Methylated Organic Metabolites of Arsenic and their Cardiovascular Toxocities

Ok-Nam Bae, Kyung-Min Lim, Ji-Yoon Noh, Keun-Young Kim, Eun-Kyung Lim and Jin-Ho Chung
College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
(Received May 28, 2008; Revised June 27, 2008; Accepted June 28, 2008)

Recently, arsenic-toxicity has become the major focus of strenuous assessment and dynamic research from the academy and regulatory agency. To elucidate the cause and the mechanism underlying the serious adverse health effects from chronic ingestion of arsenic-contaminated drinking water, numerous studies have been directed on the investigation of arsenic-toxicity using various in vitro as well as in vivo systems. Nevertheless, some questions for arsenic effects remain unexplained, reflecting the contribution of unknown factors to the manifestation of arsenic-toxicity. Interestingly, very recent studies on arsenic metabolites have discovered that trivalent methylated arsenicals show stronger cytotoxic and genotoxic potentials than inorganic arsenic or pentavalent metabolites, arguing that these metabolites could play a key role in arsenic-associated disorders. In this review, recent progress and literatures are summarized on the metabolism of trivalent methylated metabolites and their toxicity on body systems including cardiovascular system in an effort to provide an insight into the future research on arsenic-associated disorders.

Key words: Arsenic, Trivalent arsenic metabolite, MMAIII, DMAIII, Toxicity

Chemical properties of arsenic. Arsenic is a naturally occurring metalloid, ubiquitously distributed in earth crust. (Smedley and Kinniburgh, 2002). The chemical properties of arsenic are complicated and a variety of chemical forms can be produced. Inorganic arsenic is formed through the reactions with oxygen, chloride and sulfur while organic arsenic is produced by combination with hydrogen or carbon (Oremland and Stolz, 2003). Arsenic can display 4 oxidative states, -3, 0, +3 and +5. Generally, trivalent arsenic is known to exhibit more toxicities than pentavalent arsenic species (Lee et al., 1988). In natural state, arsenic exists in compound forms with copper, nickel and iron but in drinking water, arsenic is present mostly in the forms of inorganic pentavalent arsenate (AsV) or trivalent arsenite (AsIII). Methylated organic arsenic is also found naturally and it is from the metabolism of microorganism (Oremland and Stolz, 2003).

Arsenic exposure to human by drinking water. Generally, the main source of arsenic exposure to human is contaminated drinking water and food (Gebel, 1999). Exposure via the contaminated food is mainly from arsenobetaine, arsenocholine and arsenosugars in sea foods (Edmonds et al., 1997). However, due to their low toxicities and rapid urinary excretion, their effects on human are known to be minor (Buchet et al., 1994). On the contrary, chronic arsenic exposure via contaminated drinking water is drawing an enormous public attention worldwide. (Abernathy et al., 2003; Mead, 2005). US Environmental Protection Agency (EPA) and World Health Organization (WHO) are regulating the arsenic level in drinking water up to 10 µg/l (ppb) in an effort to prevent chronic arsenic exposure but the reports of arsenic exposure through contaminated drinking water are continuing throughout the world. In a certain region of China, 0.09-1.86 mg/l level of arsenic was detected in the drinking water from a natural well (Xia and Liu, 2004) and in Bengal Delta Plain surrounded by India, West Bengal and Bangladesh, extremely high levels of arsenic ranging up to 3.2 mg/l have been reported (Bhattacharyya et al., 2003). 3.05 mg/l arsenic level was detected in the underground water from a region of Vietnam (Berg et al., 2001), and 0.01~1.82 mg/l of arsenic level was reported in some regions of Taiwan (Bates et al., 1992). These epidemic arsenic
contaminations have been also reported in other parts of world such as Latin America including Chile, Argentina and Mexico (Cebrian et al., 1983; Hopenhayn-Rich et al., 1996; Caceres et al., 2005), America and Europe (Lewis et al., 1999; Lamm et al., 2004).

Distribution, metabolism and excretion of arsenic. Arsenic in drinking water is mainly inorganic form and it can be easily absorbed through gastrointestinal tract to systemic blood circulation. Orally administered arsenic is found to be rapidly absorbed and cleared from body in human volunteer through urine for 3~4 days. However, some remain in body and are slowly excreted through hair, nail and sweat (Buchet et al., 1981).

Arsenic distribution in blood has been investigated through the bioanalysis of arsenic concentration in plasma, serum and erythrocytes of arsenic exposed human (Heydorn, 1970; Concha et al., 1998). Normal healthy people without arsenic exposure have the blood arsenic concentration less than 5.1 µg/l while arsenic-exposed group showed arsenic concentration of around 32.7 µg/l in erythrocytes and 15.4 µg/l in plasma (Heydorn, 1970). In addition, female population exposed to approximately 200 µg/l of arsenic contaminated drinking water showed average blood arsenic level of 11 µg/l (Concha et al., 1998). Even after 2 years of wash-out period from arsenic exposure, plasma and blood concentration of arsenic were determined to be 7.48 µg/l and 26.3 µg/l, respectively (Mandal et al., 2004). Other study in the population exposed to 5~410 µg/l of arsenic contaminated drinking water showed blood arsenic concentration of 2~42.1 µg/l (Olguin et al., 1983; Pi et al., 2000).

