어떻게 연구생산성을 높일 수 있을까?

한명학 (경제학박사)
국가생명공학적연구센터장

연구현장은 전쟁 중

연구개발이 대규모 프로젝트화 되면서 투자와 규모가 급 증하고 있고, 성과 발생이 점차 장기화한에 따라 연구개발 에 대한 위협부담이 경부가 기업 모두에게 짐중되고 있다. 아울러 연구개발 성과의 상상적 성공률이 매우 낮고 특정 기술의 수명주기가 단축됨에 따라, '연구개발 기회'가 연구 개발을 통한 경제적, 비경제적 이익을 극대화하고 위험을 최저화하기 위해서 매우 중요해지고 있다. 즉, 연구의 중복으로 인한 자원낭비 방지, 잘못된 연구방향의 선회로 인한 연구실적 방지, 가장 경제적 이득이 큰 연구개발 주체의 선정 등을 위해서 적절한 연구개발 기회 필요성은 것이다.

필자는 연구기획 및 경제를 수행하면서 주어진 예산으로 최선의 연구결과를 도출할 수 있는 연구생산성 향상방안에 대한 여러 연구를 수행하여 최근 '신연구개발기획론 (경문 사, 2006.6)'이라는 책을 발간하였는데 그 내용 중 일부를 소개하고자 한다.

연구현장의 어려움에 대해서 말하기 전에 국내외의 중복 연구 사례를 살펴보면 다음과 같다 (특허청 자료). 먼저 EU의 경우 연구개발프로젝트의 70%가 기술 개발판로 및 유사기술 특허가 존재하는 과제를 지원했을 뿐만 아니라 유럽기업의 70%가 R&D 투자를 하지 않게 해당기술이 특허 로 이미 보호되어 있음을 발견하였고 정부의 불충분으로 200억 달러가 낭비되었다는 보고가 있어 1999년부터 시행 특허 조사결과보고서 제출을 의무화하였다. 일본의 경우는 R&D 단계의 불충분한 선정기술조사로 총 470억 달러 규모 의 연구개발투자가 낭비되었다는 연구가 나와 자체 기획/체계강화를 도모 중에 있으며, 미국의 경우 SBIR (Small Business Innovation Research) R&D 지원을 필요로 하는 벤처나 중소기업에 대한 정부 차원에서 자금을 지원해주는 프로 그램에서는 특허 조사를 의무화하여 일반적인 Proposal에 나와 있는 성공률 약 15% (R&D부문)수준에서 35%의 수준 으로 향상시키고 있다. 국내에는 아직 이러한 종류의 연구가 현재적으로 수행될 적이 없지만 2004년에 감사원에서 감사 차원의 조사가 일부 수행된 결과에 의하면 격리관과 유사한 결과가 나타났는데 기존 특허가 존재하는 곳에 연구비 투입 이 이루어졌음을 보여주고 있다.

연구현장에서 보면 정확한 연구를 하기가 어렵다. 다음의 그림을 보면 시각적으로 점검해보자.

Figure 1은 생명공학분야 몇몇 대표적인 연구영역의 전도별 특허 및 논문의 등록, 발표건수를 보여주고 있다. 그림 이 보여주는 공통적인 경향은 최근 수년 사이 특히, 논문건 수가 급증을 하고 있다는 점이다. 이러한 추세는 기술분야별 차이 (전산, 기계, 화학 등)는 있겠지만 큰 흐름은 같은 양상 을 보일 것으로 예상되는 이는 전 세계적인 연구개발 경쟁의 강화, 승자득점 (winners take all) 원칙, 기술단체화 등의 경향에서 기인하며 특히 인터넷 등의 활성 환소에 따른 지식의 플랫화현상이 반영된 결과로 보여진다.

특히 및 논문분석을 해본 대부분의 특정 연구 분야에서 전 세계적으로 연간 유사특허가 수십, 수백 건씩 발생되고 있음을 볼 때 어떻게 연구를 하는 것이 효율적인가에 대한 의문과 두려움이 생길 수밖에 없다.

