</td>
</tr>
</tbody>
</table>

a): Mean ± Standard Error
Normal: Unstressed group
Control: Stressed by immobilization for 15 minutes
GB: Administration of Guibi-tang water extracts for 7 days and immobilization stress for 15 minutes
YS: Administration of Yishingyojae-dan water extracts for 7 days and immobilization stress for 15 minutes
*: Statistical significance compared with control data (\(*: P<0.05, **: P<0.01 \))

Fig. 9. Change of the dopamine contents in striatum of immobilization stressed mice

Fig. 10. Change of the serotonin contents in striatum of immobilization stressed mice

5. 海馬内 monoamines含量の変化
拘束ストレス下 依存群において 對照群に比べ norepinephrine, dopamine, serotonin 含量は増加したが, 實験群が serotonin の含量は二神膏丹抽出物投与群では 605.9 ± 118.1ng/g brain tissue 依存群と有意差が有意性を示す減少を示した (Table V, Fig. 11, 12, 13).
Table V. Effects of the Guibi-tang and Yishingyaoae-dan on the Monoamines Contents in Hippocampus of Immobilization Stressed Mice (ng/g wet brain tissue)

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of mice</th>
<th>Norepinephrine</th>
<th>Dopamine</th>
<th>Serotonin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>12</td>
<td>205.9±31.6</td>
<td>284.0±31.8</td>
<td>563.6±84.9</td>
</tr>
<tr>
<td>Control</td>
<td>12</td>
<td>522.7±40.7</td>
<td>454.0±54.4</td>
<td>890.3±70.6</td>
</tr>
<tr>
<td>GB</td>
<td>12</td>
<td>499.0±20.0</td>
<td>389.9±31.8</td>
<td>767.0±54.5</td>
</tr>
<tr>
<td>YS</td>
<td>12</td>
<td>403.6±44.4</td>
<td>396.2±42.0</td>
<td>605.9±118.1</td>
</tr>
</tbody>
</table>

a) : Mean ± Standard Error
Normal : Unstressed group
Control : Stressed by immobilization for 15 minutes
GB : Administration of Guibi-tang water extracts for 7 days and immobilization stress for 15 minutes
YS : Administration of Yishingyaoae-dan water extracts for 7 days and immobilization stress for 15 minutes
*: Statistical significance compared with control data
(* : P<0.05)

Fig. 12. Change of the dopamine contents in hippocampus of immobilization stressed mice

Fig. 11. Change of the norepinephrine contents in hippocampus of immobilization stressed mice

Fig. 13. Change of the serotonin contents in hippocampus of immobilization stressed mice

IV.考察

《素問・陰陽應象大論》26에서는 “喜傷心 悲傷肺 怒傷肝 恐傷腎”이라는表現으로 情緒ストレス와 内腸의 生理機能과의 相関性을 言及하고 있다26. 精神的 表現인 悪意의 근원은 心이 主宰하는 神이지만 그 표현인 情緒은 社 氣循環 狀態에 影響을 주어 여러 가지 現象으로 나타나게 되는데, 人間의 神志活動의 心은 心腸이 아닌
- 근골절과 二神交渉한가 이숙스트레스 생의 腦部位別 Monoamines 含量에 미치는 影響 -

脳로서 腦는 元神之府 清癒之所在이므로 腦腑脅陽之氣가 여기에 모여서 機能癒癒을 하게 된다20). 思考와 情感 그리고 判斷 中樞인 腦는 自律神経과 内分泌系의 責任체로 恒常性이 유지되며, 이 恒常性은 氣의 順調狀態라 할 수 있다. 人體を 循環하는 氣는 精神의 表現이나 停滞 등의 外部 刺激이 일정한 정도 이상이 되면 循環에 障碍를 招来하게 된다89). 따라서 情感이나 外気의 變化 가 하나님의 스트레스 因子로 作用되며 그 反應으로서 나타나는 現象이 氣의 變化이며, 그 健康에 따라서 七気, 九気, 氣鬱, 氣逆 등의 스트레스 現象으로 分類하고, 氣鬱, 氣鬱, 氣의 循環障礙, 血虚, 精損, 增強, 疲損 혹은 火 등의 病的要因을 提供하게 된다고 認識하고 있다88).

