Maslinic Acid, a Triterpenoid from the Root Barks of *Ulmus davidiana* var. *japonica*, Affects the Viability of HSC-T6 Hepatic Stellate Cells†

Sang Hoon Lee¹, Qing Liu¹, Seon Beom Kim¹, Jong Hoon Ahn¹, Mi-Jeong Ahn², Bang Yeon Hwang¹, and Mi Kyeong Lee¹,*

¹College of Pharmacy, Chungbuk National University, Cheongju 361–763, Korea
²College of Pharmacy, Gyeongsang National University, Jinju 660-751, Korea

Abstract – Activation of hepatic stellate cells (HSCs) characterized by increased proliferation and extracellular matrix deposition is identified as the major pathological feature of hepatic cirrhosis. Therefore, suppression of HSC activation has been proposed as an important antifibrotic therapeutic strategy. In the present study, we investigated the antiproliferative activity of root barks of *Ulmus davidiana* var. *japonica* (Ulmaceae) by employing HSC-T6 hepatic stellate cells as an *in vitro* assay system. Further investigation of the n-hexane and CHCl₃ fractions of root barks of *U. davidiana* var *japonica* led to the isolation of six triterpenoids: friedelin (1), epifriedelanol (2), oleaolic acid (3), maslinic acid (4), β-amyrin (5) and α-amyrin (6), together with β-sitosterol (7) and daucosterol (8). Among these compounds, 2, 3 and 4 significantly inhibited HSC proliferation in addition, 4 inhibited HSC proliferation in time- and concentration-related manners, via a partially direct toxic effect, as assessed by morphological changes and release of lactate dehydrogenase.

Key words – *Ulms davidiana* var. *japonica*, Ulmaceae, maslinic acid, antifibrotic, HSC-T6, hepatic stellate cells, triterpenoid

Introduction

Ulms davidiana Planchn var. *japonica* Nakai (Ulmaceae) is a deciduous tree that is widely distributed in Korea and Japan. In traditional Korean medicine, the barks of stem and root of this plant have been used for treating edema, mastitis and gastric cancer with anti-inflammatory, antibacterial and anticancer properties (Baе, 2000). Previous phytochemical studies of *Ulms* species have reported the isolation of diverse flavonoids, triterpenoids and lignans (Lee and Kim, 2001; Lee et al., 2001, 2008; Kim et al., 2007). In addition, beneficial effects of *Ulms* species on neurodegenerative diseases, osteoporosis, cancer and inflammation have been reported (Lee and Kim, 2001; Kim et al., 2008; Choi et al., 2009; Zheng et al., 2010).

Liver fibrosis and end-stage disease cirrhosis are major health issues arising from chronic liver injury caused by diverse factors including viruses, alcohol and metabolic agents. Liver fibrosis is a common response to most chronic hepatic diseases, characterized by the excess production and deposition of extracellular matrix (ECM). An early event in the development of hepatic fibrosis is the activation of hepatic stellate cells (HSCs). HSCs have important functions in normal liver, such as retinoid storage, remodeling of ECM and production of growth factors. During liver fibrosis, HSCs undergo a complex activation process characterized by increased proliferation and ECM deposition, which is the major pathological feature of hepatic cirrhosis (Li and Friedman, 1999; Tsukada et al., 2006). Therefore, suppression of HSC activation and proliferation, and induction of apoptosis in activated HSCs have been proposed as therapeutic strategies for the treatment and prevention of hepatic fibrosis (Wu and Zern, 2000; Bataller and Brenner, 2005).

In the present study, we investigated the antifibrotic activity of root bark of *U. davidiana* var. *japonica*, employing HSC-T6 rat hepatic stellate cells as an *in vitro* assay system. We attempted to isolate antifibrotic compounds and evaluate their antifibrotic activity.

Methods and materials

Plant material – Root barks of *U. davidiana* var.
were purchased from a local herbal market in Chungbuk, Korea, in March 2010. They were identified by the herbarium of College of Pharmacy at Chungbuk National University, where a voucher specimen was deposited (CBNU-2010-UDVJ).

Extraction and isolation — *U. davidiana* var. *japonica* stem bark samples (500 g) were extracted twice with 80% methanol (MeOH), which yielded 43.1 g of total methanolic extract. The methanolic extract was then suspended in H2O and partitioned successively with *n*-hexane, CHCl3, ethyl acetate (EtOAc) and *n*-butanol. The *n*-hexane and CHCl3 fractions, which showed similar thin layer chromatography patterns, were combined to form one fraction. The combined *n*-hexane and CHCl3 fraction (2.3 g) was subjected to silica gel column chromatography with a mixture of *n*-hexane-EtOAc to give 14 fractions (H1-H14). Compound 1 (24.1 mg), 2 (30.6 mg), 7 (16.8 mg), 3 (3.6 mg) and 8 (9.1 mg) were obtained from H1, H2, H4, H8, and H12, respectively, by recrystallization using MeOH. Compound 5 and 6 (2.9 mg) were obtained as a mixture from H3 by recrystallization using MeOH. Compound 4 (1.5 mg) was obtained from H10 by recrystallization using CHCl3.