현재의 R&D는 전쟁에 비유할 수 있다. 왜냐하면 동일한

1) 전문연구 시스템에서는 연구결과의 70% 정도가 연구기획단계에서 연구자체의 승세가 결정된다고 보고 있으며, 즉 설계 기획자 및 사업진단의 과학적 관리기법 (Tech tree, TRM, TRIZ, QFD, DOE 등)을 적극적으로 활용하여 과학 성과확률을 18%에서 61%로 높였다는 보고가 있다 (심성 종합기술자원 자료).
특정 분야에서 수많은 경쟁사들이 존재하고 있으며 경쟁력을 확보하기 위해 치열하게 정점을 벌이고 있기 때문이다. 전쟁을 치루면서 적진을 분석하는 것은 기본이라 할 수 있었다. R&D를 전쟁이라고 가정한다면 최근 개발되며 사용되고 있는 특허 및 논문 분석 기법들은 마치 전쟁의 상황을 한눈에 알아볼 수 있는 상황과 같은 것이다. 이와 같이 이제는 충분히 활용할 수 있는 시스템이 구축되어 있기 때문에 관계자들이 깨닫고 정상적으로 사용되어야 한다. 비효율적인 시스템을 활용할 필요성이 증대된 것이다.

2) 논문이나 특허분석을 해보면 연구분야에 상관없이 약 10여 개 이상의 경쟁사들이 있음을 확인할 수 있을. 우리는 이를 분석하여 그들의 전략을 파악하고 이후 우리의 목표를 정립하고 수시로 수정하여 고지를 선점하기 위하여 원치기름 같은 대형산울 얻을 수 있을 것임.

Figure 2에서 보여주고 있는 것은 생명공학기술분야의 한 사례로 산이 높은 부분은 특허가 집중되어 있는 것을 의미하며 바다인 바깥쪽은 관련 특허가 거의 존재하지 않을음을 의미한다. 1991년부터 5년마다의 특허 동향을 살펴보면 전쟁
(특허경쟁 심화)이 매우 적심함을 알 수 있다. 이렇게 경쟁이 극심한 R&D 경쟁체제에서는 기획이나 정책을 수행할 때 어려운 분석이 진행되어야 보다 효율적인 연구를 수행할 수 있는 것이다.

그러나 아직까지는 우리나라 연구개발체제에서 특허의 분석이 광범위하게 도입되지 못한 것이 현실이며 최근의 특허 강조추세에도 불구하고 아직도 많은 연구현장에서는 특허조사나 정보분석이 제계적으로 이루어지지 못하고 있는 것이 현실이다. Table 1은 기술원 및 등록된 우리나라 특허의 수준을 보여주는 자료이다.

미국특허의 약 80% 건을 조사해보면 특허 1건당 평균 인용특허건수가 12.7건, 피인용건수가 3.6건, 평균연구자수 2.2명으로 나왔다. 우리나라 기업의 경우를 조사해보니 삼성 등 일부 2-3개 대기업 특허는 비교적 피인용 건수나 연구자수가 미국과 유사하나 기타 대부분 기업들은 인용특허건수, 피인용 건수는 매우 낮고 연구자수는 많은 양상을 보여주고 있다. 일반 난은 판점에서 보면 특허의 점이 낮다는 것이다.

여기에 고민이 있는 것이다. 기업이나 연구기관이 동일한 연구자원으로 어떻게 연구생산성을 높이고 대형 연구 성과를 창출하여 돈이 되는 연구를 해서 조직과 연구자들이 만족도가 높은 연구를 수행할 수 있을까?

결론: 연구를 위한 기술기획 방법

필자가 같은 기술경영 (Management of Technology) 연구자들은 연구생산성을 높이기 위한 기법들을 연구하고 확산시

![Figure 2. 특허의 기간별 변화.](image)

