Antioxidative Constituents from the Twigs of Vitex rotundifolia

Dae Keun Kim*

College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea

(Received August 10, 2009; Revised September 18, 2009; Accepted September 24, 2009)

Abstract – In the course of screening for antioxidant compounds by measuring the radical scavenging effect on DPPH (1,1-diphenyl-2-picrylhydrazyl), a total extract of the twigs of Vitex rotundifolia (Verbenaceae) was found to show potent antioxidant activity. Subsequent activity-guided fractionation of the methanolic extract led to the isolation of three iridoid compounds, 10-O-vanilloylaucubin (1), 10-O-p-hydroxybenzoylau-cubin (2) and aucubin (3), two C-glycoside flavones, vitexin (4) and orientin (5), and a quinic acid derivative, 3,4-di-O-caffeyloyquinic acid (6). Their structures were elucidated by spectroscopic studies. Among them, compounds 5 and 6 showed the significant antioxidative effects on DPPH free radical scavenging test. In riboflavin-NBT-light and xanthine-NBT-xanthine oxidase systems, compounds 5 and 6 exhibited the formation of the blue formazan in a dose-dependent manner. Compounds 5 and 6 showed better superoxide quenching activities than vitamin C.

Keywords: Vitex rotundifolia, Verbenaceae, Iridoid, Phenolic compounds, DPPH, Superoxide quenching activity

INTRODUCTION

Vitex rotundifolia L. fil. (Verbenaceae) is widely distributed in Asia including Korea, Japan and China, and its fruit has been used in folk medicine for cold, headache, migraine, sore eyes, night blindness and neuralgia (Kimura et al., 1996). Earlier investigation on the chemical constituents of V. rotundifolia dealt with sesquiterpenes, diterpenes, flavones, lignans, phenylpropanoids and iridoids in fruit of this plant (Ono et al., 1997, 1999, 2001, 2002; You et al., 1998; Okuyama et al., 1998; Ko et al., 2000; Yoshioka et al., 2004). But phytochemical and pharmacological studies of the twigs of this plant has not been performed yet.

In the course of searching for antioxidants from plants by measuring the radical scavenging effect on DPPH (1,1-diphenyl-2-picrylhydrazyl), a total extract of the twigs of V. rotundifolia was found to show potent antioxidant activity. Subsequent activity-guided fractionation of the methanolic extract led to the isolation of six compounds, 10-O-vanilloylaucubin (1), 10-O-p-hydroxybenzoylau-cubin (2) and aucubin (3), two C-glycoside flavones, vitexin (4) and orientin (5), and a quinic acid derivative, 3,4-di-O-caffeyloyquinic acid (6) from the active ethyl acetate fraction. Among them, compounds 5 and 6 showed the significant antioxidative effects on DPPH free radical scavenging test, and superoxide quenching activity tests. This paper deals with the isolation and structural characterization of these compounds and their scavenging activity of the stable DPPH free radical and superoxide quenching activity.

MATERIALS AND METHODS

General experimental procedures

NMR spectra were determined on a JEOL JMN-EX 400 spectrometer. Sephadex LH-20 was used for column chromatography (Pharmacia, 25-100 μm). Prep-HPLC was carried out on a Jaigel GS310 column (Japan). TLC was carried out on Merck precoated silica gel F₂₅₄ plates and silica gel for column chromatography was Kiesel gel 60 (230-400 mesh, Merck). Spots were detected under UV and by spraying with 10% H₂SO₄ in ethanol followed by heating at 100-120°C for 3 min. All other chemicals and solvents were of analytical grade and used without further purification. Ascorbic acid and BHA (butylated hydroxyanisole) were obtained from Sigma Chemical Co.
Plant materials

The twigs of *V. rotundifolia* were collected in October 2006 at Taeahn, Chungnam, Korea, and identified by Jong Pil Lim, College of Pharmacy, Woosuk University. A voucher specimen was deposited in the herbarium of the College of Pharmacy, Woosuk University (WSU-06-022).

