Micropropagation of an Endangered Species, *Stellera rosea* Nakai by Tissue Culture

Mu-Seok Han¹, Heung-Kyu Moon¹, Young-Jae Kang, Won-Woo Kim, Byung-Seo Kang, Kwang-Ok Byun

Warm-temperate Forest Research Center, Korea Forest Research Institute, Seogwipo 697-050, Korea
¹Division of Biotechnology, Korea Forest Research Institute, Suwon 441-350, Korea

ABSTRACT In order to develop an efficient micropropagation technique for an endangered species, *Stellera rosea* N., stem node cultures were conducted on MS medium supplemented with cytokinins. Generally, BA was better than zeatin on shoot proliferation from stem nodes, whereas zeatin showed more effective on shoot elongation. In *vitro* rooting of shoots was achieved by application of an auxin pre-culturing method. Overall rooting rate was relatively low and differed depending on the culture period. Pre-culturing of shoots for 15 days at 1.0 mg/L IBA revealed a slightly better rooting efficiency reaching 30% rooting rate than NAA. Root induction rate by NAA also varied with concentration of NAA and culture periods. Total 51% of the rooted plantlets survived on artificial soil mixture and grew normally without any distinct morphological variation. The results suggest that the endangered *Stellera* plants are propagated via *in vitro* culture system, but still need to more study for the improvement of rooting and acclimatization of the plantlets in soil.

Key words: Shoot proliferation and rooting, auxin pre-culturing for rooting, plantlets production

서 론

피뿌리풀 (*Stellera rosea* N.)은 산拿나무과에 속하는 다년생 초본으로서 뿌리의 색이 사람의 혈액 색과 같다고 하여 이 름이 붙여졌으며, 크기가 30~40 cm에 달하고 봄은 5~6월에 원줄기의 끝에 15~22개가 모여 봄다. 뿌리의 색은 처음에는 약간 분홍색으로 피며 봄이 지기 시작하면서 빨갛게 변하여 색의 변화가 매우 아름다운 식물이다 (*Figure 1A*). 피뿌리풀은 국내에서는 제주도 오름 (기생화산 분화구)에서만 자라는 것 으로 알려져 있으며, 그 중 한라산 동쪽 산麓의 북서주군 구좌을 높은 오름과 남서주군 표선면 개오름 등지에서만 드물게 발견된다. 북한에서는 황해도 이북에서 분포하고 있으므로 알려져 있으며, 특히 동고의 화산에서 흔히 볼 수 있는 식물이자 (*Lee 1993*). 특이한 것은 황해도 이북과 동고에서 자라는 북부지방의 식물은 남한에서는 제주도에서만 분포한다는 사실과 높은 고산지대에서 자라 수 있는 고산성 식물들에도 불구하고 제주도의 중산간의 초원지대에서 자라 있다는 사실은 어떠한 부분이기도 하다. 이러한 피뿌리풀은 동고가 고리를 침포할 때 밀착이로 가지는 간초에 심어 들어오거나 밑의 치료제로서 들어왔다는 추측도 있으나 확실한 근거는 없다.

피뿌리풀은 봄이 매우 아름답기 때문에 (*Figure 1A*) 마구잡 이로 도취되어 자생지에서는 거의 찾아보기 힘들 정도로 짧 은 분수가 많이 많지 않다. 따라서 산람청에서는 피뿌리풀을 확충 및 병종위식물로 보호 종으로 분류하여 보존에 힘쓰고
있다 (Chungbu Forest Experiment Station 1997). 피 formul는 일반적으로 포기 나누기 방법으로 번식시키고 있으나 다른 조분류와는 달리 전부의 발달이 저조하며 황작이 어려울 정도로, 줄을 통한 생식 방법 및 다른 조분류와는 달리 자생이 없어서 산성과의 개체수가 매우 적고 생장이 느리며 종의 경계화는 매기 때문에 효과적인 번식은 어려운 실정이다.

