Functional characterization of a CCCH type zinc-finger protein gene OsZF2 by ectopic overexpression of the gene in rice

Jung-Sook Lee* · In-Sun Yoon · Ung-Han Yoon · Gang-Seob Lee · Myung-Ok Byun · Seok-Chul Suh

National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea

ABSTRACT We have previously isolated a CCCH type zinc-finger protein gene, OsZF2 (Oryza sativa Zinc Finger 2), from the cold-treated rice cDNA library. To investigate the potential role of OsZF2, transgenic rice lines over-expressing OsZF2 under the control of CaMV 35S promoter have been developed through Agrobacterium-mediated transformation. Elevated level of OsZF2 transcripts was confirmed by RNA gel blot analysis in transgenic rice. Under the 100 mM NaCl condition, the transgenic rice showed significantly enhanced growth rate in terms of shoot length and fresh weight, implicating that OsZF2 is likely to be involved in salt response of rice. In the field condition, however, the transgenic rice showed a dwarf phenotype and flowering time was delayed. Genome expression profiling analysis of transgenic plants using the 20K NSF rice oligonucleotide array revealed many up-regulated genes related to stress responses and signaling pathways such as chaperone protein dnaJ 72, salt stress-induced protein, PR protein, disease resistance proteins RPM1 and C12/C15 disease resistance protein, carbohydrate/ sugar transporter, OsWAK kinase, brassinosteroid LRR receptor kinase, and jasmonate O-methyltransferase. These data suggest that the CCCH type zinc-finger protein OsZF2 is a upstream transcriptional factor regulating growth and stress responsiveness of rice.

*Corresponding author Tel 031-299-1725 Fax 031-299-1722
E-mail: jungslee@rda.go.kr
백질, NAC domain 단백질, zinc finger 단백질 등이 또한 스트레스 내성을 증진시키는 전사인자로서 알려져 있으며 (Yamaguchi-Shinozaki et al. 2006; Kim et al. 2006; Nakashima et al. 2007). 비에서 전자처리에 의해 발현이 유도되는 OsCOP1 유전자는 RING finger 단백질로서 prolinc 핵합을 증가 시키며, 접속, 염증, 임상 등에 저항성을 증진 시키는 것으로 알려져 있으며, NAC-type의 전사인자로 또한 황경스트레스에서 발현이 유도되며 내재해성을 증진 시키는 것으로 나타났다 (Nakashima et al. 2007).

zinc finger 단백질은 zinc 이온의 결합하는 아미노산의 배열에 따라 여러 그룹으로 나뉘며 전사인자로서 역할을 수행하거나 단백질도 다른 분자와의 상호작용에 의해 세포내에서 중요한 생물학적 과정을 수행한다. 현재까지 식물에서 알려진 zinc finger 단백질은 RING-finger, ERF, WRKY, DOF, LIM등이 알려져 있으며 대부분은 DNA-결합 전사인자로서 역할을 하거나 단백질-단백질 상호작용에 의해 유전자의 발현을 조절하는 것으로 그 기능이 알려져 있다 (Wang et al. 2008). CCCH type zinc finger 단백질은 서류와 표현에 이르기까지 많은 침탕을 차지하고 있으며 동물에서는 RNA 프로세싱과 관련된 RNA-결합 단백질로 추정되며 단백질 양성화와 초기 발달에서 암컷의 수정 능력과 세포의 운동에 관여 하는 등 그 기능이 많이 알려져 있으나 식물에서는 일부분만 그 기능이 알려져 있다 (Addapeali et al. 2008; Ramos et al. 2004). 예기장에서 알려진 PREII는 세 포특이 CCCH zinc finger 단백질로서 발현량에 중요한 역할을 하는 것으로 알려져 있으며 (Li et al. 1998), 바서에서 분리된 OsDOS는 정맥에 위치하는 단백질로서 jasmonate 경로에 의한 발달 단계에서 그 작용 성분이나 필요 요소를 재활성화를 하는 것으로 밝혀졌고 (Kong et al. 2006).