Extraction and isolation

The shade dried and powdered twigs of *V. rotundifolia* (600 g) was extracted three times with hot MeOH, and then filtered. The extracts were combined and evaporated in vacuo at 40°C. The resultant methanolic extract (58 g) was successively partitioned as methylene chloride, ethyl acetate, *n*-butanol and water soluble fractions. Each fraction was tested for the radical scavenging effect on DPPH. This fraction was subjected to chromatography on a Sephadex LH-20 column (MeOH only), and give five fractions (E1-E5). Fraction E1 (3.5 g) was chromatographed on silica gel column chromatography (CHCl₃-MeOH-H₂O, 40:10:1) as an eluent to give six subfractions (E11-E16). Subfraction E12 (260 mg) was further chromatographed on a silica gel column (CHCl₃-MeOH-H₂O, 3:1:1) and purified by a GS310 column LH-20 (MeOH) to give compound 1 (41 mg). Subfraction E14 (1.3 g) was crystallize with MeOH to give compound 2 (19 mg). Subfraction E15 (93 mg) was chromatographed on silica gel column chromatography (CHCl₃-MeOH-H₂O, 40:10:1) as an eluent to give five subfractions (E11-E15). Subfraction E12 (260 mg) was further chromatographed on a silica gel column (CHCl₃-MeOH-H₂O, 3:1:1) and purified by a GS310 column LH-20 (MeOH) to give compound 1 (41 mg). Subfraction E14 (1.3 g) was crystallize with MeOH to give compound 2 (19 mg). Subfraction E15 (93 mg) was further chromatographed on a GS310 column (MeOH) to give compound 3 (10 mg) and 4 (9 mg). Fraction E3 (1.3 g) was chromatographed on silica gel column chromatography (CHCl₃-MeOH-H₂O, 40:10:1) as an eluent to give five subfractions (E31-E35). Subfraction E32 (136 mg) was crystallize with MeOH to give compound 5 (10 mg). Subfraction E35 (70 mg) was purified on a GS310 column (MeOH) to give compounds 6 (20 mg).

10-O-\textit{p}-Hydroxybenzoylaucubin (1)

White powder (MeOH), ¹H-NMR (400 MHz, CD₃OD) δ: 7.61 (1H, dd, J=8.4, 1.6 Hz, H-6''), 7.59 (1H, d, J=1.6 Hz, H-2''), 6.86 (1H, d, J=8.4 Hz, H-5''), 6.34 (1H, dd, J=6.0, 2.0 Hz, H-3), 5.83 (1H, s, H-7), 5.11 (1H, dd, J=6.0, 4.3 Hz, H-4), 5.08 (1H, d, J=15.5 Hz, Ha-10), 5.03 (1H, d, J=7.2 Hz, H-1), 4.92 (1H, d, J=15.5 Hz, HB-10), 4.70 (1H, d, J=8.0 Hz, H-1'), 4.47 (1H, m, H-6), 3.90 (3H, s, OCH₃), 3.84 (1H, dd, J=11.6, 1.8 Hz, Ha-6), 3.66 (1H, dd, J=11.6, 6.1 Hz, Hb-6), 3.39 (1H, dd, J=8.8, 8.8 Hz, H-3''), 3.00 (1H, t-like, J=7.3 Hz, H-9), 2.71 (1H, m, H-5). ¹³C-NMR (100 MHz, CD₃OD) δ: Table I.

Aucubin (3)

White powder (MeOH), ¹H-NMR (400 MHz, CD₃OD) δ: 6.26 (1H, dd, J=5.6, 2.0 Hz, H-3), 5.72 (1H, s, H-7), 5.04 (1H, dd, J=5.6, 4.3 Hz, H-4), 4.90 (1H, d, J=7.6 Hz, H-1), 4.62 (1H, d, J=8.0 Hz, H-1'), 4.39 (1H, m, H-6), 4.29 (1H, d, J=15.2 Hz, Ha-10), 4.12 (1H, d, J=15.2 Hz, HB-10), 3.82 (1H, dd, J=11.6, 1.8 Hz, Ha-6), 3.65 (1H, dd, J=11.6, 6.1 Hz, Hb-6), 2.84 (1H, t-like, J=7.6 Hz, H-9), 2.61 (1H, m, H-5). ¹³C-NMR (100 MHz, CD₃OD) δ: Table I.

