Genetic Toxicity Test of Emodin by Ames, Micronucleus, Comet Assays and Microarray Analysis Showing Differential Result

Seo Y. Go, Kyyoung J. Kwon, Sue N. Park1, and Yhun Y. Sheen*

College of Pharmacy, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Korea,
1Department of Toxicological Researches, National Institute of Toxicological Research, Korea Food and Drug Administration, 5 Nokbeon-dong, Eunpyeong-gu, Seoul 122-704, Korea

(Received 19 June 2007; Accepted 21 August 2007)

Abstract − Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a major constituent of rhubarb. Although it has been claimed to have a wide spectrum of therapeutic value, its side effects, especially in human kidney cells have not been well characterized. In this study, we have carried out in vitro genetic toxicity test of emodin and microarray analysis of differentially expressed genes in response to emodin. The result of Ames test showed mutations with emodin treatment in base substitution strain TA1535 both with and without exogenous metabolic activation. Likewise, emodin showed mutations in frame shift TA98 both with and without exogenous metabolic activation. The result of COMET assay in L5178Y cells with emodin treatment showed DNA damage both with and without exogenous metabolic activation. Emodin did not increase micronuclei in CHO cells both with and without exogenous metabolic activation. 150 Genes were selected as differentially expressed genes in response to emodin by microarray analysis and these genes would be candidate biomarkers of genetic toxic action of emodin.

Keywords □ Emodin, Ames test, COMET assay, MN assay, Microarray, S9 fraction

INTRODUCTION

Emodin is one of the oldest and best known Chinese herbal medicines (Da Huang) (Maclean and Townsend, 1999; Hoffman, 2003). Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a naturally occurring anthraquinone present in the roots and barks of numerous plants and an active ingredient of Chinese herbs including Rheum officinale and Polygonum cuspidatum (Kuo et al., 2001; Sato et al., 2000). It is also found in the roots, leaves, and bark of senna and aloe (Merc, 1998; Nature’s Field, 1999). Preparations of all of these plants have been used in herbal laxatives (National Toxicology Program, 2003). Emodin is also found in the wild mushroom Dermocybe sanguinea (von Wright et al., 1992), and various fungi (Wehner et al., 1979). Emodin has been shown to possess biological activities of anticancer (Yeh et al., 1988), antivirus (Barnard et al., 1992), inhibition on NADH oxidase, xanthine oxidase, succinate oxidase, as well as vasorelaxation (Lin et al., 1996). Recent studies have suggested that in the HER-2/neu-overexpressing breast cancer cell emodin may act as a tyrosine kinase inhibitor and in T-lymphocytes as a strong suppressing factor on proliferation (Kumar et al., 1998; Kuo et al., 1997, 2001; Lee, 2001a,b; Zhang et al., 1999a,b). In addition, emodin has been reported to induce apoptosis in human lung squamous cell carcinoma (Lee, 2001a,b; Zhang and Hung, 1996; Zhang et al., 1998). Despite of its therapeutic value, potential side effects of emodin have been revealed through experimental studies. In 2001, the National Toxicology Program (NTP) reported that exposure of rats to emodin resulted in an increase in incidence of renal tubule hyaline droplets and severities of renal tubule pigmentation in both male and female animals (National Toxicology Program, 2001).

Emodin isolated from different sources was reported to be mutagenic in Salmonella typhimurium strains TA97, TA98, TA100, TA102, and TA1537 with or without metabolic activation (Wehner FC et al., 1979; Krivobok S et al., 1992). However, there are also reports showing no evidence of mutagenicity for emodin. In mammalian test systems using V79 Chinese hamster cells, no genotoxicity of emodin was found either with or without metabolic activation (Bruggeman IM, vander Hoeven JC, 1984) Lack of emodin genotoxicity was also evident in a mouse micronucleus assay (Mengs U et
Thus far, no further study has not been carried out to find out the underlying mechanism of genetic toxic action of emodin. In this study, we have tested emodin using Ames test, in vitro micronuclei assay in CHO cells, single cell gel/comet assay in L5178Y cells, microarray analysis of gene expression profiles in L5178Y cells in order to find out biomarker gene candidates in response to genetic toxicity of emodin.