본 연구에서는 바서에서 전자처리 및 이어서에서 유전자 발현에 증가하는 CCCH zinc finger 단백질을 코딩하는 OsZFP2 유전자 (Lee et al. 논문 준비중)가 발현되는 형질전환체를 제작하고 환경스트레스 및 관련 표현형을 분석하여 유전자 발현을 확인하기 위하여 실험이 시행되었다.

재료 및 방법

온반체 제작

바 형질전환체를 육성하기 위해 사용된 온반체인 pCAMBIA1300PRON은 pCAMBIA1300를 기간으로 하여 CaMV 3SS promoter와 3'-nos 티어웨이 사이에 발효류 클론해존 후부위를 삽입하여 클로닝 용이하게 제작되었다. OsZFP2 유전자를 클론해존하기 위하여 EST library에서 사용되었던 Blueprint 벡터에 삽입된 LS333 유전자를 BamHI와 KpnI로 가공한 후 1.2kb 크기의 벡터를 분리한 후 pCAMBIA1300PRON 벡터의 BamHI와 KpnI위치에 삽입하여 pCAMBIA333이라 명명하였다. 온반체의 삽입마커는 하이그로미신 휴합체 저항성 유전자(hptII)를 사용하였으며 Agrobacterium tumefaciens LBA4404와 형질전환하여 바 형질전환에 사용하였다.

바 형질전환 및 동형합체 전환체 선발

형질전환된 Agrobacterium tumefaciens LBA4404를 YEP (50 mg/l kanamycin) 액체배지에 접종하여 48시간 전파 배양하였다. 낙농액을 이용하여 배양용 캔들러를 유유한 후 Agrobacterium 배양액과 공통 배양하여 강화시간 다음 hygromycin 산발배지에서 형질전환 된 재배화 식물체를 얻기 위하여 3주마다 계단 배양하였다. 선발된 형질전환체는 hygromycin (50 mg/l)가 첨가된 MS 배지에 50밀 으로 치료하여 hygromycin 저항성 개체수를 확인하였다.

PCR 분석

형질전환된 재배화 식물체에 OsZFP2 유전자가 도입되었는지를 확인하기 위하여 PCR 분석을 수행하였다. 형질전환체의 genomic DNA는 Genomic DNA Prep Kit for Plant (Solgent, Daejeon, Korea)를 사용하여 제조자의 방법에 따라 추출하였다. PCR 반응조건은 94℃에서 5분간 예열반acia한 다음 94℃에서 1분간 반성, 55℃에서 1분간 품질, 72℃에서 1분간 삽정하는 과정을 35 사이클 반복하고 마지막으로 72℃에서 10분간 식성을 시켰다. PCR 반응에 사용된 forward 프라이머는 OsZFP2 유전자 특히 프라이머는 (5'-ACT CGC CGC TGT CGC TCT CC-3')을 사용하고 reverse 프라이머는 3'-nos terminator 부위에서 각각 (5'-ATGCGAAATTGTGAGC-3) 사용하였다. PCR 산물은 0.9% agarose gel에서 전기영동 하였으며 EtBr로 염색하여 비난드를 확인하였다.

RNA 분석 및 Northern 분석

형질전환체에서 OsZFP2 유전자 발현을 확인하기 위하여 바 양에서 토폴 RNA를 Trizol로 분리하여 Northern 분석을 수행하였다. 10 μg RNA를 1.1% formamide/agarose gel에서 전기영동 후 나일론 멜트 레인(Hybond N+, Amersharm)으로 전기 선택된 다음 OsZFP2 유전자

대등에 3'-ACTP로 표시 시각 후 60℃에서 16시간 동안 감종화반응을 시켰다. 멜트레인은 윤용 용액에 세척하고 포스피머지 강화 스크린에 감종시간 후 밴드를 확인하였다.

내성성 검정 및 형태적 관찰

소독한 바 종자 25립을 MS 배지와 100 mM NaCl이 첨가된 MS 배지에 각각 치환하여 28℃, 감상태에서 2주간 배양한 후 발아된 23립의 중앙부 및 외부 표면 및 무리 식이를 측정하여 평균값과 표준편차를 측정하였다. 포장에서 형태적 발달 상태를 관찰하기 위하여 500ミ 소관에서 계체하여 4주 후 유전자형식체식 시험포장에 이행하여 형태적 특성과 출수시기를 확인하였다.