조직배양은 병종위기에 직면한 식물의 번식수단으로 이용 가능하고, 적에 얻은 시료를 사용하여 장기간 가내 보존이 가능한 현지의 보존 (ex situ conservation)의 효과적인 방법이 된다 (Krogstrup et al., 1992; Fay, 1994). 국내에서도 몇 종의 회귀 수증에 대한 조직배양의 방법으로 현지의 보존을 위한 연구 결과가 발표된 바 있다 (Moon et al., 1997, 1999; Youn et al., 1992). 그러나 피 formul에 대한 조직배양은 아직 이루어지지 않고 있다. 따라서 본 연구는 병종위기에 직면한 피 formul의 조직배양 기술개발을 통해 자생지 복원 및 유전자원의 보존에 그 목적이 있다.

재료 및 방법

식물재료

본 실험에 사용한 공시재료는 국립삼립과학원 난태산림연구 구소의 삼림유전자원 보존원에 보존되어 있는 피 formul (Stellera rosea N.)을 재료로 하였다. 뿌리에서 자란 신초의 증기 를 체취하여 2~3 cm로 자르고 약 20% 알반다율과 체취하였다. 절편체는 500 mL 삼각플라스크에 50개 정도 넣고 (20 rpm) 과 방울을 넣어 혼들어 지름을 넣 다음 수분으로 수피 셀라된 환조 시호는 2시간 이상 쌓여서 뿌리상에 70% 예

타율에 1분, 0.1% HgCl$_2$로 2분 동안 혼들며 표면단균하고, 말

인수로 4~5회 센척하였다.

줄기유도

표면단균 후 줄기율 2.0~2.5 cm 크기로 조제한 후 0.8% water agar에 3% sucrose를 넣은 배지에 치아하여 1주일간 배

양한 후 오염이 없는 줄기진단물 MS (Murashige and Skoog 1962) 배지에 0.1 mg/L zeatin을 처리하여 6 주간 배양하여 줄

기율 유도하였다. 그 다음 줄기의 중심부에 미치는 잎양간 효

과를 구멍내어 약 2주를 약 1.5 cm 내외의 길이로 잘라

zeatin과 BA를 농도별 (0, 0.1, 0.5, 1.0, 2.0 및 5.0 mg/L)로 처

리하여 그 효과를 조사하였다. 벤지는 150×30 mm의 유리대

협판에 8 mL씩 분주하여 121℃에서 20분간 고압염균 후 사

용하였다. 절편은 처리 당 10주씩 차지하여 3 반복하였다. 배

양은 1일 16시간 조명 (40 μM s), 25±2℃로 유지되는 배양실

에서 배양하였다. 4 주간 배양 후 줄기 길이 0.5 cm 이상 되는

경로 증가 줄기로 조사하고 길이를 측정하였다.

발근유도 및 퍼트묘육성

중경간 줄기 중에서 정상부가 건전하고 생장이 양호한 것

으로 길이 2.0 cm 이상 자란 건전한 줄기를 사용하였다. 벤지

는 염류농도를 1/2로 반감시킨 1/2 MS 배지에 IBA와 NAA를

농도별 (0.0, 0.5, 1.0, 2.0 및 5.0 mg/L)로 처리하여 시험하였다.

각각의 농도별로 5, 10, 15일간 전처리 후 배양한 후로운 무

처리된 1/2 MS 기본배지로 계대배양하여 총 배양기간이 45일

이 되도록 배양하였다. 그리고 비교군으로 오색우 처리 (IBA

과 NAA) 후 35일간 연속적으로 배양하여 기간별 전처리 후

1/2 MS 기본배지로 옮긴 것과 발근유도를 비교 조사하였다. 발

근 유도는 처리 당 10주씩 차지하여 2 반복으로 하였다. 한편

발근된 식물체의 손수는 Moon 등 (1999)의 방법을 사용하였

다. 기대발간된 어린 식물체를 조심스럽게 빼어 흐르는 물

로 한정을 제거하고 인공배양주 (peatmoss: perlite: vermiculite

= 1: 1: 1, v/v)로 옮겨 4 주간 공중습도를 조절하며 순화하

여 pot모로 육성하였다.

