Micropropagation of *Philodendron wend-imbe* through Adventitious Multi-bud Cluster Formation

Bong-Hee Han¹, **Byeoung-Woo Yae**³, **Dae Hoe Goo**², **Hee Ju Yu**¹

¹Horticulture Biotechnology Division, Horticulture Research Institute, 495 Imok-dong, Jangan, Suwon, 440-310, Korea
²Floriculture Research Division, Horticulture Research Institute, 495 Imok-dong, Jangan, Suwon, 440-310, Korea
³Research Coordination Division, Rural development Administration, Suwon 441-707, Korea

ABSTRACT In order to micropropagate uniform plantlets of *Philodendron wend-imbe*, the shoot tips were cultured on media supplemented with 0.5~10.0 mg/L BA or 0.01~1.0 mg/L thidiazuron (TDZ). The multi-bud clusters from basal part of shoots formed vigorously on media containing 5.0~10.0 mg/L BA or 0.05~0.1 mg/L TDZ. Shoot formation from the bud cluster sections (5~7 mm) was achieved favorably on medium with 5.0 mg/L BA and 20 g/L sucrose. Lowering of sucrose in medium to 20 g/L was effective for the inhibition of callus growth from basal part of shoots. Growth of shoots and their rooting were favorable on media containing 1.0~2.0 mg/L IBA or 0.1 mg/L NAA. The rooted plantlets were acclimatized effectively in soil mixed with perlite 1: peat moss 1 or peat moss alone.

Key words: BA, micropropagation, *Philodendron*, sucrose, thidiazuron

서 론

따라서 본 실험은 *Philodendron*을 기내배양하여 일시에 큰량의 식물체를 대량생산하기 위하여 실시하였다.

재료 및 방법

실험재료

실험재료는 온실에서 생육하고 있는 *Philodendron wend-imbe* (*P. wendlandii* x *P. imbe*)를 사용하였다. *Philodendron*
의 신초 경량을 체취하여 전개된 열은 모두 제거하고 3 cm 정도가 되도록 정리하여 소독하였다. 소독은 신초 경량을 70% 레할과에 20 〜 30초간 응시한 다음 볼수로 3회 세척하였으며, 1% NaOCl 용액에 15분간 체취하여 블록살균하였다. 표면소독이 끝난 경량은 볼수로 3회 세척한 다음, 생장질을 포함하여 약 3 〜 5 mm 정도의 크기로 천취하여 배양하였다. 배양은 MS (Murashige and Skoog 1962) 배양에 sucrose 30 g/L가 gelrite (Duchefa, The Netherlands) 2 g/L가 첨가된 배지를 사용하였다.

식물체 증식, 발 JsonResult

*Pholidendron*은 신초 경량에서 부정 다이아체를 형성하기 위하여 BA 0.0〜10.0 mg/L 또는 TDZ 0.0〜10.0 mg/L를 첨가하였다. 형성된 다이아체를 증식하고 다이아체에서 신초를 발 생시키기 위하여 MS 배지에 BA 0.0〜5.0 mg/L가 첨가된 배지에 다이아체용 5〜7 mm 정도로 중간수로 접단하여 배양하였다. 또한 BA 5.0 mg/L가 첨가된 배지에 sucrose를 10〜30 g/L 배지에 첨가한 sucrose 농도가 다이아체의 형성 및 callus 발생에 미치는 영향도 조사하였다. 기내에서 형성된 신초를 발육하기 위하여 IBA와 NAA가 0.1〜5.0 mg/L가 첨가된 배지에서 증식된 신초를 배양하였다. 발근된 식물체는 perlite, peat moss 및 perlite와 peat moss를 1:1로 혼용된 용액에 체취하여 온실에서 8주간 수확하였다. 유토를 72cm 트레이에 넣고 발근된 식물체를 체취하여 처리한 트리에 3개로 3반복하였다. 운도의 온도는 주간 30℃, 야간 20℃로 조절하였으며, 처음 순환 1주간은 비닐로 밀폐하여 관리하였고 그 후는 비닐을 제거하고 관리하였다.