Microarray 분석

바 20K 용리아 chip (NSF rice oligonucleotide array 20K)를 사용
하여 microarray 분석을 하였다. 그 순도의 RNA를 분리하기 위하여 column을 사용하는 RNeasy isolation Midi kit (QIAGENE, Hilden, Germany)를 사용하여 베일로부터 RNA를 분리하였다. total RNA는 Bioanalyzer 2100 (Agilent, Palo Alto, USA)를 이용하여 28S rRNA/18S rRNA ratio를 측정하여 RNA QC를 수행한 후 microarray 분석에 사용하였다. Labeling은 Amino Allyl MessageAmpTM aRNA Kit (Ambion Catalog #1752)을 사용하여 제조사의 방법으로 300μm에 주사된 후 10 μm anti sense amino allyl RNA (aRNA)를 cye dye coupling에 사용하였다. 대조군은 c3, 처리군은 c5 dye를 사용하여 라벨링된 cRNA 20 μm을 감광화 반응에 사용하였다 (Eom et al. 2006). MAUI 임상화시스템에서 42°C, 16시간 반응 후 Axon4000B 스키바에 GenePix Pro v6.0 (Axon Instrument, Union City, USA) 프로그램을 이용하여 c3, c5의 강도를 측정하였다. Normalization과 발현분석은 Genespring5.1 프로그램을 사용하여 분석하였다.

결과 및 고찰

OsZF2 유전자에 의해 형질전환 및 과도한 통증발현 형질전환체 선발

배에서 분리한 OsZF2 유전자는 CCHC 형태의 zinc-finger 도메인을 2개 함유하고 있으며 예기장태의 꽃 분화에 관여하는 PEI 유전자와 높은 동등성을 보인다 (Lee et al. 논문 준비중). OsZF2 유전자는 배에서 자생 스트레스에 의해 발현이 약하게 유도되며 깊은 동정 및 외부에서 발현이 검출되고 일반적인 잔치 수준에서 발현이 거의 검출되지 않는다. OsZF2 유전자의 설탕분해에서 기능을 분석하기 위하여 배에서 유전자 과도한 형질전환체를 육성하였다. 배 형질전환용 박터는 3SS 프로모터를 사용하였고 형질전환체 선발은 하이드로 마이산 황산체 지향성 유전자를 사용하여 3SS 분할을 작용하여 pCAM333이라 명명하였다 (Figure 1a). pCAM333 온반체를 아크로바카리움을 도입한 후 난бу로 이용하여 배상체 캐러리스를 유기하여 동등배양 하였다. 선발된 캐러리스는 cefotaxime의 hygromycin이 철가하는 배경에 저항하여 경반체를 유도하였으며 경반체는 실험체는 순환과정을 거쳐 음식에서 재배양되었다. 재배양된 형질전환체에 OsZF2 유전자가 배 액체에 삽입된 것을 확인하기 위하여 OsZF2 유전자에서 유전자 위치를 forward 프라이머를 제작하고 Nos 턴리피티 부위에서 reverse 트리머를 작성하여 PCR 분석을 실시하여 액체 내내적으로 존재하는 유전자와 구별하였다. 배 형질전환체 외적으로를로부터 genomic DNA를 분리하여 PCR 검증을 한 결과 대조군의 난부도에서는 유전자 단편이 중복되지 않았으나 형질전환체에서는 positive control로 사용한 pCAM333과 같이 모두 650bp 크기의 OsZF2 유전자 단편이 중복된 것을 확인하였다 (Figure 1b). 3SS-oszf2 형질전환체에서 OsZF2 유전자 지향성 있게 과도한

Figure 1. Identification of transgenic rice. (a) A linear map of pCAM333 with OsZF2 gene and Hygromycin selectable marker gene (hlg) used for plant transformation; P35S (CaMV35S promoter), T35S (CaMV35S terminator), and nos (NOS terminator). (b) Agarose gel electrophoresis of amplified fragments from OsZF2 gene specific primer and Tnos primer. Arrow indicated the PCR product (650bp) for OsZF2 gene integration into rice chromosome. Plasmid pCAM333 was used as a positive control. (c) Homozygous lines and plants (left) were selected based on uniform and normal growth of all the seedlings of a transgenic line in MS media supplemented with 50 mg/L of hygromycin.

