Improving Effect of Silk Peptides on the Cognitive Function of Rats with Aging Brain Facilitated by D-Galactose

Dongsun Park1,a, Sun Hee Lee1,a, Young Jin Choi1, Dae-Kwon Bae1, Yun-Hui Yang1, Goeun Yang1, Tae Kyun Kim1, Sungho Yeon2, Seock-Yeon Hwang3, Seong Soo Joo4,* and Yun-Bae Kim1,*

1College of Veterinary Medicine, 2Department of Food Science and Technology, Chungbuk National University, Chungbuk 361-763, 3Department of Biomedical Laboratory Science, Daejeon University, Daejeon 300-716, 4Division of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangwon 210-702, Republic of Korea

Abstract

In order to develop silk peptide (SP) preparations possessing cognition-enhancing effect, several candidates were screened through in vitro assays, and their effectiveness was investigated in facilitated brain aging model rats. Incubation of brain acetylcholinesterase with SP-PN (1-1,000 μg/ml) led to inhibition of the enzyme activity up to 35%, in contrast to a negligible effect of SP-NN. The expression of choline acetyltransferase (ChAT) mRNA of neural stem cells expressing ChAT gene (F3.ChAT) was increased by 24-hour treatment with 10 and 100 μg/ml SP-NN (1.35 and 2.20 folds) and SP-PN (2.40 and 1.34 folds). Four-week subcutaneous injections with D-galactose (150 mg/kg) increased activated hippocampal astrocytes to 1.7 folds (a marker of brain injury and aging), decreased acetylcholine concentration in cerebrospinal fluid by 45-50%, and thereby impaired learning and memory function in passive avoidance and water-maze performances. Oral treatment with SP preparations (50 or 300 mg/kg) for 5 weeks from 1 week prior to D-galactose injection exerted recovering activities on acetylcholine depletion and brain injury/aging as well as cognitive deficit induced by D-galactose. The results indicate that SP preparations restore cognitive functions of facilitated brain aging model rats by increasing the release of acetylcholine, in addition to neuroprotective activity.

Key Words: Brain aging, D-Galactose, Cognitive function, Learning and memory, Silk peptides, Choline acetyltransferase
inflammatory brain injury through activation and degeneration of astrocytes, but also causes cognitive deficits by activating acetylcholinesterase (AChE), an ACh-degrading enzyme (Cui et al., 2006; Lee et al., 2008; Lee et al., 2007b). Accordingly, in the present study, we adopted D-Gal as a model compound for facilitated brain aging.

To date, AD therapy is largely based on compounds to increase ACh concentration, including AChE inhibitors, ACh precursors and cholinergic receptor agonists (Terry and Buccafusco, 2003; Musial et al., 2007). It was also demonstrated that choline-uptake enhancers were effective for improvement of cognitive function (Terry and Buccafusco, 2003; Bessho et al., 2008; Takashina et al., 2008). Furthermore, enhancers of ChAT mRNA expression recovered impaired learning and memory function (Wang et al., 2000; Egashira et al., 2003; Karakida et al., 2007). In our studies, it was found that transplantation of stem cells encoding ChAT gene markedly recovered cognitive function of animal models of AD and aging (unpublished results).

Silks from silkworm (Bombyx mori) are composed of 2 major peptides, sericin and fibroin (Lee et al., 2003), which are well known to have pharmacological activities including anti-diabetic effect (Park et al., 2002; Lee et al., 2007). Hydrolysis of silk proteins leads to different sizes of peptide, while enzymatic degradation results in specific sizes or compositions of silk peptides (SP) exerting diverse bioactivities including anti-diabetic, hypcholesterolemic and antioxidative actions (Kato et al., 1998; Lee et al., 2002; 2007; Zhaozigetu et al., 2003; Kim et al., 2008). Furthermore, silk amino acids (SAA) enhanced physical stamina by preventing tissues from oxidative injures (Shin et al., 2009a; 2009b). Interestingly, it was reported that silkworm extract inhibited monoamine oxidase-B (MAO-B), a dopamine-degrading enzyme (Kang et al., 2006, 2010), and that SAA improved Parkinson disease (PD) via dopaminergic neuroprotection (Park et al., 2010). Especially, brain factor-7 (BF-7), a peptide obtained by enzymatic degradation of silk proteins, was found to increase cognitive function in both animal and human (Lee et al., 2005; Kim et al., 2009).

In order to develop SP preparations possessing cognition-enhancing effect, we obtained several SPs by treating silk proteins with various enzymes, and selected SP-NN and SP-PN based on their activities on AChE inhibition and ChAT mRNA expression in vitro. In vivo cognition-improving effects of SP-NN and SP-PN were investigated through passive avoidance and Morris water-maze performances in rats with aging brain facilitated by repeated administration of D-Gal.