<table>
<thead>
<tr>
<th>구분</th>
<th>미국등록특허</th>
<th>삼성</th>
<th>XX학회</th>
<th>XX저학회</th>
<th>XX개미원</th>
</tr>
</thead>
<tbody>
<tr>
<td>[특허건수]</td>
<td>[80,468]</td>
<td>[1,580]</td>
<td>[769]</td>
<td>[38]</td>
<td>[110]</td>
</tr>
<tr>
<td>인용특허건수 평균 (Backward citation)</td>
<td>12.7</td>
<td>2.65</td>
<td>3.21</td>
<td>3.78</td>
<td>2.26</td>
</tr>
<tr>
<td>피인용건수 평균 (Forward citation)</td>
<td>3.6</td>
<td>3.17</td>
<td>0.51</td>
<td>0.34</td>
<td>0.26</td>
</tr>
<tr>
<td>특허망 평균 연구자 수</td>
<td>2.2</td>
<td>2.46</td>
<td>5.12</td>
<td>5.18</td>
<td>5.3</td>
</tr>
</tbody>
</table>
특허법

특허란 아직까지 없었던 물건 또는 방법을 최초로 발명한 발명자에게 주어지는 권리를 말한다. 좀 더 추가 설명을 하자면 특허등기 기술자연적법을 이용한 것, 기술적 효과 및 산업적 가치가 있는 것, 특허기술 등장, 기술적 내용 및 실증적 사례 등이 포함된 기술정보의 보고인데 특허법이라는 것은 위에서 말한 특허정보의 서지사항과 기술적 사항을 정리 및 가공하여 분석한 후 그 결과를 한 눈에 알아보도록 도표화하여 표현한 것이다.

아래의 그림을 보면 특허등장조사의 필요성에 대해 알 수 있을 것이다.

우리는 특허정보를 이용하여 다양한 형태의 분석을 할 수 있는데 연구결과에 의하면 기존 분석정보에서 얻을 수 없는 정보의 70%를 특허분석을 통해 얻을 수 있다고 하니 놀라운 결과가 아닐까? 뒤이어 말하자면 특허분석을 하지 않고 연구를 수행한다는 것은 70%의 기존연구결과에 대해 무지한 재연구한다는 것이나 좋은 연구결과를 얻지 못하는 것은 당연하다.

논문법

논문법이란 특정분야에서 최근 연구가 어느 정도 진행되었는지 어떤 연구가 활발하게 진행되고 있는지에 대한 중요

우리 연구의 위치는?

Figure 3. 특허분석 필요성.

Figure 4. 특허 인용도 분석.

Figure 5. 연구지침의 평가.

Figure 6. 특허 인용도 분석.
한 정보를 제공해주는 Tool을 말한다. Table 2에서 보듯이 현재 유료 및 무료 검색 엔진들이 있으며 대표적인 것으로는 Pubmed, NDSL (이상 무료), SCIE, Scopus (이상 유료)와 같은 검색 사이트가 있다. 우리는 이러한 논문검색시스템을 이용하여 다양한 형태의 정보를 웹상에서 즉시 검색하여 연구정보 활용할 수 있다.

시장분석

시장분석이란 기술에 대한 시장성 분석과 경쟁력 분석을 의미한다. 시장성 분석이란 개발하고자 하는 제품이 시장의 규모와 특성에 비교하여 개발가치가 있는지에 대한 것이고 경쟁력 분석이란 기존의 경쟁자들과 비교하여 어떤 장점들을 가지고 있는지를에 대한 분석으로 이와 같은 분석과정을 통해 연구개발의 기회를 평가하고 구체화하는 것을 의미한다. (Table 3 참조).

현재 세계는 글로벌 현상이 심화되어 연구개발 기획단계부터 경쟁체제를 갖추는 것을 끝없이 요구하고 있다. 또한 기술과 교육 요구가 엄청난 속도로 변화하고 모방 기술력의 발전, 세계 단일시장화 등으로 인해 복잡성이 증대되어 최소한의 경쟁력 분석과 시장조사가 선행되지 않았을 경우 막대한 손실을 초래할 우려가 크다. 위와 같은 프로그램은 정부차원에서 보급확에 협력이 할 것이다.