<table>
<thead>
<tr>
<th>C</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97.8</td>
<td>98.0</td>
<td>97.7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>167.8</td>
<td>166.2</td>
</tr>
<tr>
<td>3</td>
<td>141.7</td>
<td>141.7</td>
<td>141.6</td>
<td>104.1</td>
<td>103.9</td>
</tr>
<tr>
<td>4</td>
<td>105.5</td>
<td>105.5</td>
<td>105.7</td>
<td>184.2</td>
<td>184.0</td>
</tr>
<tr>
<td>5</td>
<td>46.2</td>
<td>46.3</td>
<td>46.2</td>
<td>162.3</td>
<td>162.0</td>
</tr>
<tr>
<td>6</td>
<td>82.8</td>
<td>82.8</td>
<td>82.8</td>
<td>95.6</td>
<td>95.2</td>
</tr>
<tr>
<td>7</td>
<td>132.5</td>
<td>132.4</td>
<td>130.2</td>
<td>164.6</td>
<td>164.9</td>
</tr>
<tr>
<td>8</td>
<td>142.9</td>
<td>142.9</td>
<td>148.0</td>
<td>110.0</td>
<td>109.1</td>
</tr>
<tr>
<td>9</td>
<td>48.5</td>
<td>48.5</td>
<td>47.9</td>
<td>158.8</td>
<td>158.7</td>
</tr>
<tr>
<td>10</td>
<td>63.8</td>
<td>63.6</td>
<td>62.6</td>
<td>105.6</td>
<td>105.2</td>
</tr>
<tr>
<td>1'</td>
<td>100.2</td>
<td>100.2</td>
<td>99.9</td>
<td>122.5</td>
<td>123.5</td>
</tr>
<tr>
<td>2'</td>
<td>74.9</td>
<td>74.9</td>
<td>74.9</td>
<td>133.0</td>
<td>114.1</td>
</tr>
<tr>
<td>3'</td>
<td>78.0</td>
<td>77.9</td>
<td>77.9</td>
<td>116.5</td>
<td>147.0</td>
</tr>
<tr>
<td>4'</td>
<td>71.5</td>
<td>71.4</td>
<td>71.5</td>
<td>164.4</td>
<td>151.0</td>
</tr>
<tr>
<td>5'</td>
<td>78.2</td>
<td>78.2</td>
<td>78.2</td>
<td>116.5</td>
<td>116.8</td>
</tr>
<tr>
<td>6'</td>
<td>62.7</td>
<td>62.7</td>
<td>61.4</td>
<td>133.0</td>
<td>120.3</td>
</tr>
<tr>
<td>1''</td>
<td>122.4</td>
<td>122.1</td>
<td>–</td>
<td>75.0</td>
<td>75.3</td>
</tr>
<tr>
<td>2''</td>
<td>113.6</td>
<td>132.9</td>
<td>–</td>
<td>71.5</td>
<td>71.8</td>
</tr>
<tr>
<td>3''</td>
<td>153.1</td>
<td>116.2</td>
<td>–</td>
<td>81.1</td>
<td>80.1</td>
</tr>
<tr>
<td>4''</td>
<td>148.8</td>
<td>163.6</td>
<td>–</td>
<td>71.1</td>
<td>72.6</td>
</tr>
<tr>
<td>5''</td>
<td>116.0</td>
<td>116.2</td>
<td>–</td>
<td>82.9</td>
<td>82.6</td>
</tr>
<tr>
<td>6''</td>
<td>125.2</td>
<td>132.9</td>
<td>–</td>
<td>62.8</td>
<td>62.9</td>
</tr>
<tr>
<td>OCH₃</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recorded at 100 MHz for ¹³C-NMR in CD₃OD.
Yellow powder (MeOH), 1H-NMR (400 MHz, CD3OD) δ: 7.93 (2H, d, J=8.8 Hz, H-2'), 6.83 (1H, s, H-3), 6.81 (2H, d, J=8.8 Hz, H-3'), 5.61 (1H, s, H-6), 4.67 (1H, d, J=9.1 Hz, H-1'). 13C-NMR (100 MHz, CD3OD) δ: Table I.

Orientin (5)

Yellow powder (MeOH), 1H-NMR (400 MHz, CD3OD) δ: 7.33 (1H, dd, J=8.8, 2.0 Hz, H-6'), 7.32 (1H, d, J=2.0 Hz, H-2'), 6.87 (1H, d, J=8.8 Hz, H-5'), 6.50 (1H, s, H-3), 6.44 (1H, s, H-6), 4.19 (1H, d, J=7.2 Hz, H-1'). 13C-NMR (100 MHz, CD3OD) δ: Table I.