Other than blood, arsenic is mainly distributed into liver, hair and nails. Arsenic is mainly metabolized in liver and plasma undergoing reduction from +5 to +3 and subsequent oxidative methylation (Aposhian, 1997; Vahter, 2002; Aposhian et al., 2004). Pentavalent oxidative state, arsenate (As(V)) is transported into cell via phosphate carrier system and trivalent oxidative state, arsenite (As(III)) is delivered via aquaglyceroporin (Liu et al., 2002). Recently new metabolic pathways of inorganic arsenic have been suggested by Hayakawa et al. (2005). In cell, As(III) is reduced into As(III) in the presence of endogenous inosine or free thiol by purine nucleoside phosphorylase (PNP), glutathione-S-transferase (GST-omega) and unknown mitochondria enzymes (Radabaugh and Aposhian, 2000; Gregus and Nemeti, 2002; Nemeti and Gregus, 2002). Reduced As(III) forms a complex with glutathione (GSH) producing arsenic triglutathione (ATG), and ATG is methylated to monomethylarsenic diglutathione (MADG) and dimethylarsinic glutathione (DMAG) by arsenic methyltransferase (Cyt 19) using cofactor, S-adenosylmethione (SAM). MADG and DMAG are converted to MMA(III) and DMA(III) depending on the GSH concentration, and MMA(III) and DMA(III) are oxidized to MMA(V) and DMA(V) (Fig. 1).

Major arsenic metabolite in urine is known to be DMA(V) but trivalent state was recently identified to be another major metabolite of arsenic in urine (Aposhian et al., 2000a; Aposhian et al., 2000b; Mandal et al., 2004). In human urine, arsenic metabolite contents were measured to be in the order of DMA(V) > DMA(III) > As(V) > As(III) > MMA(III) > MMA(V) (Valenzuela et al., 2005). Although the actual level of trivalent methylated metabolites in environment and human tissue is still poorly investigated, several reports have dealt with the exposure level using in vivo and in vitro models. Upto now, MMA(III) and DMA(III) are known to be present in contaminated water (Hasegawa, 1994), hamster liver tissue (Sampaio-Reyes et al., 2000), cultured human hepatocyte (Del Razo et al., 2001), and human urine (Le et al., 2000a, b; Del Razo et al., 2001). In addition, the presence of MMA(V) in bile acid were reported in rats (Suzuki et al., 2001). Tissue distribution of radioactive DMA(III) was also examined in mouse model (Hughes et al., 2008).

Toxicity of trivalent arsenic metabolites. Biological activities of MMA(V) and DMA(V) are known to be inferior to those of inorganic arsenic and therefore, methylation pathways have been regarded as the detoxification of
inorganic arsenic (Vahter and Marafante, 1983; Eguchi et al., 1997; Del Razo et al., 2001). Although trivalent methylated metabolites, MMAIII and DMAIII had been known to be chemically reactive (Cullen et al., 1984), their toxicological roles were questioned due to the absence of knowledge about their biological concentrations. With the recent discovery of trivalent methylated metabolites, MMAIII and DMAIII as major human metabolites of inorganic arsenic and their strong toxicities, however, a renewed view of arsenic methylated metabolites as toxic metabolites is gaining more and more strength (Petrick et al., 2000, 2001; Styblo et al., 2000; Sakurai et al., 2002). Petrick et al. (2000) showed that in Chang human hepatocyte, MMAIII showed 10 times stronger toxicities than AsIII and potent toxicities of MMAIII and DMAIII could be also observed in other cell types such as normal human hepatocyte, epithelial keratinocyte, bronchial epithelial cell and urinary bladder UROtsa cell (Styblo et al., 2000). In addition, toxicities of MMAIII and DMAIII were shown in various cancer cell lines including human hepatocellular carcinoma, human bladder transient carcinoma, human acute promyelocytic leukemia and human osteosarcoma (Styblo et al., 2002) and inhibition potency of MMAIII against glutathione reductase, glutathione peroxidase and thiol-oxido reductase was also the strongest among arsenic species (Chouchane and Snow, 2001; Lin et al., 2001). MMAIII is known to have neurotoxic potential in contrast to DMAV (Kruger et al., 2007). Furthermore, trivalent methylated arsenic species are known to directly react with DNA to induce genotoxicity (Mass et al., 2001) and they have been identified as clastogen in human lymphocyte and mouse lymphoma cell (Kligeman et al., 2003). Indeed, after intraperitoneal injection, MMAIII showed strong acute toxicities in hamsters. LD50 level of MMAIII was estimated to be around 29.3 mmol/kg which is 5 times lower than that of inorganic arsenic (Petrick et al., 2001).