Table 2 논문검색 엔진의 종류

<table>
<thead>
<tr>
<th>무료검색 사이트</th>
<th>유료검색 사이트</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pubmed</td>
<td>NDSL</td>
</tr>
<tr>
<td>National Library of Medicine에서 제공하는 Medline DB로써 4,800여종의 민의학 저널에 수록된 약 1,200만 건의 데이터를 제공함</td>
<td>국내 학계, 연구계, 산업계의 모든 연구자를 위한 해외 학술 저널 및 프로시딩 포함으로서 43,000여 종의 학술저널과 160,000여 종의 프로시딩 서비스</td>
</tr>
<tr>
<td>SCIE</td>
<td>Scopus</td>
</tr>
<tr>
<td>Thomson ISI에서 제공하는 DB로 과학기술 분야에 대한 저널을 대상으로 학술적 기여도가 높은 5,800여 종의 학술지의 채인 및 인용정보를 제공</td>
<td>Elsevier사에서 제공하는 과학기술 전문의 초록/인용 DB로서 135,000여종 논문의 인용정보 검색 및 Pubmed 보완검색에 유용</td>
</tr>
</tbody>
</table>

Figure 7. 논문분석 내용.

Figure 8. 논문분석 사례.
이야 한다.

두 번째로는 빠르게 변화하는 R&D 패러다임 변화에 적극적으로 대처하는 교육과 지원체계를 구축할 필요가 있다. 1세대 R&D는 100년 전 소수의 뛰어난 과학자가 중심이 되어 연구개발의 전 과정이 이루어졌었다. 2세대는 책무기 개발과 관련하여 많은 발전이 있었고 프로젝트를 중심으로 관리하는 시스템이 도입된 시기이다. 3세대에서는 고객 네트워크가 등장하기 시작하였으며 이를 구현하기 위한 기술기획방법으로 1980년 후반에 기술로드맵이 등장하기 시작했다. 1990년대 중반에 등장한 4세대에는 혁신이 기워든으로 따르겠으며 R&B&D, 즉 비즈니스적 측면이 도입되기 시작하였다. 본격적인 혁신을 추구하는 단계가 바로 4단계 R&D단계이며 조직내외부의 협업 및 혁신을 추구하였으며 전 구문의 ‘Total Solution Provider’화를 목표로 하고 있다. 전 전 원사업연구소가 3-4세대에 있는 반면 우리나라는 아직 1-2세대에 머물고 있어 이의 개선이 시급한 실정이다.

세 번째 방안으로는 3세대 특허전략 교육 및 지원시스템의 구축이 있다. 현재 우리나라 연구자들의 많은 수가 특허를 일방적으로 변리사에게 작성 의뢰하는 1세대에 머무르고 있는 데, 연구초기부터 변리사와 토의를 통해 특허출원대응, 선형기술조사 등을 수행하는 2세대 특허전략단계로 넘어가야 하며, 추후 연구사직단계에서부터 연구자와 변리사뿐만 아니라 연구지원전문가그룹(연구기관, 특허전문가, 기술이전 등) 등

<table>
<thead>
<tr>
<th>분류</th>
<th>URL</th>
<th>Service</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datamonitor</td>
<td>www.datamonitor.com</td>
<td>기술정보 + 시장정보</td>
<td>일부 무료, 회원제 및 단행본 판매, 전속 Analyst 300여명, 국내 Agency: 비따 과로델</td>
</tr>
<tr>
<td>Frost & Sullivan</td>
<td>www.frost.com</td>
<td>기술 및 시장 보고서 제작, 판매</td>
<td>가입비 및 사용료</td>
</tr>
<tr>
<td>BCC</td>
<td>www.bccresearch.com</td>
<td>산업 전반 기술 및 시장 보고서 제작, 소재 및 부품분야에 특화</td>
<td>연회비 및 사용료</td>
</tr>
<tr>
<td>Freedomia</td>
<td>www.frederoniagroup.com</td>
<td>포진성 신청 500대 기업의 90% 이상이 사용</td>
<td>가입비 $30 + 사용료</td>
</tr>
<tr>
<td>Profound</td>
<td>www.profound.com</td>
<td>시장정보, 기업정보, 무역정보, 태권도 보고서 제작, 판매, $300 / 월</td>
<td>화면출력 및 다운로드는 추가 비용</td>
</tr>
<tr>
<td>Dialog</td>
<td>www.dialog.com</td>
<td>세계 최대 정보 DB (12 terabyte), 산업분야 모든 출판물, 분야별 전문기관 제공</td>
<td>연회비 + 사용료 + 출력료, 국내 Agent: D&P Research</td>
</tr>
<tr>
<td>Gartner</td>
<td>www.gartner.com</td>
<td>Dataquest로 유명, 마케팅, 비즈니스 정보 제공</td>
<td>일부 무료, 회원제 및 단행본 판매</td>
</tr>
<tr>
<td>Market Research</td>
<td>www.marketresearch.com</td>
<td>세계 시장보고서 제작에, 단행본 판매</td>
<td></td>
</tr>
<tr>
<td>Key-Note</td>
<td>www.keynote.co.uk</td>
<td>산업별 Market Report</td>
<td>Report별 가격 산정</td>
</tr>
</tbody>
</table>