MATERIALS AND METHODS

Materials
Emodin, 2-aminofluorene, 2-nitrofluorene, sodium azide, methanesulfonic acid methyl ester, benz(a)pyrene (BaP) and cyclophosphamide were obtained from Sigma chemical Co. (St. Louis, USA). The S9 fraction was purchased from Moltox® S9 (Canbiotech, U.S.A.).

Ames test
The Ames test was performed by the pre-incubation test method (Gatehouse et al., 1994) with or without metabolic activation using Salmonella typhimurium strains TA98 and TA1535. The tester strains were cultured overnight in nutrient broth medium at 37°C. To the 0.1 ml of bacterial suspension, 0.5 ml of 0.1 M sodium phosphate buffer (pH 7.4) or 0.5 ml of S9 was added and then 0.1 ml of emodin (3.3, 10, 33.3, 66.6, 100 µg/plate) or positive control chemicals such as 2-aminofluorene, 2-nitrofluorene and sodium azide were added and incubated for 20 min at 37°C. After incubation, 2.0 ml of top agar was added to mix and the mixture was poured onto a minimal glucose agar plate. 48 Hours after the incubation at 37°C, the numbers of revertant colonies were counted (Kasamatsu et al., 2005).

Comet assay
Comet assay was carried out according to Singh et al. (Singh et al., 1988) with slight modification. L5178Y mouse lymphoma cells were seeded in 12 well plates and were exposed to 7.5, 15, 30 µg/ml emodin for 2 h. For the positive controls, cells were exposed to 50 µM benz[a]pyrene (BaP) in the presence of S9 metabolic activation. 20 µl of cell suspension were mixed and the mixture was poured onto a minimal glucose agar plate. 48 Hours after the incubation at 37°C, the numbers of revertant colonies were counted (Kasamatsu et al., 2005).

In vitro cytokinesis block micronucleus assay
The CBMN (cytokinesis-block micronucleus) assay was performed according to Fenech (Fenech, 2000) with modification. CHO-K1 cells were grown in 24-well plates and treated with emodin (3.75, 7.5, 15 µg/ml) or cyclophosphamide (2.5, 5, 15 µg/ml) for 4 h with or without S9. After the treatment, cells were washed with PBS and further incubated for 20 h in the medium containing 3 µg/ml cytochalasin B. Cells were harvested and spread on glass slide, and fixed with 100% methanol for 5 min and stained with 0.24 mM acridine orange in 6.7 mM phosphate buffer (pH 6.8) for 3 min. Micronuclei were scored under the fluorescence microscope at 1000 magnification.

Microarray
The microarray analysis was performed according to Affymetrix Inc. (Affymetrix Inc., 2002) with modification. L5178Y mouse lymphoma cells were plated in RPMI-1640 medium into 12-well plate. After 2 h of treatment with emodin (30 µg/ml), cells were resuspended in media without emodin and cultured for 20 h. Total RNA was isolated by TRIzol (Invitrogen, Carlsbad, CA) and purified by a RNeasy mini kit (QIAGEN, Hilden, Germany). Total RNA (1 µg) was amplified using the Affymetrix one-cycle cDNA synthesis protocol. For each array, 15 µg of amplified biotin-cRNAs was fragmented and hybridized to the Affymetrix Mouse Genome 430 2.0 GeneChip arrays (Affymetrix, Santa Clara, USA) for 16 h at 45°C in a rotating hybridization oven. Slides were stained with streptavidin/phycoerythrin and washed for antibody amplification. Arrays were scanned with an Affymetrix scanner 3000, and data were obtained using the GeneChip operating software (GCOS, version 1.2.0.037).

RESULTS
Emodin induced gene mutations in both TA98 and TA1535 strains.