OsZF2 형질전환체의 개념성 검정 및 표현형 분석

3SS-oszf2 형질전환체에서 OsZF2 유전자 발현이 강하게 나타난 LS333-8 계통에서 동정적체와 라인을 실험하여 스트레스 지향성은 결정하기 위하여 MS 배지에 100 mM NaCl을 함유한 MS 배지에서 1주일간 생육시킨 후 23계통의 총 증가와 심부 자극에 따라 투여를 각각 측정하여 결과값을 구하였다 (Figure 3). 최저리
Figure 3. Measurement of salt stress response of 3SS:OsZF2 transgenic rice. (a) One-week-old seedlings were grown on MS medium supplemented with 0 or 100 mM NaCl. (b) Shoot length (mean±SD) and total fresh weight of the transgenic plants (LS333-8-13, LS333-8-16) and wild-type (wt, NacDong-hyeo) plants treated with 0 or 100 mM NaCl were measured to monitor the salt response. Measurements were performed for using at least 20 germinated seedlings.

Figure 4. Phenotype of 3SS:OsZF2 transgenic line. (a) Transgenic rice (LS333-8, right) was dwarfed in relation compared with the wild-type plants (left). Photograph was taken 3 months after seeding. (b) Seed maturation of the transgenic plants (right) was delayed compared to that of the wild-type plants (left) in the GMO field.
<table>
<thead>
<tr>
<th>Group</th>
<th>Gene Symbol</th>
<th>Ratio (LS333 8-13)</th>
<th>Ratio (LS333 8-16)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OszF2</td>
<td>LOC_Os05g45020</td>
<td>5.2</td>
<td>4.1</td>
<td>LS333, CCCH transcription factor, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os01g17040</td>
<td>21.9</td>
<td>19.7</td>
<td>Chaperone protein dnaJ 72, putative, expressed</td>
</tr>
<tr>
<td></td>
<td>LOC_Os01g24710</td>
<td>6.5</td>
<td>5.5</td>
<td>Salt stress-induced protein, putative, expressed</td>
</tr>
<tr>
<td></td>
<td>LOC_Os07g03288</td>
<td>6.2</td>
<td>4.3</td>
<td>Pathogenesis-related protein PRB1-3 precursor</td>
</tr>
<tr>
<td></td>
<td>LOC_Os06g22460</td>
<td>4.9</td>
<td>5.6</td>
<td>Disease resistance protein RPM1, putative</td>
</tr>
<tr>
<td>Protein kinase</td>
<td>LOC_Os10g22390</td>
<td>4.5</td>
<td>4.3</td>
<td>C2/C5f disease resistance protein, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os03g44050</td>
<td>17.6</td>
<td>6.1</td>
<td>OsWAK27 - OsWAK receptor-like protein kinase</td>
</tr>
<tr>
<td></td>
<td>LOC_Os12g42040</td>
<td>6.1</td>
<td>4.4</td>
<td>OsWAK126 - OsWAK receptor-like protein kinase</td>
</tr>
<tr>
<td></td>
<td>LOC_Os03g16960</td>
<td>14.1</td>
<td>6.3</td>
<td>CRK6, putative, expressed</td>
</tr>
<tr>
<td>DNA binding</td>
<td>LOC_Os02g06620</td>
<td>13.4</td>
<td>4.2</td>
<td>Brassinosteroid LRR receptor kinase precursor</td>
</tr>
<tr>
<td></td>
<td>LOC_Os05g30130</td>
<td>5.5</td>
<td>4.5</td>
<td>Serine/threonine-protein-kinase receptor precursor</td>
</tr>
<tr>
<td>Metabolic</td>
<td>LOC_Os10g26270</td>
<td>7.8</td>
<td>6.4</td>
<td>No apical meristem protein</td>
</tr>
<tr>
<td>enzymes</td>
<td>LOC_Os06g30810</td>
<td>4.6</td>
<td>5.2</td>
<td>DNA binding protein, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os10g14150</td>
<td>4.5</td>