3,4-Di-O-caffeoylquinic acid (6)

Yellow powder (MeOH), 1H-NMR (400 MHz, CD3OD) δ: 7.57 (1H, d, J=15.6 Hz, H-3'), 7.51 (1H, d, J=15.6 Hz, H-3'), 7.05 (1H, d, J=2.0 Hz, H-5'), 7.01 (1H, d, J=2.0 Hz, H-5), 6.92 (1H, dd, J=8.0, 2.0 Hz, H-9'), 6.87 (1H, dd, J=8.0, 2.0 Hz, H-9'), 6.76 (1H, d, J=8.0 Hz, H-8'), 6.75 (1H, d, J=8.0 Hz, H-8'), 6.29 (1H, d, J=15.6 Hz, H-2'), 6.24 (1H, d, J=15.6 Hz, H-2'), 5.62 (1H, m, H-3), 5.18 (1H, m, H-4), 4.15 (2H, m, H-5), 13C-NMR (100 MHz, CD3OD) δ: 181.8 (COO), 168.5 (C-1'), 168.4 (C-1'), 149.6 (C-7'), 149.5 (C-7'), 147.4 (C-3'), 147.2 (C-3'), 146.8 (C-6'), 146.7 (C-6'), 127.8 (C-4'), 127.7 (C-4'), 123.2 (C-9'), 123.1 (C-9'), 116.5 (C-8'), 116.4 (C-8'), 115.3 (C-5'), 115.2 (C-5'), 115.1 (C-2'), 114.9 (C-2'), 75.6 (C-1), 74.6 (C-4), 70.0 (C-5), 67.6 (C-3), 38.09 (C-2) and 38.05 (C-6).

DPPH radical scavenging effect

Ethanol solutions of test samples at various concentrations (0.1-100 μg/ml) were added to a solution of DPPH in methanol (0.2 mM) in 96 well plates. After storing these mixtures for 30 minutes at room temperature, the remaining amounts of DPPH were determined by colorimetry at 520 nm on a microplate reader (Yoshida et al., 2007). In briefly, test samples were mixed with 20 mM phosphate buffer (pH7.8) containing 0.48 mM NBT and 1.6 mM xanthine. After 5 min, xanthine oxidase (0.05 U/ml) 100 μl was added. The absorbance of reaction mixture was read at 570 nm after 30 min incubation at 37°C. DPPH radical scavenging activity was expressed by the degree of NBT reduction during light illumination, NBT was reduced to blue formazan for light storage box and replaced randomly placed in a light storage box and replaced randomly every 5 min for 15 min. The temperature within the light storage box was 20 ± 1°C during the illumination. The light intensity at the sample level was 5,500 lux. During the light illumination, NBT was reduced to blue formazane formation was measured by the absorbance at 560 nm. The inhibition of blue formazane formation was taken as superoxide quenching activity.

Xanthine and superoxide scavenging assay

Superoxide radicals were generated by xanthine/xanthine oxidase and measured by previously reported method (Thuong et al., 2007). In briefly, test samples were mixed with 20 mM phosphate buffer (pH7.8) containing 0.48 mM NBT and 1.6 mM xanthine. After 5 min, xanthine oxidase (0.05 U/ml) 100 μl was added. The absorbance of reaction mixture was read at 570 nm after 30 min incubation at 37°C. Superoxide radical scavenging activity was expressed by the degree of NBT reduction of a test group in comparison to that of control.

RESULTS AND DISCUSSION

In the course of our screening for antioxidative components from natural plants, the ethyl acetate soluble fraction of methanolic extract of the twigs of V. rotundifolia was found to show scavenging activity on DPPH radical (Fig. 2). Subsequent activity-guided fractionation of the ethyl acetate soluble fraction led to the isolation of three iridoid compounds, two C-glycoside flavones, and a quinic acid derivative (Fig. 1).

Compounds 1-3 have similar patterns in their NMR spectra. Compound 1 was obtained as an amorphous powder from MeOH. The 1H-NMR spectrum of 1 showed two doublet peaks at δ 6.34 (1H, dd, J=6.0, 2.0 Hz) and 5.11 (1H, dd, J=6.0, 4.3 Hz), which were assigned to protons at C-3 and C-4, a singlet peak at δ 5.83 (C-7), and a methoxy signal at δ 3.90 (3H, s). And also, the 1H-NMR spectrum of 1 showed the typical pattern of a coupling group of 1,3,4-trisubstituted benzene ring at δ 7.61 (1H, dd, J=8.4, 1.6 Hz, H-6'), 7.59 (1H, d, J=1.6 Hz, H-2') and 6.86 (1H, d, J=8.4 Hz, H-5'). In the 13C-NMR spectrum of 1, 22 carbon signals were observed, which included a carboxyl group at δ 167.8, ten aromatic or olefinic carbons at δ 141.7, 105.5, 132.5, 142.9, 122.4, 113.6, 153.1, 148.8, 116.0 and 125.2, six sugar carbons at δ 100.2, 74.9, 78.0, 71.5, 78.2 and 62.7, and a methoxy group at δ 34.3. From these results, compound 1 was deduced to be an iridoid glycoside bearing a 1,3,4-trisubstituted aromatic ring. The structure of 1 was determined to be 10-O-vanillyloxyacubin.
Antioxidative Compounds of *Vitex rotundifolia*