The reason for the potent toxicities of trivalent methylated metabolites over inorganic or pentavalent methylated metabolites has not been fully elaborated, but several explanations such the higher affinity to free thiol (Shiobara et al., 2001) and the strong potential of oxidative stress (Nesnow et al., 2002) of trivalent methylated metabolite have been suggested. Some reports on the thiol-bound arsenicals suggested that thiol-bound form, which is referred as arsenothiol, could be responsible for the toxicity of methylated metabolites (Styblo et al., 1997). Supporting this view, a recent paper has shown that low-concentration of dithiol compounds potentiate the toxicity of trivalent methylated metabolites (Jan et al., 2006). In addition, higher intracellular accumulation of MMAIII over AsIII might be suggested as well for the strong toxicity of MMAIII (Hirano et al., 2004).

Effects of trivalent arsenic metabolites on cardiovascular system. Based on the epidemiological reports on the link between chronic ingestion of arsenic-contaminated drinking water and diverse cardiovascular diseases including peripheral vascular disease, ischemic heart disease, atherosclerosis and hypertension (Yu et al., 2002; Abernathy et al., 2003; Tseng et al., 2003; Simeonova and Luster, 2004; Yoshida et al., 2004; Kwok et al., 2007), numerous studies have been directed to elucidate the effects of arsenic on cardiovascular system using in vitro as well as in vivo assays. It is now well-established by substantial number of evidences that the inorganic arsenic including arsenite and arsenate has deleterious effects on cardiovascular system. Exposure to arsenite and arsenate could lead to the development of atherosclerosis, increase of reactive nitrogen species, thrombus formation, and decrease of nitric oxide and cyclic GMP in vivo (Lee et al., 2002; Simeonova et al., 2003; Bunderson et al., 2004). In isolated vascular tissues, alteration of vascular tone was induced by arsenite-induced excessive contraction as well as impaired relaxation (Lee et al., 2003, 2005). In vascular cells like vascular smooth muscle cells and endothelial cells, inorganic arsenic could induce oxidative stress, DNA damage and apoptosis with the expression of several proteins by activation of transcription factors (Hirano et al., 2003; Tsou et al., 2003; Kumagai and Pi, 2004; Soucy et al., 2004). Inorganic arsenic also enhances the activation of platelets, potentiating agonist-induced platelet aggregation and procoagulant activity through phosphatidylycerine exposure and microparticle generation (Lee et al., 2002; Bae et al., 2007).

Although a wide range of cardiovascular effects of inorganic arsenic is well-characterized, information on the role of trivalent methylated metabolites in arsenic-associated diseases is extremely limited. Hirano et al. (2004) showed that MMAIII has higher toxicity than other arsenic species in rat heart endothelial cells, and Li et al. (2007) have reported that MMAIII exposure leads to the inhibition of eNOS activity and alteration of eNOS phosphorylation in endothelial cells. Recently, we investigated the effects of trivalent methylated metabolites on vascular tone using isolated blood vessel, and found that MMAIII and DMAIII could induce smooth muscle dysfunction through the impairment of agonist-induced blood vessel contraction, which is mediated by the disturbance of calcium regulation (Fig. 2). Dysfunction of smooth muscle cells is well-correlated with the alteration of blood pressure after exposure to MMAIII in in
vivo animal model. Besides vascular cells like smooth muscle cells or endothelial cells, trivalent methylated arsenic metabolites could affect platelet function. In our recent study, MMA\text{III} and DMA\text{III} were shown to induce apoptotic-like events in platelets, accompanied by phosphatidylserine exposure, resulting in the promotion of procoagulant activity which could be also confirmed in in vivo thrombosis model (unpublished data). Notably, procoagulant activity could be increased directly by MMA\text{III} and DMA\text{III} in the absence of activating agonists, in contrast to the case of inorganic arsenic where agonist was required for the inorganic arsenic-induced procoagulant activity (Bae et al., 2007).

Concluding remarks. Due to the potent toxicity and high reactivity of trivalent methylated arsenics in vitro, increasing efforts are currently being made to explain the role of these metabolites for the arsenic-associated adverse health effects. Although their actual level in environment and body after the chronic ingestion of arsenic need to be addressed further to confirm their roles, it is a matter of fact that trivalent methylated arsenic metabolites have deleterious effects on the diverse body systems, especially cardiovascular system. Upto now, most of the toxicological studies for the regulatory purposes have been focused on the effects of inorganic arsenic, but now the bottom line for assessment of arsenic-toxicity should be changed to explore the possible involvement of trivalent methylated metabolites. The potent effects of trivalent methylated metabolites with distinct toxic mechanisms from that of inorganic arsenic could give a novel clue for the explanation of the unsolved questions for arsenic-associated health effects.

ACKNOWLEDGEMENTS

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2006-E00162).

REFERENCES