<td>4.1</td>
<td>Ras-related protein Rab-2-B, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os01g37000</td>
<td>14.6</td>
<td>5.8</td>
<td>Carboxyl-terminal peptidase, putative, expressed</td>
</tr>
<tr>
<td></td>
<td>LOC_Os04g01810</td>
<td>14.6</td>
<td>9.1</td>
<td>Arachidonic synthase, putative, expressed</td>
</tr>
<tr>
<td></td>
<td>LOC_Os10g11260</td>
<td>7.8</td>
<td>5.0</td>
<td>NEDD8-conjugating enzyme Ubc12-like, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os06g11240</td>
<td>7.6</td>
<td>5.1</td>
<td>12-oxophytodienoate reductase 2, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os10g28450</td>
<td>5.9</td>
<td>6.3</td>
<td>CAF1 family ribonuclease containing protein</td>
</tr>
<tr>
<td></td>
<td>LOC_Os10g26050</td>
<td>5.7</td>
<td>5.3</td>
<td>Methionyl-tRNA synthetase, putative, expressed</td>
</tr>
<tr>
<td></td>
<td>LOC_Os09g17560</td>
<td>4.8</td>
<td>5.4</td>
<td>O-methyltransferase ZRP4, putative, expressed</td>
</tr>
<tr>
<td>Others</td>
<td>LOC_Os06g21020</td>
<td>4.4</td>
<td>4.5</td>
<td>Jasmonate O-methyltransferase, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os10g39330</td>
<td>4.1</td>
<td>4.3</td>
<td>Aspartic proteinase nepenthesin-1 precursor, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os04g45140</td>
<td>14.8</td>
<td>5.3</td>
<td>Lipopolysaccharide-modifying protein, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os03g21450</td>
<td>10.8</td>
<td>5.1</td>
<td>Bromodomain containing protein, expressed</td>
</tr>
<tr>
<td></td>
<td>LOC_Os10g31500</td>
<td>9.2</td>
<td>11.4</td>
<td>Fibron heavy chain precursor, putative, expressed</td>
</tr>
<tr>
<td></td>
<td>LOC_Os06g15680</td>
<td>8.3</td>
<td>4.2</td>
<td>Cytochrome P450 71A, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os07g34720</td>
<td>6.7</td>
<td>5.1</td>
<td>Harpin-induced protein, putative, expressed</td>
</tr>
<tr>
<td></td>
<td>LOC_Os10g28150</td>
<td>6.1</td>
<td>4.3</td>
<td>Zinc knuckle family protein</td>
</tr>
<tr>
<td></td>
<td>LOC_Os09g24220</td>
<td>6</td>
<td>4.4</td>
<td>DNA mismatch repair protein MSH6-1, putative</td>
</tr>
<tr>
<td></td>
<td>LOC_Os08g38480</td>
<td>5.1</td>
<td>8.2</td>
<td>F-box domain containing protein, expressed</td>
</tr>
<tr>
<td></td>
<td>LOC_Os09g20500</td>
<td>4.3</td>
<td>5.4</td>
<td>Carbohydrate transporter/ sugar porter/ transporter</td>
</tr>
<tr>
<td></td>
<td>LOC_Os10g20390</td>
<td>4.2</td>
<td>5.4</td>
<td>Transparent testa 12 protein, putative, expressed</td>
</tr>
</tbody>
</table>

일의 노화를 지연시키는 역할을 하는 것으로 밝혀졌다. 이는 OsZF2 유전자가 원래에서 발현이 되지 않고 희석에서 발현이 증가하 는 것과는 약간 다른 양상을 보여주고 있으나 왜화 현상을 보이는 성장 지연과 이에 따른 중추신경 및 둥근 지원 등 zinc finger 단백질로서 성장 발달에 영향을 주는 것으로 추정된다. 희석에서 분리된 zinc finger 유전자는 OsLol2의 경우, OsLol2 발현을 저하시키는 역 인자 형질전환체의 경우 GA 합성과 관련되어 왜화 현상을 보이고 배의 성장 발달에 영향을 주며 과발현 형질전환체의 경우 바 횡자 마름병에 저항성을 보이는 것으로 보고되었다 (Xu et al. 2007).