Figure 9. 맞춤형 연구체계.
과의 긴밀한 협조를 통해 맞춤형 연구, 대행성 전략을 기획 연구하는 단계가 필요하다.

네 번째로 기술단계 특성에 맞는 기획, 평가체계 보완이 필요하다. 현재 국가에서는 부처별 특성에 맞는 각종 연구개발사업이 수행중인 대규모 기초, 융합, 개발, 산업화 등 다양한 단계의 연구가 수행중이다. 그러나 일부사업의 경우 사업 평가가 사업 단계에 맞지 않게 평가가 이루어지고 있으며 이로 인해 연구현장에서는 혼란이 초래되어 연구자원을 저해하는 문제가 있는 것이다. 기초연구는 눈문, 융합연구는 특허, 개발, 산업화과제의 경우는 시제품이나 기술이전을 위해서 평가되어야 하나 일부사업의 경우 그 기준이 모호해 응용, 개발과제를 수행하는 연구자의 다수가 본인이 기초연구를 수행하고 있다고 응답하고 있는 실정이다.

다섯 번째 방안으로는 응용 및 현업시스템의 강화이다. 4세대 R&D 시스템의 핵심은 응용, 현업연구에 있다. 과거는 내가 대부분의 연구를 수행하고 일부를 도입하였으나 현대연구의 특성은 대부분의 연구에서와 전문가들을 규합하여 내 것으로 만드는 능력을 연구사업의 성패를 걸고 있다. 소청과제를 여러 개 수행하는 연구조직의 경우 개별과제별로 정보와 집중력이 분산됨으로써 마치 모래알과 같은 연구조직의
형태를 띠게 되어 결과적으로 Team Play가 어려움에 빠질 수 있다. 이와 같은 문제점을 해결하기 위해서는 초기 단계의 대형연구 기회가 매우 중요하다고 할 수 있다. 또한 정부의 예산 지원 시스템의 확신이 있어야 할 것이다. 여섯 번째는 상시기획 정보제공 시스템의 구축이다. 이를

Figure 12. 기술단계 특성에 따른 기획, 평가 체제.

Figure 13. 융합 및 협업시스템 강화.

Figure 14. 상시기획 정보제공 시스템.
위해서는 강화된 기획 기능이 선행되어야 할 것이며, 평가시스템을 교체해줄 필요가 있고, 원활한 Feedback 기능과 기획(Plan), 실행(Do), 평가(See)가 유기적으로 순환될 수 있는 시스템이 구성되어야 할 것이다. 기획과정에서는 특허적이거나 논문분석 등을 이용하여 전략 지도를 작성하고, 실행과정에서는 정기적인 특허 및 논문, 제품 분석을 통해 전략을 검증하며 전략지도를 개정하여야 할 것이며, 평가과정에서는 성과평가 결과를 활용하여야 할 것이다.

임금 범위 범위로부터 원천적 특허의 전략연구 수행이다. 각각의 연구팀들은 잘 기획된 연구체계에 따라 일시분산하게 자신의 연구를 수행해야 하며 그중 어느 팀에서 중요한 특허(핵심원천특허)를 발명하면 신속하게 TFT를 구성하여 선택, 집중적으로 연구를 수행하고 원천적 특허에 대한 파생특허를 빠르게 선정하여 고유의 Royalty 기술이전이 가능하도록 노력의 기술을 기울여야 할 것이다.