배지조성 및 배양

배지는 pH를 5.8로 조절하고 gelrite 2 g/L를 첨가한 후에 450 mL의 배양병(삼각병유리)에 80 mL의 배지를 부수하였으며, 고압밀로기 121℃에서 15분간 병균차례 사용하였 다. 반복은 배양병당 13개의 절편배를 배양하여 처리량 배 양병 4개로 4반복하였으며, 배양 8주 후에 신초수, 신초길 이, 다이아체 형성정도, 발근정도 등을 조사하였다. 배양은 25 ± 2℃로 조절되는 배양실에서 50 μM · m² · sec⁻¹의 광도로 16시간일 조명하면서 배양하였다.

결과 및 고찰

*Pholidendron*의 경량을 TDZ와 BA가 첨가된 배지에서 배양하였다(Table 1). 신초수는 BA 3.0〜10.0 mg/L 첨가 배지와 TDZ 0.01〜0.5 mg/L 첨가배지 사이에 차이가 없었으나, 부정 다이아체 형성이 BA 5.0 mg/L 첨가배지와 TDZ 0.05 mg/L 첨가배지에서 양호하였다(Figure 1A). 생체중은 TDZ를 첨가한 배지와 BA 3.0〜10.0 mg/L를 첨가한 배 지에서 412 g 이상으로 높았다. 그러나 TDZ가 첨가된 배 지에서 생육한 식물체는 모두 열록소 가 결정되어 홀색을 띄었다. Cytokinín은 보편적으로 자하의 발육을 억제하고 지상부의 생육을 촉진한다고 알려져 있으며(Pennazio 1975), cytokinin 중에서 BA는 활력을 높이 많은 화채작물

| Table 1. Effects of BA and TDZI on shoot growth and adventitious muti-bud cluster formation from shoot tips of *Pholidendron wend-imbe* after 8 weeks in culture. |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Cytokinin | No. of shoots / explant | Shoot length (cm) | FW (mg) / explant | Adventitious muti-bud cluster formation |
| (mg/L) | | | | |
| Control | 1.0 c* | 3.0 a | 338 b | - |
| BA | 0.5 | 1.3 bc | 2.0 b | 317 b |
| | 1.0 | 1.1 bc | 1.9 b | 298 b |
| | 3.0 | 1.5 abc | 1.9 b | 450 ab |
| | 5.0 | 1.6 abc | 1.9 b | 412 ab |
| | 10.0 | 2.0 a | 2.0 b | 420 ab |
| TDZ | 0.01 | 1.9 ab | 2.0 b | 439 ab |
| | 0.05 | 1.8 ab | 2.2 b | 557 a |
| | 0.1 | 1.8 ab | 2.3 b | 488 ab |
| | 0.5 | 1.5 abc | 2.1 b | 485 ab |
| | 1.0 | 1.0 c | 2.3 b | 419 ab |
| * thidiazuron | | | | |
| 〜 : very poor, ± : poor, ++ : moderate, +++ : good |
| * Duncan's multiple range test (P≤0.05). |
의 중식에 사용되고 있다 (Earle and Langhans 1974; Kusey 1980; Takayama and Misawa 1982; Han et al. 1997). TDZ
은 낮은 농도에서 분열조직의 형성 및 신초중식을 촉진하
는 것으로 알려져 있으며 (Fellman et al. 1987) 많은 식물
종에서 강력한 사이토카닌 효과를 나타내는 것으로 입증되
었다 (Reynolds 1987). Philodendron에서 다이아체의 형성은

<table>
<thead>
<tr>
<th>Table 2. Effects of BA on shoot and adventitious multi-bud cluster proliferation from the segments of multi-bud clusters in Philodendron wend-imbe after 8 weeks in culture.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA (mg/L)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
</tr>
<tr>
<td>5.0</td>
</tr>
</tbody>
</table>

* <; very poor, +; poor, ++: moderate, +++: good
* y Duncan's multiple range test (P ≤ 0.05).

