Brassinosteroid의 대사공학

이미옥 · 송기홍 · 이현경 · 장지은 · 최빛나리 · 최성환
서울대학교 자연과학대학 생명과학부

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways

LEE, Mi-Ock · SONG, Ki-Hong · LEE, Hyun-Kyung · JUNG, Ji-Yoon · CHOE, Vit-Nary · CHOE, *Sungwha
School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-747, Korea

ABSTRACT Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas br1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were shown to be blocked in Dβ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant brt1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the brt1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

Key words: Arabidopsis, cytochrome P450, dwarf, phytosterols, steroid hormones

브라시노 스테로이드 연구 약사


생합성 경로

BR의 생합성 경로는 비교적 잘 알려져 있다. BR의 생합성 과정은 최종 산물인 BL을 다양 생산하는 세포주로 알려진 일일초의 V208 라인을 이용해 주로 이루어졌다. 이 세포주에 투여된 동위원소 표시 중간대사가물이 어떻게 전환되기를 추적하는 방식이 사용되었다 (Fujikawa et al. 1995). BL은 스쿠알렌을 전구체로 하여 약 25단계의 효소반응을 거쳐 후 최종 산물로 만들어진다 (Figure 1).

BR은 테르민의 화합물로서 탄소수가 30여개인 triterpenoid에 속한다. famesyl diphosphate (15C)가 두 개 중합되어 생성되는 squalene에 squalene oxidase에 의해 oxidosqualene으로 변형된다. 스테로이드 생합성 과정의 첫 번째 주 목표적인 분자는 식물과 다른 생명체에서 서로 다른 squalene

---

Figure 1. 브라시노라이다의 생합성 경로, 생합성 경로는 크게 세포 주경로와 브라시노스테로이드 경로로 나뉘었다. 분지 되는 세포 경로와 주요 효소 반응은 각각의 상자에 각각 표시하였다. 효소 반응 중 해당하는 몇몇 변이체가 있는 경우 굵은 글씨체로 이름을 붙여 놓았다. 오른쪽 하단부의 상자 안에는 스테로이드를 구성하는 탄소 원자와 번호를 매겨 놓은 것이다.
cyclase에 의해 촉매된다. Oxidosqualene은 석유와 조류에서는 cycloartenol로 변환되지만 호모와 동물에서는 lanosterol로 진
행하여 스패를 합성한다. 일부 방향을 거친 스패
롤은 24-methyleneolopenol까지 도달하며 28번 탄소에 methylation이 되어 29개의 탄소를 갖는 C29 경로가 성립된다.
이렇게 하여 식물의 세포막에 존재하는 C29 스패를 매틀의 stig-
masteryl과 sitosterol, 그리고 추가적인 methylation 없이 생성
되는 28개 스패의 Compstatin이다.

BR는 이와 같은 스패를 전구체에 추가적인 산화와 환원반
응이 일어나면서 생성된다. 먼저 campesterol은 성형에 따라
두 번 중 하나의 반응이 일어난다. 먼저, 5번 이중결합이 완
원되어 단일 결합으로 만들어지는 반응이 일어나 campestanol
이 형성되는 것이 있고 또 하나의 campesterol의 22번의 탄
소에 hydroxylation이 먼저 일어나는 반응 경로이다. 전자의
반응을 ”late C22 hydroxylation 경로”, 후자를 ”early C22 hydroxylation 경로”라고 부른다. late C22 hydroxylation 반응의
결과 생성되는 campestanol은 다시 21번 탄소의 산화가 일어나
는 선후에 따라 다시 “early C6 oxidation 경로”와 ”late C6 oxidation 경로”로 나뉘는 분자가 일어난다. early C6 oxidation 경로를 따르게 되면 campesterol은 6번 주가 hydroxylation
된 다음 ketone 그룹으로 산화되어 6-oxocampestanol이 만들
어진다. 한편 late C6 oxidation 경로를 거쳐 변형된 campestanol은 22번 탄소로 먼저 산화되어 6-Deoxycastasterone로 변형된
다. BR의 생성성 경로는 순서대로, C22번과 C23번의
hydroxylation, 3번 탄소에 결합이 있는 6-oxycampestanol의 산화
이 일어나며 BL가 생성된다.

또한 BR의 생성성 경로는 아직 완성되지 않았고 보기는 어렵다. 현재 하나의 천지산물을 생성하는 경로의 중
간 대사 산물이거나 결합이 가진ogens의 BR의 것과는 다른 호모
BL 등의 유사체를 포함하고 있다. BR는 석유와의 칼럼에 존재하며, 현재까지 조사된 모든 종의 석유에서 BR가 검출
되었다(Fujitaka and Sakurata 1997). BR 즉, 5조에 대한 중간
성분에 대해서는 생성성 경로의 최종 산물이라 할 수 있는 BR
가 생성되지 않고 마지막 단계가 21번 castasterone가지만 생성
되는 석유가 있다(Yokota et al. 1991).