결과 및 고찰

다양 (multiple shoot) 유도

줄기진단물 MS 배지에 0.1 mg/L zeatin을 처리하여 6 주간

배양하였을 때 줄기 배양율은 70%로 나타났고 절편에 따라

줄기 유도는 차이가 있는 것이었다. 대체로 배양 1~2주

사이에 줄기 유도가 유도되었다. 따라서 줄기의 유도 및 신장에 있

어 절편간 차이를 나타냈다. 절편 당 줄기 수는 대체로 1개씩

생측한 결과를 바탕으로 본 연구는 다음과 같은 결과를 얻

았습니다. 본 연구는 세 가지 주요 결과를 얻었습니다. 우선, 본

연구는 단기간에 중경간 줄기를 조성한 후 그 효율성을 확인하였

는데, 이는 식물체의 생장과 배양의 총 효과를 나타내는

주요한 인자이다. 또한, 본 연구는 줄기유도에 있어서의 다양한 농도로의 처리를 실시하여, 이는 줄기 유도의 효율

과 자생지 복원에 대한 보존을 위한 방법을 제시하였다. 마지막으로, 본 연구는 유전자원의 보존과 관련하여, 이는 식물체의 생장과 재배양을 통해 보존을 위한 중요한 방안을 제시하였다.
유도 되었으나 절편에 따라서는 2~3개가 자라기도 하였다.
이는 액아로부터의 다경 풍업도가 아니라 이미 있는 액
아로부터 자라는 증기에 편관되었다.
효과적인 사료물 증식조건의 구분을 위해 액아 마디를 MS
배지에 zeanin과 BA를 농도별로 처리하여 배양한 결과 다경
유도는 BA 처리가 주효한 것으로 나타났으며, 반면 증기의 생
장은 zeanin의 처리가 양호하게 BA 처리보다 2~4배의 생장
차이를 보였다 (Table 1). 흥미로운 점은 다경 유도 및 증기
생장에 있어 증기 절편에 따라 차이가 크게 나타나 배지 및
작정 사료호르몬 처리는 물론 증기 절편의 선택 역시 중요한
요소임을 보여 주었다. 한편 세이토키킨 2.0 mg/L 이상의 고농
도에서는 일부 증기에서 정단결과가 나타나 특이 zeanin 고
농도 처리로 신경이 증식하는 정단결과 후 증기 전체가 고
사하는 현상도 관찰되었다. 이러한 증기정단결과의 격자 현상은
조직배양시 흥미로운 결과를 보였고, Moon 등 (1999)은 미생
물漉 다경 유도 증식에서 정단결과를 관찰한 바 있다. 이러한
정단결과 현상은 배지에 감습의 경로와 같은 정식의 갈
습 분배 부족과 배지 내 과오로 인한 화학적 불량 등이 주요
요인으로 추정되고 있다 (Shah et al. 1985). 그러나 피부림틀과
증기 증식에 있어서는 정단결과가 생겨 초토부가 죽는다 할
지라도 그러한 영향에서 증기 결과가 계속 유도되며 생장
하였기 때문에 증기의 증식에는 큰 문제가 되지 않는 것으로
나타났다.
다경 유도에 있어 zeanin 처리시 평균 2개 내외의 증기가 유
도되었지만 BA 처리시에는 절편 당 3~8개가 유도되며 매우
효율적 이었다 (Table 1, Figure 1 B). 이와 같은 결과는 기본배
지는 비교할 때 약 5배의 증기가 유도된 것으로 피로림틀의
기대 다경 유도에는 BA가 주효량을 보여주는 결과이다. 다경
유도에 가장 좋았던 조건으로는 BA 0.5~1.0 mg/L 수준에서
절편 당 약 8개의 증기가 유도되었으므로 이 조건이 적절한
유도로 생각되었다. 대부분의 실험의 기내증식에 있어 증기의 유
도 및 증식은 처리된 세이토키킨의 영향을 크게 받으며, 배지
토끼의 종류에 따라서는 사료에 따라 BA의 처리가 가장
주효한 것으로 보고되고 있다 (Cuenca et al. 1999). 이러한 BA
의 증식 효과는 몇 가지 희귀 면종이 사료의 기내배양에서
도 관찰된 바 있다 (Hamnett and Evans 1985; Lledó et al.

