The effects of circadian disturbances induced by night-shifts on the mouse peripheral tissues

Dong-Hyun Seo ¹, Han-Sung Kim¹, Chang-Yong Ko ², Jürgen Schreiber², Yeong-Su Jang³, and Kiho Bae ³

1 Department of Biomedical Engineering & Institute of Medical Engineering,
2 Structural and Medical Health Monitoring, Fraunhofer Institute for Nondestructive Testing IZFP, Dresden 01109, Germany
3 Division of Biological Science and Technology, Yonsei University & YonseiFraunhofer Medical Device Lab, Wonju 220-710, Korea

We have examined the effect of circadian disturbances induced by night-shifts on the phenotypes of the tibiae and abdominal adipose tissues in a mouse model by using in vivo micro-computed tomography (microCT). We found that the volumes of total and visceral abdominal adipose tissues in the night-shifted group of mice were significantly larger (69% and 92%, respectively) than those in the control. The mean polar moment of inertia, cross-sectional thickness, and bone mineral density of the cortical bone in the night-shifted group of mice were less (13%, 5%, and 3%, respectively) than those in the control. Moreover, the volume and the thickness of growthplates of the tibiae in the night-shifted mice were significantly smaller (22% and 20%, respectively) than those in the control. Taken together, our results indicate that disturbances in the mouse circadian rhythms induced by night-shifts affect the morphological characteristics of cortical bone, the volume and the thickness of growthplates, and the volume of abdominal adipose tissues.

References