<table>
<thead>
<tr>
<th>Table 3. Effects of sucrose on shoot proliferation and callus formation from the segments of multi-bud clusters in Philodendron wend-imbe after 8 weeks in culture. MS medium was containing 5.0 mg/L BA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose (g/L)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

* +; poor, ++: moderate, +++: good.
* y Duncan's multiple range test (P ≤ 0.05).

<table>
<thead>
<tr>
<th>Table 4. Effects of IBA and NAA on rooting of shoot and shoot elongation from the segments of multi-bud clusters in Philodendron wend-imbe after 8 weeks in culture.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxin (mg/L)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

IBA 0.1	100 a	1.3 a	3.62 abc	0.69 cde	5.8 de	11.2 ab
0.5	100 a	1.1 a	4.10 a	0.79 bed	5.0 e	12.8 a
1.0	100 a	1.0 a	3.74 ab	1.08 abc	18.7 b	7.0 c
2.0	100 a	1.2 a	3.74 ab	1.13 abc	18.5 b	6.5 cd
5.0	100 a	1.3 a	2.98 cd	1.28 ab	24.8 a	4.4 cde

NAA 0.1	100 a	1.2 a	3.69 abc	0.94 bc	14.2 bc	6.0 cd
0.5	100 a	1.2 a	2.62 d	1.06 abc	10.7 c	4.0 de
1.0	100 a	1.2 a	2.38 de	1.54 a	11.9 e	2.7 ef
2.0	91.7 a	1.2 a	1.78 ef	1.14 abc	10.0 ed	1.9 ef
5.0	41.7 b	1.0 a	1.54 f	0.23 e	2.4 e	0.5 f

* y Duncan's multiple range test (P ≤ 0.05).
을 증식하였으며, TDZ가 첨가된 배지에서는 식물체가 염료 소결된 영역을 초래하여 TDZ는 제외하였다 (Table 2). 형성된 다이아 제점류형을 배양한 결과 BA 5.0 mg/L가 첨가된 배지
에서 신초 및 다이아 제점류형이 양호하였다. 그러나 BA가 고농도 (3.0~5.0 mg/L)로 첨가된 배지에서는 callus가 발생하였으며, callus의 발생은 BA의 농도가 증가함에 따라 증가하
였다. 발생한 callus는 다이아 제점류형을 덮어 부정다이아 제
점류형의 종식 및 부정 다이아 제에서 신초의 발생을 억제하였다.
다이아 제점류형 중식에서 발생하는 callus를 억제하기 위
하여 배지의 sucrose 농도를 달리하여 검정하였다 (Table 3), 배지에 sucrose를 10~20 g/L 첨가하였을 때 callus 발
생이 억제되었다. 그러나 sucrose 농도가 낮아지면 다이아 제
의 종식도 억제되었다. Sucrose 20 g/L 첨가배지에서는 신
초수가 4.8개, 신초길이 2.8 cm로 신초의 종식, 생육 및 다
이아 제 형성이 양호하였으며 callus 발생이 효과적으로 억제
되었다 (Figure 1B). Schnapp와 Preece (1986)는 tomato와
carnation의 배양에서 carnation은 20 g/L, tomato는 30
g/L sucrose 제거배지가 식물체 벌육에 가장 적합하였으며, 배지내 sucrose 농도는 감소시키면 callus의 발생과 발근이
억제되었다고 보고하였다. 또한 Han 등 (1997)은 Ficus
benjamina의 배양에서 배지의 sucrose 농도가 30 g/L일 때
는 신초의 종식이 억제되고 callus가 발생하였지만 sucrose
농도를 20 g/L로 감소시키면 callus 발생이 억제되고 신초가
양호하게 증식되었다고 보고하였다. 본 실험에서도 신초 및
부정 다이아 제의 종식과정에서 callus가 발생하였는데 이는
배지내의 염류 및 sucrose의 농도가 높아 발생하는 것으로
생각되었다.
부정 다이아 제에서 형성된 신초를 신장시키고 발근하기 위
하여 신초를 IBA와 NAA가 첨가된 배지에 배양하였다
(Table 4). 다이아 제점류형을 배양한 결과 IBA 1.0~2.0 mg/L
및 NAA 0.1 mg/L가 첨가된 배지에서 신초의 생육 및 발근이
양호하였다.