발근에 미치는 오육산의 효과

증식된 증기를 배지의 영유농도를 1/2로 반감시킨 1/2 MS
배지에 IBA와 NAA를 농도별 (0, 0.5, 1.0, 2.0 및 5.0 mg/mL)로
처리하였을 경우, 전반적으로 IBA가 NAA보다 발근유도에 다
소 효과성이 없고 배양되는 시기가 빠르게 나타났으며, 기반배지
에서는 전혀 발근되지 않았다. IBA의 5일간 전체 배양시
5.0 mg/L 수준에서 25% 발근되어 가장 높았고, IBA 1.0과 2.0
mg/mL 수준에서는 15%의 발근율을 보였다. 10일간 IBA 처리
된 조건에서도 발근율은 큰 차이를 나타내지 않았고 15일간
처리시에는 다소 발근율이 향상과 모든 처리군에서 발
근율이 향상되었다. 그러나 전처리 배양 없이 35일간 연속
적으로 IBA 처리된 배지에서는 배양이 전혀 이루어지지 않아
한편 NAA 처리군에서는 IBA 보다 처리효과가 다소 높게
나타나는 경향이있으며 10일간 전처리 배양시 1.0 mg/L 수준에
서 5% 발근되고, 15일간 전체 배양시에는 모든 처리농도로
서 15~25% 까지 발근율을 나타내었다. 전처리 배양 없이 35일간
연속적으로 배양시에는 대부분 발근되지 못했으며 NAA 5.0
mg/mL 처리군에서만 20%가 발근되어 예외적인 결과를 나타내
있는 (Table 2, Figure 1 C). 이에 따라 배양시는 앞으로 좀 더
연구되어야 할 것이다. 전반적으로 저조한 발근율을 보였음에
도 불구하고 전처리의 기간에 따라 발근에 차이를 보이는
것은 흥미로운 결과이며, 특히 전처리 배양 없이 오육산 처리
후 연속으로 35일간 배양한 경우에는 배지 발근이 이루어지지
내 아직은 사실상 주목해야 될 내용이다. 보편적으로 오육산 가

<table>
<thead>
<tr>
<th>Cytokinins</th>
<th>Mean no. of shoot induced</th>
<th>Shoot length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.88 ± 0.6*</td>
<td>1.85 ± 0.7</td>
</tr>
<tr>
<td>Zeatin 0.1</td>
<td>1.70 ± 0.3</td>
<td>2.07 ± 0.9</td>
</tr>
<tr>
<td>0.5</td>
<td>2.02 ± 0.1</td>
<td>2.12 ± 0.7</td>
</tr>
<tr>
<td>1.0</td>
<td>2.02 ± 0.2</td>
<td>2.27 ± 0.6</td>
</tr>
<tr>
<td>2.0</td>
<td>2.04 ± 0.4</td>
<td>2.26 ± 1.0</td>
</tr>
<tr>
<td>5.0</td>
<td>2.88 ± 1.5</td>
<td>2.03 ± 0.6</td>
</tr>
<tr>
<td>BA 0.1</td>
<td>7.06 ± 2.6</td>
<td>1.53 ± 0.6</td>
</tr>
<tr>
<td>0.5</td>
<td>8.79 ± 3.3</td>
<td>0.74 ± 0.3</td>
</tr>
<tr>
<td>1.0</td>
<td>8.48 ± 4.8</td>
<td>0.73 ± 0.2</td>
</tr>
<tr>
<td>2.0</td>
<td>7.20 ± 3.8</td>
<td>0.62 ± 0.1</td>
</tr>
<tr>
<td>5.0</td>
<td>3.26 ± 1.7</td>
<td>0.57 ± 0.1</td>
</tr>
</tbody>
</table>