연구생산성 향상을 위한 마지막 여덟 번째 방안으로는 사전기획을 통한 전략연구 수행이라고 할 수 있다. 연구가 수행되기 이전에 먼저 국내외 관련 특허를 조사하게 되는데, 외국에 등록된 특허 중에 우리나라에 없는 특허를 선별하여 국내에 특허를 내기위한 반영형 개략특허 연구를 수행하며 이를 통해 다시 외국에 특허를 출원하는 방식이며 이는 바이오 신약장기사업단에서 연구된 바가 있다.

연구생산성 향상은 생산의 문제

평가는 연구현장에서 연구기획, 연구정책, 기술정책심문

Figure 15. 원천적 특허 전략 연구.

Figure 16. 사전기획을 통한 전략연구 수행.
석, 특허분석, 기술가치평가 등 연구자들의 연구를 지원하는 다양한 노력을 하였다. 그동안의 경험에 의해 지금까지 설 명한바와 같이 이재는 모든 연구 분야의 연구가 세계화의 경쟁을 견제하고 있고, 이에 따라 연구평가상대가 너무나 많고 경쟁이 치열하여 제대로 된 연구 성과를 얻기가 과거에 비해 너무나 어려워지고 있음을 알 수 있다.

일 년에 수백만의 논문과 특허가 출아진다는 특정 연구 분야에서 나아 우리조직이 내는 몇 편의 논문이나 특허가 어떤 가치를 줄 것이며 과연 투자가 비해 합당한 결과를 내는지에 대해 연구자들은 항상 평가를 받고 있다.

물론 연구개발의 분야 (기초, 응용, 개발, 산업화 등)에 따른 사업기회 양도나 평가의 차이가 있어야 한다. 우리나라의 경우 국가과학기술개발협력에서 기초 25%를 투자하는 반면 생명공학분야는 기술의 특성상 기초 42%의 투자가 이루어지고 있다. 기초연구사업으로 기회 제공되는 경우는 우선 논문분석을 중심으로 특허, 시장 등 정보가 반영되는 것이 바람직하지만 응용, 개발사업의 경우는 당연히 특허와 위주로 추진, 평가되는 것이 당연하다고 하겠다.

연구개발이 전방이라는 것은 다 알려진 사실이다, 기초적인 지식을 탐색하는 냉면적 전쟁보다는 경제적 가치를 달보한 치열한 전쟁양상이 국가간 경쟁에서 나타나는 현실적인 모양이다. 더구나 문제는 선진국의 경우 우리나라와 염청난 물자를 전쟁에 투입하고 있다는 사실이다. 생명공학의 경우만 보면 우리나라가 정부, 민간부분을 합한 연구개발 투자비가 2조원이 되는 상황인데 반해 미국은 약 45조원, 일본은 15조원, 유럽은 20조원을 투자하고 있다. 이런 상황에서 단순한 전략과 전술로 일대일 전쟁을 치를 수는 없겠는가?

이제는 상대전쟁을 철저히 분석하고 이에 대한 극복방안을 실질하게 기획하고 실행하는 전략-전술개념의 연구개발 마인드가 필요한 시점이다. 이러한 노력의 목적은 한정된 자원으로 최선의 결과를 얻어 국력을 증대시키고 기업, 대학, 출연금의 연구생산성을 증가시키는데 있는 것이다. 지금까지 제안한 특허, 논문, 시장분석을 이용하여 어떤 가치 연구 생산성 방안을 활용한다면 국가나 연구조직의 연구 성과가 몇 배 높아지리라 확신하는 바이다.

(접수일자 2007년 6월 1일, 수리일자 2007년 6월 20일)

3) 전세 국가연구개발사업에서 기초 25%, 응용 21.5%, 개발 35.6%의 투자가 이루어져서 생명공학분야는 기초 42.4%, 응용 25.6%, 개발 32%로 기초의 비율이 높다 (2006년 국가연구 개발 조사부산보고서).

기초연구는 크게 대학생들을 교수시키고 전리를 담당하는 목적으로 수행되는 순수기초연구와 과학기술을 개발하기 위한 목적기초연구로 대별된다. 순수기초연구의 경우는 실험을 진행한 결과로 학문성의 전제로 연구가 수행되나 목적기초연구의 경우는 현대 기술개발방향상 애플기기의 특성분야를 파악 후 전략적으로 기술개발이 이루어지기 때문에 시험 특허정보 분석이 반드시 필요하다.