스트레스의 刺激 就是寒, 暑熱, 外傷, 感染, 過剰 등의 物理의 因子와 藥物, 飲食, 過食, 비타민 不足 등의 生物化学의 因子, 精神的 刺激과 過勞 등의 內部의 要因으로 대別되며88), 身體에 어려운 스트레스 因子가 가해진대 腦皮質에서 觀床下部을 거쳐 腦下垂体에 刺激을 보내 副腎皮質에서 여러 가지 호르몬을 分泌하여 某些內分泌線이나 腦器에 有害한 스트레스 作用을 最小化시키려고 한다20).

스트레스에 適應하기 위해 分泌되는 神經信號物質 중 腦에 存在하며 神經傳達 役割을 擔當하는 物質은 monoamines이며 이것은 catecholamine(norepinephrine,epinephrine,dopamine)과 indolamine(serotonin)으로 분類되어진다. 腦의 神經傳達物質인 catecholamine은 交感神経系를 興奮시키며 이어서 腦下垂体를 동하여 副腎皮質로 2)하여 epinephrine, norepinephrine을 血液 속으로 放出시키고, epinephrine이 곧 cortisol 分泌를 增加시켜 應急状況에 對処하도록 돕는 機能을 한다. 이러한 神經傳達物質 중 腦의 monoamine인 catecholamine과 serotonin이 관심을 고는 이 유는 이들 物質을 分泌하는 神經細胞를 光背 혹은 免疫細胞로의 方法으로 확인할 수 있기 때문이며, 일부 疾患과 高血壓 및 精神科 疾患의 治療에 사용되는 藥剤들이 腦의 catecholamine代謝에 影響을 미쳐 그 機能을 변화시킬 수 있기 때문이다20).

韓醫學에 있어 스트레스에 관한 實驗研究들은 살펴보면, 拘束이나 寒冷, 高溫, 声音, 遊泳, 電気 shock 등의 身體의 刺激 또는 恐怖11) 不安과 같은 精神의 刺激을 加하고 各々의 藥剤を 投与하여 腦體의 變化 및 腦機能의 發生程度を20-30) glucose와 酵素 등의 生理学的 變化31-32) 를 于 腦中catecholamine的 測定33-34) 및 血中 catecholamine含量의 變化35-37) 腦部位別 catecholamine含量 變化9-17) 등 多様한 測定指標로 抗ストレス 效果를 報告한 바 있다.

本研究의 實驗方剤인 難病湯은 宋代 嚴的 《濟生方》18)에 最初로 記載된 處方으로 思慮過度, 勞傷心悸, 健忘, 怔忡 常失眠, 發熱 등 精神過度로 因한 諸般病症에 對処, 應用되고 있다. 또한 文 등38-39)是 難病湯에 関한 實驗의 研究로 抗ストレス 效果를 明確한 바 있다.

二神交渉한은 明代 李의 《醫學入門》21)에 收録된 處方으로 “治心腎三經虛者”라고 記載된 이 후 心腎의 相互協同 相互制約 등의 交渉이 이루 어지지 못하여 發生하는 心煩, 失眠, 多夢, 怔忡, 驚悸, 遺精 등의 託症에 應用되고 있다22,22).

本研究에서는 心腎虛病の 症状에 應用되는 難病湯과 心・腎・三經의 虛損을 治療하는 二神交渉한의 抗ストレス 效果를 알기 위하여 生택에 難病湯抽出物과 二神交渉한抽出物을 나누어 應用した 후, 投与하고 拘束ストレス를 加분한 후, 腦部位別 monoamines의 變化를 観察하려고 한다.

Norepinephrine은 交感神経衝動 傳達體의 役割을 하며 交感神経 纖維에 含有한 catecholamine中 97%를 차지하며, 腦의 銅斑核(locus caeruleus)에서 起始하여 觀床下部, 邊緣系, 大腦皮質 등의 腦全體에서 経路を 가지며 情感, 注意, 感覚・意識・覚醒・覚醒と 精神障礙의 主要 原因이 된다55).