BL의 생성성 경로는 아직 완성되지 않았고 보기는 어렵다. 현
제 하나의 호소 반응으로 보이는 단계가 석유 하나 이상의
복합적인 반응 단계일 수 있으며, 또한 early 및 late C6
oxidation 경로 외에도 각각의 종복 반응 단계가 다시 거미
줄처럼 서로 연결될 가능성이 매우 높다 하겠다. 보다 완성
도 높은 생성성 경로는 추가적인 생화학적 및 유전학적 연구
결과에 크게 의존한다고 할 수 있다.

생성성 동반 변이체

BR 생성성 및 신호 전달 동반 변이체는 애기종대의 경우
매우 특징적인 난생이 표현형을 보인다. BR 난생이들은 한결
같이 애기종에 비해 그 규모가 20~30% 정도로 불과하며, 앞
편의 난세로 따라 모양은 타원형보다는 원형에 가깝다. 난생이
표현형의 정도가 상대적으로 약한 동반 변이체는 색상이나
모양을 수도 있지만 한 정도가 심한 경우에는 수술대가 암술대의 길
이만으로 동일하게 자라지 않는 등의 이유로 열매를 못 못하
다(2 Figure). 난생이 표현형은 애기종에서 자랄 때도 나타난다.

애기종의 유식물로 애기종에서는 키우게 되면 하바축이 길어지고,
누소등은 짧아지고 애기종의 애기종과는 달리, 애기종의 애기종
모양의 정상적 구조도 발달할 수 없다(Choe et al. 1998). 이
한 애기종발생적 특징 때문에 BR 난생이들은 총신호 전달 단
단변체로 간주하기도 한다. 하지만 BR가 애기종발생을 역
제하는 유전자 신호를 하는 논란의 여지가 많아 남아 있다.

난생이 동반 변이체는 애기종에서 애기종 발생의 일중 특정적
표현형 보이지만, 이 동반 변이체는 애기종에서 애기종 발
발시킨다고 볼 수 있다(Azpiroz et al. 1998). 또한 BR를 검출할 때
하바감이 길어나지만 정상적인 감리모양이 존재되지
않고 먹이의 잡자루가 더 길어지면서 더욱 심하게 열리게 된다.

세로에서는 BR은 동물의 결합 육체 발생에서 길이여름 등
의 부분을 담당하는 하바로부터 보이는 것과는 하지만 이들 형
태 발생에 있어서는 BR의 작용에 더하여 다른 호르몬들과의
관계에서 보이는 형페라의 현상이 더 중요한 것을 간과
해버리는 안 될 것이다.

생성성 경로에서 난생이 표현형을 보이는 동반 변이체들은
순서대로 dwaterf7, dwaterf7, dwaterf7, dwaterf7, dwaterf7, de-etiolated22h6f, dwaterf7, dwaterf7가 있다. 이들은 각각 C5 desaturation, C7 reduction, C24 reduction, C4 reduction, C22 hydroxylation, 그리고 C23 hydroxylation 단계에 결합이 있다(Choe et al. 1998; Choe et al. 1999a; Choe et al. 1999b; Li et al. 1996; Choe et al. 2000; Szekeres et al. 1996). 이들 단계 중 DWF4가 결합하는 C22 hydroxylation은 생화학의 각도 조절 단계로 알려졌다. 일
임초의 V208 리본을 이용해 수행한 실험에 의하면 DWF4 단
계 형성의 중간단계물질 9-Oxocastasteron은 Cathasterone에
비해 500배 이상 속도력으로 생성 활성을 잃는 반면로 Catha-
sterone이 6-Oxocastasterone보다 현저히 높은 것으로 밝혀
었다(Fujitaka et al. 1993). 애기종대의 경우 DWF4 유전자 발현
정도는 극히 미미하여 일반적인 Northern 실험으로는 그 발현
을 쉽게 조절할 수 없고 보다 민감한 실험 방법인 RT-PCR
분석에 의해 발현을 측정할 수 있었다. 이 DWF4 유전자를 과
다발협 시험 실험전환 식물체는 마치 BR를 처리한 식물과
같은 표현형을 보이는 것이 관찰되었다. 하지만, 홍미로운 것은 내재 BL의 양에 있어서는 DWF4 과 다반한 식물이 아형성의 경우 보다 낮다는 것이다 (Choe et al. 2001).

신호 전달에 결합이 있는 돌연 변이체들은 생합성 난쟁이 들과 그 표현형이 동일하지만 BR에 의해 그 표현형이 복구되지 않는다. 즉, BR를 처리하지 않아도 이를 인식하거나 신호를 전달하는 데 결합이 있어 아형성을 복구되지 않는다는. 신호전달 돌연 변이체로는 brassinosteroid-insensitive 1 (bri1)/dbsf2가 있다. bri1는 조사 결과 다양성 BL을 촉발하고 있음을 확인하였다 (Noguchi et al. 1999). 이러한 결과에 비춰 볼 때 bri1은 응성 되먹임 장치가 신호 전달에 맞물려 있어 정상적으로 작동하고 있지 않을을 추정할 수 있다.