Fig. 1. Structures of compounds 1-6 isolated from *Vitex rotundifolia*.

Fig. 2. Radical scavenging effects on DPPH radical of the fractions from the twigs of *V. rotundifolia*.

(RR-1) on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Ono *et al.*, 1997).

The NMR spectrum of 2 was very similar to that of 1. The main differences were chemical shifts of aromatic ring and the absence of methoxy group. The $^1$H-NMR spectrum of 2 showed two ortho-coupled doublets each of two protons with a $J$ value of 8.8 Hz at $\delta$ 7.93 (2H, d, H-2', 6') and 6.81 (2H, d, H-3', 5'), indicating the presence of a 1,4-disubstituted aromatic ring, and two singlet protons at $\delta$ 6.83 and 6.41 (each 1H, s) were observed in olefinic area. In the $^{13}$C-NMR spectrum of 4, twenty one carbon signals were observed, which included a carbonyl carbon ($\delta$ 184.2, C-4), and six oxygenated aliphatic carbons ($\delta$ 82.9, 81.1, 75.0, 71.5, 71.1, and 62.8). From these results, compound 4 was deduced to be a flavonoid glycoside bearing a 1,4-disubstituted aromatic B-ring. The structure of 4 was determined to be vitexin on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Cheng *et al.*, 2007). The NMR spectrum of 5 was very similar to that of 4. The main differences were chemical shifts of aromatic B-ring. The $^1$H-NMR spectrum of 5 showed the typical pattern of a coupling group of 1,3,4-trisubstituted benzene ring at $\delta$ 7.33 (1H, dd, $J$=8.4, 1.6 Hz, H-6'), 7.32 (1H, d, $J$=1.6 Hz, H-2'). In the $^{13}$C-NMR spectrum, twenty one carbon signals were determined to be 10-O-p-hydroxybenzoylaucubin (agnuside) on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Ono *et al.*, 1997). The NMR spectrum of 3 was similar to that of 2 except for the absence of aromatic group. According to this result, compound 3 was deduced to be a simple iridoid glycoside. The structure of 3 was determined to be aucubin on the basis of the above evidence, together with a comparison of the above result with those published in the literature (El-Naggar and Beal, 1980).

Compounds 4 and 5 have similar patterns in their NMR spectra. Compounds 4 and 5 were obtained as an amorphous powder from MeOH. The $^1$H-NMR spectrum of 4 showed two ortho-coupled doublets each of two protons with a $J$ value of 8.8 Hz at $\delta$ 7.93 (2H, d, H-2', 6') and 6.81 (2H, d, H-3', 5'), indicating the presence of a 1,4-disubstituted aromatic ring, and two singlet protons at $\delta$ 6.83 and 6.41 (each 1H, s) were observed in olefinic area. In the $^{13}$C-NMR spectrum of 4, twenty one carbon signals were observed, which included a carbonyl carbon ($\delta$ 184.2, C-4), and six oxygenated aliphatic carbons ($\delta$ 82.9, 81.1, 75.0, 71.5, 71.1, and 62.8). From these results, compound 4 was deduced to be a flavonoid glycoside bearing a 1,4-disubstituted aromatic B-ring. The structure of 4 was determined to be vitexin on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Cheng *et al.*, 2007). The NMR spectrum of 5 was very similar to that of 4. The main differences were chemical shifts of aromatic B-ring. The $^1$H-NMR spectrum of 5 showed the typical pattern of a coupling group of 1,3,4-trisubstituted benzene ring at $\delta$ 7.33 (1H, dd, $J$=8.4, 1.6 Hz, H-6'), 7.32 (1H, d, $J$=1.6 Hz, H-2'). In the $^{13}$C-NMR spectrum, twenty one carbon signals were
observed, which included a carbonyl group at δ 184.0, and six oxygenated aliphatic carbons (δ 82.6, 80.1, 75.3, 72.6, 71.8, and 62.9). From these results, compound 5 was deduced to be a flavonoid glycoside bearing a 1,3,4-trisubstituted aromatic B-ring. The structure of 5 was determined to be orientin on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Hwang et al., 1994).