本研究에서 腦部位別으로 norepinephrine 含量을 測定한 결과, 前頭大腦皮質에서 正常群은 134.7±26.2ng/g brain tissue였고, 對照群에서 329.4±51.0ng/g brain tissue이었다. 實驗群인 二
神交浄당물과의 경우는 172.0±48.6ng/g brain tissue 로 스트레스로 인해 증가한 norepinephrine 含量을 減少시키는 데에 보였으나 (P<0.05). 視床下部에서는 正常群이 1196.0±159.5ng/g brain tissue이었고, 對照群에서는 2405.0±178.9ng/g brain tissue이었으며, 二神交浄物抽出物投與群에서 1561.0±284.1ng/g brain tissue로 對照群에 비해 有意性 (P<0.05)는 減少를 나타내었다. 線柵體와 海馬에서 norepinephrine의 含量變化는 對照群에 비하여 2 實験群 모두에서 減少를 보였으나有意性은 없었다.

Dopamine은 視床下部, 黒質, 線柵體에 分布하 는데 특히, 尾狀核에 高濃度로 含有되어 있다. 脳を 醒醒시키고 運動機能에 關與하며 過不足은 舞蹈症과 波狀神経症群을 誘発시키며, 精神機能과 關係がある. 精神分裂症에서는 異常放電로 보이며 특히, 醒醒剤, 幻覚剤, 癡癲癇的 快感과 관련된 場所로 알려져 있다.5,28) 本 実験에서 脳 部位別로 dopamine의 含量을 測定한 결과, 前頭大脳皮質과 視床下部 및 海馬에서는 對照群에 비하여 2 實験群 모두에서 減少를 나타내었으나有意性은 없었다. 線柵體에서는 正常群이 6868.0±970.5ng/g brain tissue이었고, 對照群에서는 14440.0±
2599.0ng/g brain tissue이었다. 二神交浄物抽出物投與群에서는 6688.0±1004.0ng/g brain tissue로 스트레스로 因为 增加한 dopamine含量을 減少시키는 데에 보였다 (P<0.05).

Serotonin은 脳의 松果線과 脳橋의 大隕線核에 주로 分布하며 여기서 起始하여 基底神経節, 隕線核, 大脳皮質, 視床, 小脳, 脳幹 등으로의 經絡을 가지며 感情, 攻撃性, 健忘, 睡眠, 安眠, 그림 強迫障害, 幻覚으로 인한 行動異常 및 神經調節 등에 關與하고 있다.5) 前頭大脳皮質에서 serotonin 含量을 測定한 結果, 正常群의 境遇 522.5±95.5ng/g brain tissue이었고, 對照群의 境遇 782.1±44.6ng/g brain tissue이었다. 이에比하여 歯篣湯抽出物投與群의 境遇 617.3±46.6ng/g brain tissue, 二神交浄物抽出物投與群의 境遇 541.6±94.7ng/g brain tissue로 스트레스에 依하여 增加된 serotonin 含量을 有意性 (P<0.05)에
계 減少시켰다. 對照下部에서는 對照群의 2152.0±74.6ng/g brain tissue로 比하여 歯篣湯抽出物投與群에서는 1744.0±134.4ng/g brain tissue, 二神交浄物抽出物投與群에서 1629.0±211.4ng/g brain tissue로 모두 有意性 (P<0.05)있는 減少을 나타내었다. 線柵體에서는 對照群의 686.9±49.4ng/g brain tissue로 比하여 歯篣湯抽出物投與群에서 496.5±35.4ng/g brain tissue, 二神交浄物抽出物投與群에서도 457.2±88.1ng/g brain tissue로 모두 有意性 있는 減少를 나타내었다. 海馬에서는 對照群 899.3±70.6ng/g brain tissue 에 比하여 二神交浄物抽出物投與群에서 605.9±118.1ng/g brain tissue로 有意性 (P<0.05)를 나타내었다.

韓醫學에서의 實験들은 지금까지 多様한 藥理 投與로 隨防의 혹은 스트레스 附與後 薬物治療 貫彻를 위해 儘力하여 潤げんで 研究되어 왔다. 本 研究에서는 束束스트레스로 對照群의 多數 值が 正常群보다 增加한 狀態에서 본 實験群들은 對照에 有意한 減少를 나타내었다. 이는 스트레스에서 norepinephrine의 減少가 增加한 데는 Stone 등의 報告와 一致하며, 이는 아바토 持續인 스트레스로 招來될 수 있는 monoamines의 疳渴을 막으려는 有機體の 適應反應의 하나인 것으로 推論되어 진다.