Cytochrome P450

인 지배유전이나 호흡산의 생성 등 - 을 매개하는 데 있다. 비A형의 경우는 그 기전이나 대사 과정이 동물 등이의 다른 생명에서도 발견되는 평범한 효소 반응을 촉매 하는 데 관여하는 것을 파악할 수 있다 (Durszt and Nelson 1995).

Cytochrome P450는 420 nm 파광대의 빛을 흡수하게 되며 작업적, 450 nm 파광대의 빛을 흡수하게 되며 이에 주로 약물이 가과도 연속적, 450 nm 파광대의 빛을 흡수하게 되며 이에 이로 인해 작용한다. Cytochrome P450는 여
러 가지 생화학적 반응을 매개하지만 가장 주목받는 것은 hydroxylation 반응이라 할 수 있다. BR 생합성에 관여하는 것
으로 알려진 Cytochrome P450로는 CYP1, CYP90B1
(DWF4), CYP90A1 (CPD), CYP85 등이 있는데 이들은 모두 비A형으로 분류되며 CYP1이 탈메틸 반응에 관여하는 것
을 촉매하는 CYP90B, CYP90A, CYP85는 각각 C22, C23, C6
hydroxylation을 매개하는 전형적인 P450라고 할 수 있다. 생합
성 전형에서 해석 마지막 단계를 포함하여 그 유전자설계가 변화하기에 많은 단계들이 많이 있는데 이들 중에 추가적으로
비A형의 cytochrome P450 유전자 발전의 확률은 비교적 높다고 할 수 있다.
유전자 조작을 통한 BR의 대량 생산

유전자 조작을 통해 BR을 대량 생산할 수 있는 한 가지 방법은, 속도 조정 단계의 유전자인 DWF4를 강력한 프로모터에 결합시키켜 그 발현 정도를 대량으로 옮겨 산성성 경로의 flux을 높이는 것이다. 실제로 DWF4 과다발현 식물체는 DWF4이후의 중간 대사 산물을 많이 현저히 증가하는 것을 보여주어 경로의 flux가 증가하고 있음을 확인하였다 (Choe et al. 2001). 그러나 생리적인 변화가 가장 높은 최종 산물인 BL은 건조 기온하도 최소치보다 낮았다. 이는 환경이 높은 BL가 대량으로 만들어지면서 사용된 후 빠른 속도로 폐기될 수 있음을 추론할 수 있다. 현재 BR의 분해에 관여하는 효소로는 특히 비A형 cytochrome P450인 CYP72 (BAS1)를 들 수 있다. 이 효소는 C25를 hydroxylation 시켜 분해를 유도하는 것으로 알려져 있다 (Neff et al. 1999). 그렇다면 BL가 정상적으로 사용되지 않는 경우에는 BR이 축적될 수 있을 것으로 생각할 수 있는데, 이는 신호 전달 돌연변이체일 것이다. 실제로 BR을 인식하거나 해내시 신호 전달을 하는 과정에 결함이 있는 BRI1의 경우는 BR에 대한 축적하고 있음을 확인하였다.

현재 가능한 BR의 대량 생산 모델로는 BR를 사용하지 못하는 신호전달 돌연변이체에 대체 가역적으로 DWF4등의 생산성 관련 유전자를 과다 발현시키는 것을 실현할 수 있을 것이라고 한다. 여기에 BR의 분해에 관여하는 BAS1 유전자에 기능 또한 상실된 BR의 생산량을 억제할 수 있을 것으로 생각된다. 현재, 앞으로는 아직 알려져 있는 DWF4 단백질 수준의 개선, 예를 들면 활성 부위의 발전과 개선, allosteric regulation 기작의 규명과 단백질 공학 이용한 효율 증진을 통해 BR의 생산을 극대화시킬 수 있음이 생각된다.

결론 및 전망

BR를 농업적으로 살포한 후 작물 조사한 결과에 보이면 BR의 작물 생산성 제고하는 데 크게 기여할 수 있을음을 볼 수 있다 (문헌). 가령, BR를 비록 처리하면 비가 면역을 극복하는 데 기여하고 이행수의 증가를 유도하였다. 토양의 경우에서도 허리에 큰 크기를 증가시킬 뿐 아니라 모양과 빈도를 개선하여 생산가치를 증가시키는 것을 알 수 있었다. 또한, 중파의 스테로이드와는 사물의 채내에 투입될 경우 스테로이드를 흡수하여 적색의 괴지증 증상이 보이는 것에 알 수 있었다 (Miettinen et al. 1990). 그리고 조정용으로 쓰이는 많은 종류의 스테로이드에 작용물이 식물의 스테로이드를 원료로 해서 만들어지고 있다. 따라서 대량의 조작 방법으로 식물 스테로이드의 생산을 극대화할 경우, 이 신체의 산업적 이용 가능성은 무궁무진하다고 할 수 있을 것이다.