The mutant frequency (MF) was assessed as a measure of gene mutation in both TA98 and TA1535 strains exposed to different concentrations of emodin (Fig. 1). In TA98 strain, the MF of 1.0 µg/plate 2-nitrofluorene treated bacteria in the
absence of S9 was 149.67±17.10 and the MF of bacteria exposed to 10 \(\mu g/plate \) 2-aminofluorene in the presence of S9 was 238.00±20.52. The positive control chemicals, 2-nitrofluorene and 2-aminofluorene generated large increases in revertant. The MF of solvent control bacteria were 24.33±0.58 in the absence of S9 and 24.00±3.00 in the presence of S9. The MF of emodin (3.3, 10, 33.3, 66.6, 100 \(\mu g/plate \)) treated bacteria were 30.00±4.58, 35.67±2.08, 31.33±3.51, 30.00±6.56, 17.67±4.04 in the absence of S9, 29.33±9.24, 24.00±5.29, 27.00±1.73, 21.67±3.06, 21.33±5.69 in the presence of S9, respectively. Emodin treatments significantly increased revertant numbers in TA98 with or without S9. In TA1535 strain, the MF of 1.5 \(\mu g/plate \) sodium azide treated bacteria in the absence of S9 was 329.00±39.89 and the MF of bacteria exposed to 10 \(\mu g/plate \) 2-aminofluorene in the presence of S9 was 280.67±64.73. The positive control chemicals, sodium azide and 2-aminofluorene showed large increases in revertant numbers. The MF of solvent control bacteria were 16.67±1.53 in the absence of S9 and 19.00±2.00 in the presence of S9. The MF of emodin (3.3, 10, 33.3, 66.6, 100 \(\mu g/plate \)) treated bacteria were 71.67±11.68, 78.67±2.31, 71.00±7.00, 58.67±15.18, 75.67±4.16 in the absence of S9, 141.67±27.02, 231.00±21.00, 244.67±71.67, 275.67±83.91, 382.33±34.96 in the presence of S9, respectively. Emodin treatments significantly increased revertant numbers in TA1535 with S9.

Emodin induced DNA damage in L5178Y cells

The Olive Tail Moment (OTM) was assessed as a measure of DNA damage in the comet assay in L5178Y mouse lymphoma cells exposed to different concentrations of emodin (7.5-30 \(\mu g/ml \)) for 2 h (Fig. 2). The OTM of MMS-treated cells (150 \(\mu M \), positive control in the absence of S9) was 67.98±15.21 and the OTM of cells exposed to B[a]P (50 \(\mu M \), positive control in the presence of S9 metabolic activation system) was 46.75±9.76. The OTM of control cells was 1.86±1.68 in the absence of S9 and 3.13±2.44 in the presence of S9. Cells were exposed to 7.5, 15, 30 \(\mu g/ml \) emodin for 2 h. OTMs

Fig. 1. The mutagenicity of Emodin tested in strain TA98 and TA1535. The Ames test was performed by the pre-incubation test method (Gatehouse et al., 1994) with or without metabolic activation using Salmonella typhimurium strains TA98 and TA1535 as described in methods. The data represent averages from three experiments with triplicate plates per dose. NC: negative control. PC: positive control (-S9: 1.0 \(\mu g/palte \) 2-nitrofluorene 1.5 \(\mu g/plate \) sodium azide, +S9: 10 \(\mu g/plate \) 2-aminofluorene)

Fig. 2. Olive tail moments by Emodin in L5178Y mouse lymphoma cells. Olive tail moments were measured using comet assay according to Singh et al. (Singh et al., 1988) with slight modification as described in methods. Olive tail moments of L5178Y mouse lymphoma cells exposed to 7.5, 15, 30 \(\mu g/ml \) Emodin for 2 h. Negative control was medium. Positive controls were MMS (150 \(\mu M \)) in the absence of S9 and BaP (50 \(\mu M \)) in the presence of S9 metabolic activation system, respectively. NC: negative control. PC: positive control. Data are means ± S.D. (n=15)
induced by emodin were 30.26±6.07, 41.78±9.14, 50.14±10.95 in the absence of S9 and 19.95±4.85, 27.29±6.36, 43.60±7.95 in the presence of S9, respectively. It thus caused a significant increase in DNA damage in comparison to the solvent control and the lowest effective concentration was 7.5 µg/ml.

Emodin induced micronuclei in CHO-K1 cells.