The 1H-NMR spectrum of 6 showed the typical pattern of two coupling groups of 1,3,4-trisubstituted benzene rings at δ 7.05 (1H, d, J=2.0 Hz, H-5’), 7.01 (1H, d, J=2.0 Hz, H-5”), 6.92 (1H, dd, J=8.0, 2.0 Hz, H-9’), 6.87 (1H, dd, J=8.0, 2.0 Hz, H-9”), 6.76 (1H, d, J=8.0 Hz, H-8’) and 6.75 (1H, d, J=8.0 Hz, H-8”), and two coupling groups of trans coupled olefinic protons at δ 7.57 (1H, d, J=15.6 Hz, H-3’), 7.51 (1H, d, J=15.6 Hz, H-3”), 6.29 (1H, d, J=15.6 Hz, H-2’) and 6.24 (1H, d, J=15.6 Hz, H-2”). In the 13C-NMR spectrum of 6, twenty five carbon signals were observed, which included three carbonyl groups at δ 181.8 (COO), 168.5 (C-1”) and 168.4 (C-1’), and six aliphatic carbons at δ 75.6 (C-1), 74.6 (C-4), 70.0 (C-5), 67.6 (C-3), 38.09 (C-2) and 38.05 (C-6). From these results, compound 6 was deduced to be a dihydroxyquinic acid bearing two caffeoyl moieties. The structure of 6 was determined to be 3,4-di-O-caffeoylquinic acid on the basis of the above evidences, together with a comparison of the above data with those published in the literature (Timmermann et al., 1983; Kim et al., 1999).

There has been interest in finding various pharmacological active constituents from the fruit of *V. rotundifolia*. Polymethoxyflavonoids have been studied the inhibitory effects on proliferation (You et al., 1998; Ko et al., 2000). It was reported that phenylmethane compounds isolated from this plant showed antibacterial activity against methicillin-resistant *Staphylococcus aureus* (Kawazoe et al., 2001).

The radical scavenging effects of six compounds obtained from *V. rotundifolia* were shown in Fig. 3. The positive control vitamin C showed the DPPH radical scavenging effect with the IC50 value of 6.1 μg/ml. Compounds 5 and 6 exhibited scavenging activities dose-dependently on DPPH with IC50 values of 10.8 and 9.9 μg/ml, respectively.
However, compounds 1-4 showed no activities in comparison with reference antioxidants such as ascorbic acid and BHA. Fig. 4 and 5 show the superoxide quenching activities of the isolated compounds 1-6, as measured by the riboflavin-NBT-light and xanthine-NBT-xanthine oxidase systems. Compounds 5 and 6 were found to be potent scavengers of superoxide radical generated in two systems. In riboflavin-NBT-light system, compounds 5 and 6 exhibited the formation of the blue formazan in a dose-dependent manner with IC_{50} values of 10.3 and 5.1 μg/ml, respectively (vitamin C, positive control, IC_{50} value, 39.7 μg/ml) (Fig. 4). In xanthine-NBT-xanthine oxidase system, compounds 5 and 6 also exhibited the formation of the blue formazan in a dose-dependent manner with IC_{50} values of 3.2 and 3.0 μg/ml, respectively (vitamin C, positive control, IC_{50} value, 9.9 μg/ml) (Fig. 5). Superoxide quenching activities of compounds 5 and 6 more pronounced than vitamin C, used as a positive control.

Free radicals are highly reactive molecules with an unpaired electron and are produced by radiation or as by-products of metabolic processes (Devi et al., 2008). Superoxide radical is known to be very harmful to cellular components as a precursor of more reactive oxygen species (Kumaran and Karunakaran, 2006). The results from free radical scavenging systems revealed that the ethyl acetate soluble fraction of the twigs of V. rotundifolia, and compounds 5 and 6 had significant antioxidant activities. Therefore compounds 5 and 6 may be useful for the treatment of various oxidative damage.

ACKNOWLEDGMENTS

This work was supported by Woosuk University (2009).

REFERENCES