MATERIALS AND METHODS

Peptides

Silk peptide-NN (SP-NN; World Way code: SPF-B6) and SP-PN (World Way code: SPF-B5) were prepared by 12-hour incubation with Protease N (150,000 U/g; Amano G from Aspergillus melleus) plus Neutrase (160,000 U/g; Bacillus amyloliquefaciens) and Protease P (60,000 U/g; Amino G G from Bacillus subtilis) plus Neutralase (180,000 U/g; Bacillus amyloliquefaciens) and Neutralase P (60,000 U/g; Amino G G from Aspergillus melleus) plus Neutrase, respectively. In brief, cocoon was dissolved at 115°C for 6 hours in CaCl2 solution, and sterilized at 90°C for 30 min. After cooling to 50°C, the proteins were degraded with the above enzymes at pH 5.8, and autoclaved at 90°C for 30 min to inactivate the enzymes. GPC-RI analyses revealed that peak molecular weights of SP-NN and SP-PN were 962 and 886, respectively (Fig. 1). Freeze-dried SP-NN and SP-PN were obtained from Worldway Co., Ltd. (Jeonju, Korea).

Animals

Five-week-old male Sprague-Dawley rats were procured from the Daehan-Biolink (Eumseong, Korea). The animals (n=10/group) were maintained at a constant temperature (23 ± 2°C), relative humidity of 55 ± 10%, and 12-hour light/dark cycle. The animals were fed with standard rodent chow and purified water ad libitum. All experimental procedures were approved and carried out in accordance with the Institutional Animal Care and Use Committee of Laboratory Animal Research Center at Chungbuk National University, Korea.

Acetylcholinesterase assay

Rat brain was quickly removed after transcardial perfusion with cold saline under anesthesia and homogenized in 19 volumes of cold phosphate-buffered saline (PBS; 100 mM NaCl and 100 mM sodium phosphate, pH 7.8) to prepare the 5% homogenate. Assay for cholinesterase activity was performed at 25°C by a slight modification of the method of Ellman et al. (1961). Briefly, assay mixture (3.0 ml PBS) contained 1.5 mM acetylcholine iodide, 1.0 mM 5.5'-dithiobis-(2-nitrobenzoic acid). Fifty μl SP preparations (1-1,000 μg/ml) and brain homogenate (50 μl) were added to the assay mixture, and the change in absorbance at 412 nm during 5 min was monitored (Kim et al., 1998). The relative enzyme activity (inhibited by SP preparations) was calculated based on the absorbance change (full activity: 100%) of assay mixture containing 50 μl PBS without SP.

Expression of ChAT mRNA

For the evaluation of the effects of SP preparations on neuronal ChAT mRNA expression, human neural stem cells encoding ChAT gene (F3.ChAT) were used (Kim, 2004; Matsuo et al., 2005; Lee et al., 2007a). F3.ChAT cells (1×10⁶ cells/ml) were incubated with 10 or 100 μg/ml of SP-NN or SP-PN at 37°C for 24 hours in a 5% CO₂ incubator. For reverse...
transcriptase-polymerase chain reaction (RT-PCR) analysis of ChAT mRNA expression, total RNA was extracted from F3,ChAT cultures using the Trizol method (Invitrogen, USA). Complimentary DNA templates from each sample were prepared from 1 μg of total RNA primed with oligo dT primers using 400 U of Moloney Murine Leukemia Virus reverse transcriptase (Promega, Madison, USA) followed by 30 PCR cycles, and RT-PCR products were separated electrophoretically on 1.2% agarose gel containing ethidium bromide and visualized under UV light. The primers used for the RT-PCR of ChAT are as follows:

ChAT Forward: 5'-GACGCTGACACTTACAGAAT-3'
ChAT Reverse: 5'-CTCTGACCTGTCAGAAGAAT-3'

Analysis of ACh in CSF

By puncturing atlantooccipital membrane after sacrifice of rats with deep ether anesthesia, CSF was collected carefully not to be contaminated with blood (Kim et al., 1999). ACh concentration in CSF was measured with an Amplex Red Acetylcholine/Acetylcholinesterase Assay Kit (Molecular Probes, Eugene, USA) according to the manufacturer’s instructions. In this assay, ACh is hydrolyzed by AChE to release choline, which is then oxidized by choline oxidase to betaine and H₂O₂. H₂O₂ interacts with Amplex Red (7-dihydroxyphenoxazine) in the presence of horseradish peroxidase to generate the highly-fluorescent resoruﬁn. The resulting ﬂuorescence was measured in a fluorescence microplate reader (Bio-Tek Fx800; Bio-Tek Instruments Inc., Winooski, USA) using excitation in the range of 530-560 nm and emission at -590nm.