Microarray 분석에 의한 하위 유전자 발현 확인

최근에 들어서는 과발현 형질전환체에서 하위 유전자 발현 양 상 분석에 DNA chip을 이용한 유전자 발현분석 방법이 널리 이용되고 있다 (Maruyama et al. 2004). 35S:OsZP2 형질전환체에서 발현 이 조절되는 유전자를 확인하기 위하여 2주간 생육시킨 유조체 이
부터 낙동액와 3SS-OzZF2 혈관성장체에서 total RNA를 분리하여 Bioanalyzer을 이용하여 28S RNA/18S RNA ratio가 이상인 고효도의 RNA를 사용하여 유전체 발현 분석을 하였다. 3SS-OzZF2 혈관성장체 세포에서 LS333-13의 독립적인 계통을 이용하여 각각의 분석을 수행하였는데 무처리 낙동액을 c3, 무처리 혈관성장체를 c5로 라벨링하여 DNA chip 분석을 수행하였다. DNA chip 분석 결과 과학발현 시킨 OzZF2 유전자가 두 혈관성장체 세포에서도 낙동액에 비해 4배 이상 발현이 증가되었으며 이는 Northern 분석에서도 3SS-OzZF2 혈관성장체에서 OzZF2 발현이 증가된 현상과 정확히 일치하였다(Table 1). 대조군인 낙동액에 비해 두 계통 모두에서 4배 이상 발현이 증가된 유전자는 100 개로 확인되었으며 심지로 개발물에 주석된 유전자는 35개로 나 탄였으며 65개 유전자는 기능이 아직 알려지지 않은 유전자, 가장 유전자 및 트랜스포토존 유전자였다. 35개 유전자에 대한 계통 주석을 근거로 기보유 유전체 실험적 증명과 관련된 protein kinase, DNA binding protein, 그리고 대조군에 관련된 효소 유전자 및 스트레스 반응 유전자들의 발현이 증가되었다. 대조군과 관련된 유전자로서 Chaperone 단백질인 dnaJ 72 유전자 발현이 거의 4배 이상 증가하였으며 salt stress-induced protein의 발현도 5배 이상 증가하였다. 또한 병원성과 관련된 유전자의 발현이 상당히 증가한 것으로 나타났으며 wall-associated kinase인 OsWAK27, OsWAK12 유전자 발현도 5배 이상 증가하였다. 예전진에서 WAK 유전자 그룹은 세포비행, 병원성과 중간성 스트레스 조절사 중 중요한 역할을 하는 것으로 보고되었으며 그룹은 125개의 WAK 유전자가 개발상에 존재한다고 보고되었다(Zhang et al. 2005). 따라서 zinc-finger 단백질인 OsZF2는 세포내 과발현에 의해 다른 유전자들의 발현을 조절하고 발현 양상에 영향을 주는 것으로 추측되며 이는 염전군의 의사스테스 반응에서 어느 정도의 저항성을 보이는 현상과 생육 및 축수 정상 현상 일부 설명할 수일 수 있어 추측된다. 따라서 비중분리된 OzZF2 CCCH zinc finger 유전자는 비생장 발달과 스트레스에 반응하는 상위조절자로서 기능을 할 것으로 추정된다.

사 사
본 연구는 국립농림과학원 농생명자원부 기관고유사업비와 농촌진흥청 바이오그린 21 사업 연구비의 지원으로 수행되었음.

인용문헌
Lee JS, Youn IS, Youn UH, Lee GS, Byun MO, Suh SC (2009) Two CCCH type zinc-finger protein genes responsive to cold stress in rice. (Manuscript in preparation)


(접수일자 2009년 2월 4일, 수리일자 2009년 2월 18일)