以上の 實験を 總括하여 보면, norepinephrine의 含量은 前頭大脳皮質, 視床下部에서 二神交浄物 投與群이 有意性 있는 減少를 나타내었고, dopamine 含量은 線柵體에서 二神交浄物 投與群이 有意性 있는 減少를 보였다. Serotonin 含量은 大脳皮質과 視床下部, 線柵體에서 두 實験群 모두가 有意性 있는 減少를 보였으며, 海馬에서는 二神交浄物 投與群에서 有意性 있는 減少를 나타내었다.

腦의 部位別에 따라 歯篣湯과 二神交浄物이 作用하는 效能의 差異이 있었으나 모두 monoamines 含量變化의 隨防에 有意性이 있었고, 特히 二神交浄物 投與群에서 束束스트레스로 因한 脳部位別 monoamines 含量變化에 有意한 結果를 나타내었다. 以上으로 보아 歯篣湯과 더
V. Conclusion

로취병과 二神交渉한의 스트레스 탐색 效果를
観察하기 위하여 輪取病抽出物과 二神交渉한抽出
物을 授与한 생쥐에게 拘束스트레스를 加한 후
腦部位別 monoamines의 含量 變化를 測定한 結
果 다음과 같은 結論을 え었다.

1. 前頭大脳皮質에서 norepinephrine 含量은 二
神交渉한抽出物投與群에서 對照群에 비하여 有意
性있는 減少를 나타내었으며, serotonin 含量은 두
實験群 모두에서 對照群에 비하여 有意性 있는
減少를 나타내었다.

2. 背侖下部內에서 norepinephrine 含量은 二神
交渉한抽出物投與群에서 對照群에 비하여 有意性
 있는 減少を 나타내었으며, serotonin 含量은 二
實験群 모두에서 對照群에 비하여 有意性 있는
減少를 나타내었다.

3. 線條體內에서 dopamine 含量은 二神交渉한
抽出物投與群에서 對照群에 비하여 有意性 있는
減少を 나타내었으며, serotonin 含量은 二
實験群 모두에서 對照群에 비하여 有意性 있는
減少を 나타내었다.

4. 海馬內에서 serotonin 含量은 二神交渉한抽
出物投與群에서 對照群에 비하여 有意性 있는 減
少を 나타내었다.

以上과 같은 實験 結果로 보아 輪取病과 二神
交渉한은 抗스트레스 및 스트레스 抑制效果에 有
意한 效能이 있는 것으로 思料된다.

Reference

3. 백인호. Stress에 따른 生物學的 反應. 漢陽
大學校 精神健康研究. 1991:10-51-64.
4. 李秉煥. ストレス와 精神神経內分泌学. 漢陽
大學校 精神健康研究. 1985:3-81-89.
5. 李明哲. 輪取病神經的. 서울:一潮閣. 1993:
18-33, 201-202.
6. 金錕佑. Stress의 韓醫學的 理解. 東醫神經
7. 文流模. Stress에 관한 文獻的 考察. 東醫神
8. 黃義完, 金知赫. 東醫神經神經醫學. 서울:現代醫
9. 車倫優. 輪取病神經의 拘束스트레스 生殖의
脳 catecholamine 含量에 미치는 影響. 慶
10. 金知兪. 輪取病神經의 拘束Stress 生殖의 脳
11. 洪大成. 陰陰腎病의 拘束스트레스 生殖의
12. 金柳澯. 油腦病의 拘束Stress 生殖의 脳部位別
13. 朴炯宣. 六鬱病의 支舒스트레스 生殖의 形
容, 腦組織 및 脳 catecholamine 含量에
14. 朴在奎. 輪取病과 Ascorbic Acid가 熱 및 遊
泳 Stress Guinea Pig 脳 catecholamine 含
15. 宋必正. 水心病 및 水心病加柿葉이 拘束스트레
스 환자의 脳部位別 catecholamine 含量에
16. 李政祜. 達遙散과 清肝達遙散이 스트레스 생
17. 金成浩, 安心滋養湯과 加味滋養湯이 寒冷・遊泳스트레스 생쥐의 腦部位別 Monoamines 含量에 미치는 影響. 慶山大學校 大學院. 1999.