Table 5. Ex vitro growth of plantlets of Philodendron wend-imbe as influenced by culture soils after 8 weeks in culture.

<table>
<thead>
<tr>
<th>Cultural soil</th>
<th>Survival (%)</th>
<th>Plant height (cm)</th>
<th>No. of roots/plantlet</th>
<th>Root length (cm)</th>
<th>Rooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlite</td>
<td>100</td>
<td>6.7 c'</td>
<td>9.4 b</td>
<td>7.6 a</td>
<td>++</td>
</tr>
<tr>
<td>Perlite : Peat moss (1:1)</td>
<td>100</td>
<td>9.2 b</td>
<td>12.3 a</td>
<td>6.6 a</td>
<td>+++</td>
</tr>
<tr>
<td>Peat moss</td>
<td>100</td>
<td>10.2 a</td>
<td>11.1 ab</td>
<td>8.9 a</td>
<td>+++</td>
</tr>
</tbody>
</table>

* ++: moderate, +++: good.
* Duncan’s multiple range test (P≤0.05).

Figure 1. In vitro propagation of Philodendron wend-imbe. A, Adventitious multi-bud formation from basal part of shoot tips; B, multiplied shoots from the segments of adventitious multi-bud clusters on MS medium containing 5.0 mg/L BA and 20 g/L sucrose; C, plantlets acclimatized in perlite (left), perlite and peat moss 1:1 (middle), and peat moss (right); D, Philodendron plants growing in green house from in vitro.
Perlite, peat moss 및 perlite와 peat moss를 1:1로 혼용된 용토에 밀접한 식물체를 재식하여 온실에서 8주간 순화하였다. (Table 1). 소식체는 모든 용토에서 100% 생존하였으며, perlite와 peat moss의 1:1 혼합용토와 peat moss에서 초종 9 cm 이상, 뿌리수 11개 이상으로 식물체 생육 및 발근이 완성하여 perlite와 peat moss의 1:1 혼합용토 또는 peat moss가 순화에 적합하였다. (Figure 1C). 또한 밀접한 재식제를 온실에서 peat moss에 재배한 결과 정상적으로 생육하였다. (Figure 1D).

적요
본 실험은 Philodendron wend-imbe를 기내배양하여 일시에 규모한 식물체를 대량생산하기 위하여 실시하였다. Philodendron의 경우에서는 다아체 형성은 BA 5.0 ~ 10.0 mg/L 또는 TDZ 0.05 ~ 0.1 mg/L가 참가된 MS 배지에서 항호하였다. 형성된 다아체 칼럽체 (5 ~ 7 mm)는 BA 5.0 mg/L와 sucrose 20 g/L가 참가된 MS 배지에서 배양한 결과, 신초 및 다아체의 중간이 매우 얇고하였으며, 신초기밀에서 callus 발생이 억제되었다. 다아체 칼럽체에서 신초의 발생 및 발근은 IBA 1.0 ~ 2.0 mg/L 또는 NAA 0.1 mg/L가 참가된 배지가 효과적이었으며, 발근된 신초의 순화는 perlite와 peat moss의 1:1 혼합용토 또는 peat moss가 적합하였다.

인용문헌

(검수일자 2003년 12월 1일, 수리일자 2004년 4월 20일)