CHO-K1 cells cultured in 24-well plate using RPMI medium and treated with cyclophosphamide (CPA) in the presence of S9. As expected, numbers of micronuclei of cells treated with 2.5, 5, 15 µg/ml CPA were 11.67±4.16, 8.33±2.08, 12.67±3.79 in the absence of S9 and 25.67±4.04, 51.00±5.29, 83.00±5.57 in the presence of S9. The MF of solvent control such as H₂O, DMSO were 7.33±0.58, 7.00±2.00 in the absence of S9 and 9.00±2.00, 9.33±1.53 in the presence of S9. Numbers of micronuclei of 3.75, 7.5, 15 µg/ml emodin treated cells were 5.33±0.58, 8.33±2.31, 10.00±3.61 in the absence of S9 and 10.67±1.15, 12.67±3.21, 7.00±4.36 in the presence of S9, respectively. Increase in the numbers of micronuclei with emodin treatment was statistically significant and concentration-dependent (Fig. 3).

Microarray analysis of differentially expressed genes with emodin treatment in L5178Y cells

Differentially expressed genes from L5178Y cells treated with emodin (30 µg/ml) were analyzed by microarray using Affymetrix Mouse Genome 430 2.0 GeneChip arrays. 2816 genes were emodin specifically regulated and their fold of change were greater than Log 2. Among them 462 genes were selected after the Welch's T-test and Volcano plot analysis (Fig. 4). Figure 5 showed the results of clustering analysis of emodin regulated genes. Table I showed genes which expressed were...
increased with emodin treatment. If these genes expression would be related to genetic toxicity of emodin, it would need further study.

DISCUSSION

Human exposure to emodin is predominantly oral via ingestion of herbal remedies or wild mushrooms. Estimated maximum human exposure to emodin, based on the emodin content in the constituents of herbal formulations, is 3 mg/kg/day for a 70 kg person. Emodin is biotransformed by the microsomal cytochrome P450 enzymes into hydroxyemodins, some of which are direct mutagens to the test strains and could, therefore, explain the basis for mutagenic nature of emodin (Masuda T and Ueno Y., 1984; Masuda T et al., 1985; Murakami H et al., 1987; Mueller SO and Lutz WK, 1998). Alternatively, 2-hydroxyemodin, one of the metabolic products of emodin, in turn can produce active oxygen and can induce DNA strand breaks suggesting a possible role of active oxygen in the process of mutagenesis, even though there is a report against the involvement of oxygen. (Kodama M et al., 1987; Bosch R et al., 1987) Another conceivable mechanism could be the non-covalent binding of emodin to DNA leading to the inhibition of the catalytic activity of topoisomerase II, at least in part, contributing to emodin-induced genotoxicity and mutagenicity (Mueller et al., 1998; Mueller and Stopper, 1999; Muller et al., 1996)

To obtain an in depth knowledge regarding its predicted mutagenicity and to verify its historical claims of potential benefits, 2-year genetic toxicology and carcinogenesis studies of emodin were conducted by National Toxicological Program (NTP) of National Cancer Institute (NCI), USA (NTP, 2001). The results showed no evidence of carcinogenic activity for emodin in male F344/N rats and female B6C3F1 mice and equivocal evidence of carcinogenic activity in female 344/N rats and male B6C3F1 mice (NTP, 2001). Therefore, assessment of the genotoxicity profile of emodin in light of other data from animal metabolism and rodent carcinogenicity studies do not support concerns that senna laxative components pose a genotoxic risk to humans when consumed under prescribed use conditions (Brusick D and Mengs, 1997). There are reports about antimutagenicity of emodin in Salmonella typhimurium TA98. The crude extracts (containing 3.4 mg of emodin, 2.1 mg of chrysophanol, and 1.8 mg of rhein in 10 g of dry matter) as well as emodin induced a dose-dependent decrease in the mutagenicity of benzo[a]pyrene (B[a]P), 2-amino-3-methylimidazo[4,
5-fluorouracil (5-FU)), and 5-fluoro-2'-deoxyuridine (5-FdUrd) were used for the in vitro assays reported.

ACKNOWLEDGMENTS

This work was supported by grant 06132NTP396 from the KFDA of Korea.

REFERENCES

gial cells. Zhongguo Yao Li Xue Bao 17, 61-63.