Evaluation of brain injury/aging

At the end of behavioral testing, each animal was sacrificed under deep anesthesia, and transcardially perfused with cold saline, followed by post-ﬁxation in neutral formalin solution for 48 hours and in 30% sucrose for additional 72 hours. Coronal sections at -3.80 mm distal from bregma, exhibiting full hippocampal formations (CA1-C4 and dentate gyrus), were cut at a thickness of 30 μm with a cryomicrotome.

To demonstrate activated astrocytes as a marker of brain injury and aging, immunohistochemical staining to glial fibrillary acidic proteins (GFAP), a cytoskeletal protein of astrocytes, was performed. Brain sections were incubated overnight at 4°C with rabbit polyclonal antibody (1:200; Chemicon, Temecula, USA). The sections were rinsed with PBS and incubated with biotinylated goat anti-rabbit antibody (1:150; Vector, Burlingame, USA) for 1 hour at room temperature, followed by incubation for 1 hour with avidin-biotin-peroxidase complex (ABC Elite Kit, Burlingame, USA). The reaction product was visualized by catalysis of diamobenzidine, and counterstained with hematoxylin. Activated astrocytes in the 3 hippocampal regions (mean numbers in CA1, CA2 and CA3) were counted under the field of ×400 of a light microscope.

Results

Approved AD therapeutics for the improvement of cognitive function are principally AChE inhibitors, we measured the direct AChE-inhibitory potential of SP preparations. SP-NN (1-1,000 μg/ml) exerted a moderate inhibitory activity (15-20%) on brain AChE, although the inhibition rate reached approximately 35% at 320 μg/ml, while the AChE-inhibitory effect of SP-PN was negligible (Fig. 2).

To evaluate the stimulating potential of SP preparations on ACh synthesis, we analyzed ChAT mRNA expression in neural stem cells encoding ChAT gene. Twenty-four-hour treatment with SP-NN facilitated ChAT mRNA expression of F3,ChAT cells to 1.35 and 2.40 folds of vehicle control at 10 μg/ml and 100 μg/ml, respectively (Fig. 3). A low concentration (10 μg/ml) of SP-PN also remarkably enhanced (2.20 folds) the ChAT mRNA expression, while a high concentration (100 μg/ml) increased only 1.34 times the control level.

After confirmation of in vitro activities, in vivo cognition-enhancing effects of SP preparations were investigated in an aging-facilitated memory deficit model. Four-week subcutaneous injection of α-Gal (150 mg/kg) led to profound impairment

Statistical analysis

The results are presented as mean±standard deviation. The significance of differences of all results was analyzed by one-way analysis of variance followed by the Tukey’s test correction. Statistical significance was set a priori at p<0.05.

Results

...
of cognitive tasks in both passive avoidance and Morris water-maze tests (Fig. 4). In the passive avoidance performances, SP-NN significantly improved the memory acquisition in a dose-dependent manner (Fig. 4A). Maintenance of the acquired memory was confirmed via an additional trial performed 1 week later to evaluate memory retention. Such improving effects of SP-NN on memory acquisition and retention were also achieved in the water-maze performances (Fig. 4B). In addition, SP-PN exerted cognition-improving activities in both learning and memory tests, which were comparable to those of SP-NN.

To confirm the relationship between memory deficit and the decrease in ACh release, we analyzed ACh concentration. Repeated administration of \(\gamma \)-Gal decreased ACh concentration in CSF by 45-50% (Fig. 5), which was significantly reversed by SP-NN (50 and 300 mg/kg). Notably, a high dose (300 mg/kg) of SP-PN near-fully recovered ACh concentration to normal control level, although a low dose (50 mg/kg) of SP-PN was ineffective.

Next, we examined astrocytic response by staining GFAP which has been used as a specific marker of brain injury and aging. GFAP immunostaining revealed that activated hippocampal astrocytes increased to 1.7 times the control level (Fig. 6A and 7) following 4-week injection of \(\gamma \)-Gal (Fig. 6B and 7). The \(\gamma \)-Gal-induced increase in activated astrocytes were markedly attenuated by both doses (50 and 300 mg/kg) of SP-NN (Fig. 6C and Fig. 7). SP-PN also exerted remarkable suppressive activities on the astrocyte activation related to brain aging, similar to SP-NN (Fig. 6D and Fig. 7).

Fig. 2. Inhibition of rat brain acetylcholinesterase (AChE) by SP-NN (▼) and SP-PN (■) (n=6). The control (100%) activity means the absorbance change of assay mixture containing vehicle without SP preparations.

Fig. 3. Facilitation of choline acetyltransferase (ChAT) mRNA expression in F3.ChAT neural stem cells by SP-NN and SP-PN (n=6). Grey: 10 \(\mu \)g/ml, Black: 100 \(\mu \)g/ml. *p<0.05 vs. vehicle control.