*Mean ± standard deviation.

Table 2. Effect of auxins on rooting of in vitro shoots after different days of culture.

<table>
<thead>
<tr>
<th>Auxins (mg/mL)</th>
<th>Rooting rate (day)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
</tr>
<tr>
<td>IBA 0.5</td>
<td>15</td>
</tr>
<tr>
<td>1.0</td>
<td>15</td>
</tr>
<tr>
<td>2.0</td>
<td>20</td>
</tr>
<tr>
<td>5.0</td>
<td>20</td>
</tr>
<tr>
<td>NAA 0.5</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>2.0</td>
<td>5</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

*After each auxin treatment, the cultures were subcultured on 1/2 MS basal medium. The total culture periods were adjusted for 35 days after subculture. In case of 35 days, the cultures were maintained on medium containing auxin without subculturing.
운데 NAA가 IBA 보다 활성이 낮고 발근율도 처리시 그 효과가 높게 나타나는 것으로 보고되고 있는데 이러한 현상은 본 실험결과에서도 일부 확인되었다.

포트묘 용성

발근된 식물체를 인공배양재에 이용하여 포트묘로 육성하였다. 배양실에서 4주간 순화하였을 때 계분화 개체의 51%가 활화되었다. 피부리품의 가내 식물체는 매우 안정하기 때문에 배양밀도 이용하나의 과정에서 간단한 배양재를 많이 받아 활화율이 저조한 것으로 추정된다. 그러나 본인의 증식조건이 어느 정도 확립되었기 때문에 대표적으로 유도된 증식율 이용하여 앞으로 기의식작물의 방법을 이용하고, 공중습도 조건을 적절화하여 배양밀도를 향상시켜 활화율을 높일 수 있을 것으로 생각된다. 현재 순화한 식물체는 현재의 병해충의 차단으로 인하여 아직 보물에 보호를 제공하고 있다 (Figure 1D). 이상의 결과는 짧은 배양을 통해 피부리품의 가내 배양 증식이 가능함을 보여준 것으로 앞으로 발근율 및 도양 활화율 증진을 위한 연구가 계속 요구된다.

적요

발Fuse의 각의 배양된 피부리품 (Stellera rosea N.)의 가내증식법을 개발하고자 염마를 MS 배지에 BAP와 zeatin을 처리하여 단기 (multiple shoot)를 유도하고 가내발근에 미치는 IBA 및 NAA 처리 효과를 조사하였다. 애바 마디로부터 단기육도는 BA가 현저히 양호한 반면 증식의 생산은 zeatin이 BA보다 효과적이었다. 증식된 줄기로부터 가내발근은 오육신 처리로 가능하였으나 발근율은 대체로 저조하였고 오육신의 전처리 기간에 따라 차이나 보였다. IBA가 NAA보다 다소 높은 발근효과를 보였으며 1.0 mg/L 농도로 15일간 배양시 30%까지 발근되었다. NAA 역시 처리농도 및 처리기간에 따라 발근율에 차이를 보였다. 발근률은 인공배양재에서 51%가 활화되어 정상생장이 가능하였다. 이상의 결과는 발근 및 순화조건을 좀 더 개선하면 피부리품의 효율적인 가내변식이 가능함을 시사하였다.

(접수일자 2004년 1월 9일, 수리일자 2004년 2월 6일)