Fig. 4. Effects of SP-NN and SP-PN on the passive avoidance (A) and water-maze (B) performances of \(\gamma \)-galactose (\(\gamma \)-Gal)-induced aging model rats. Memory acquisition was evaluated through 4 daily trials (trials 1-4) (n=10), and 5th trial was performed 1 week after the 4th acquisition trial to assess memory retention (n=4). ○: Vehicle control, ●: \(\gamma \)-Gal alone, ▼: \(\gamma \)-Gal+50 mg/kg SP-NN, ▲: \(\gamma \)-Gal+300 mg/kg SP-NN, ■: \(\gamma \)-Gal+50 mg/kg SP-PN, ■: \(\gamma \)-Gal+300 mg/kg SP-PN. *p<0.05 vs. vehicle control. *p<0.05 vs. \(\gamma \)-Gal alone.
DISCUSSION

Cognitive function is composed of acquisition (learning) of information and retention of acquired memory. Acquired memory is preserved only for a short time called short-term memory, which is formed by ACh in cholinergic nervous system. Long-term memory is produced through the consolidation of acquired information during long-term potentiation of glutamergic nervous system mediated by nitric oxide (NO), which is produced by NO synthase following activation of N-methyl-D-aspartate receptors (Terry and Buccafusco, 2003; Musial et al., 2007). Therefore, AD patients and aging are characterized by cognitive deficit resulting from deterioration of cholinergic system. Accordingly, recent standard treatment of dementia have been focused on increasing ACh concentration by inhibiting AChE to enhance memory acquisition (Terry and Buccafusco, 2003; Musial et al., 2007).

In animal models of AD, i.e., β-amyloid protein-expressing transgenic and AF64A-injected mice, 25-30% decrease in brain ACh resulted in severe impairment of learning and memory function (Yamazaki et al., 1991; Abe et al., 1993; Tsai et al., 2007; Bessho et al., 2008). During aging, brain atrophy and malfunction of cholinergic nervous system occur, leading to cognitive deficit. Facilitated brain aging by only 4-week injection of β-Gal (150 mg/kg) caused reduction of ACh concentration in CSF to lower than 55% of control level, brain damage/aging (increase in activated astrocytes to 1.7 times), and severe learning and memory dysfunction (Cui et al., 2006; Lei et al., 2008; Kumar et al., 2010).

Although it has been known that silkworm and SP improve diabetes and lipid metabolism, protective effects of SAA against tissue injury were observed in a forced swimming stress model (Shin et al., 2009a; 2009b). Especially, SAA exerted in vitro and in vivo neuroprotective effects on 6-hydroxydopamine-induced dopaminergic neurotoxicity, and thereby improved movement functions of PD animals (Park et al., 2010). In the present study, it was also confirmed that SP preparations inhibit GFAP production in astrocytes, a marker of brain injury and aging, in β-Gal-facilitated aging model rats.

In addition to a direct cytoprotective activity, it was reported that an extract of silkworm prevented reduction of dopamine concentration by inhibiting MAO-B in 1-methyl-4-

![Fig. 5. Effects of SP-NN and SP-PN on the acetylcholine concentration in cerebrospinal fluid of β-galactose (β-Gal)-induced aging model rats (n=6). White, 50 mg/kg; grey, 300 mg/kg. *p<0.05 vs. vehicle control, †p<0.05 vs. β-Gal alone.](image)

![Fig. 6. Representative microscopic findings of gial fibrillary acidic protein-positive (brown-stained) astrocytes (arrows) in hippocampal CA1 region of β-galactose-induced aging model rats (n=6). (A) vehicle control, (B) β-Gal alone, (C) β-Gal+300 mg/kg SP-NN, (D) β-Gal+300 mg/kg SP-PN. Scale bar=50 μm.](image)
phenyl-1,2,3,6-tetrahydropyridine-induced PD animals (Kang et al., 2006; 2010). In the present study, it was observed that SP-NN and SP-PN, degradation products of silk proteins by Neutrase and Protease N or P, facilitated expression of ChAT gene in neurons. Such a ChAT expression-stimulating effect of SP preparations might be associated with the marked ACh recovery in the brain and improvement of cognitive function, as a similar effect achieved with Onji (Egashira et al., 2003; Karakida et al., 2007).

In spite of the different inhibitory effects on AChE activity, SP-NN and SP-PN greatly enhanced the expression of ChAT mRNA in vitro and increased ACh concentration in vivo. The SP preparations also suppressed astrocytic activation following brain aging, in parallel with neuroprotective efficacy of SAA in PD models (Park et al., 2010). Therefore, it is suggested that SP-NN and SP-PN improve cognitive function of aging model animals by increasing ACh production as well as by protecting host cells against aging process.

ACKNOWLEDGMENTS

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094035).

REFERENCES