Culture of HSC-T6 hepatic stellate cells — An immortalized rat hepatic stellate cell line, HSC-T6, was kindly provided by Prof. SL Friedman (Columbia University, New York). HSC-T6 cells were maintained in DMEM supplemented with 10% heat-inactivated fetal bovine serum, 100 IU/ml penicillin and 100 µg/ml streptomycin at 37°C in a humidified atmosphere of 95% air-5% CO2.
Measurement of cell viability – Samples to be tested were dissolved in dimethylsulfoxide (DMSO). Our preliminary study showed that DMSO at a final concentration of 0.1% in the medium did not affect cell viability. HSC-T6 cells were treated with vehicle or samples to be tested for 48 hr or as indicated. Cell viability was assessed by an established 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. HSC-T6 cells were incubated with 0.5 mg/mL of MTT in the last 2 hr of the culture period tested. Reduction of MTT to formazan was assessed in an ELISA plate reader.

Statistical analysis – The evaluation of statistical significance was determined by the Student’s t-test with a value of p ≤ 0.05 were considered to be statistically significant.

Results and discussion

Column chromatographic separation of n-hexane- and CHCl₃- fractions of root bark of U. davidiana var. japonica led to the isolation of six triterpenoids (1-6) and two sterol derivatives (7, 8). The structures of isolated compounds were identified to be friedelin (1), epifriedelanol (2), oleanolic acid (3) maslinic acid (4), β-amyrin (5), α-amyrin (6), β-sitosterol (7) and daucosterol (8), respectively, by comparing of ¹H-, ¹³C-NMR with previous studies (Mahato and Kundu, 1994; Taniguchi et

![A]

Control 10 µM 50 µM 100 µM

![B]

Relative cell viability (%)

Time (hr)

120 100 80 60 40 20 0

10 µM 50 µM 100 µM

![C]

Arbitrary Unit

Concentration (µM)

0 10 50 100

Fig. 3. Concentration- and time-dependent effects of compound 4 on HSC-T6 cells. HSC-T6 cells were incubated with compound 4 at the concentrations ranging from 10 - 100 µM for the indicated times. Cells were observed with a phase contrast microscope [A]. Cell viability was measured by the MTT assay [B] or by LDH release [C]. *p < 0.05, **p < 0.01, ***p < 0.001 compared with control.
et al., 2002; Lee et al., 2005; Sai maru et al., 2007; de Me lo et al., 2010; Li et al., 2010).

Next, we investigated the antiproliferative activity of these constituents in HSC-T6 cells by assessing the cell viability using a MTT assay. Among the compounds isolated, 4 showed potent inhibitory activity, followed by 2 and 3. Compounds 2, 3 and 4 inhibited cell viability up to 61.0%, 59.6% and 17.3% of control, respectively, at a concentration of 100 μM for 48 hr incubation (Fig. 2). Compound 4 decreased HSC proliferation in dose- and time-dependent manners (Fig. 3).

Decreased cell viability generally can be achieved by two pathways: inhibition of cell proliferation or induction of cell death. Induction of cell death usually can be divided in necrosis and apoptosis. Treatment of compound 4 showed differential effects depending on concentration treated. At 100 μM, morphological changes similar to necrosis were observed (Fig. 3A). In addition, lactate dehydrogenase (LDH) release into medium increased compared to control and lysis of cells did not induce any further LDH release. At the concentration of 10 μM, little morphological change indicative of necrosis was observed (Fig. 3A) and LDH release into medium was comparable to that of control. Total cells numbers decreased at the concentration of 10 μM as assessed by LDH release after cell lysis. Therefore, we supposed that maslinic acid (4) exerted anti-proliferative activity on HSCs by differential mechanism depending on its dose. Recent studies suggest the anti-tumor activity of maslinic acid in several cell lines, in part by induction of apoptosis (Reyes-Zurita et al., 2009; Hsum et al., 2011). Based on previous reports together with our present study, the antiproliferative and/or apoptotic activity of maslinic acid might play an important role in the prevention of fibrosis and cancer.

Liver is composed of several different cell types including hepatocytes, HSCs and Kupffer cells, and exerts physiological roles as well as pathological condition by cross-talk of the various cell types. Liver fibrosis can be induced by hepatocellular damage, which causes an inflammatory response leading to HSC activation. Several studies have reported anti-inflammatory activity of the stem and root barks of U. davidiana var. japonica and its constituents (Kim et al., 2007; Choi et al., 2009). Therefore, we expect that the antifibrotic activity of these compounds might be potentiated in vivo, by the collaboration of different mechanism including anti-inflammatory activity. This possibility needs to be investigated.

Acknowledgement

This work was supported Korea Research Foundation Grant funded by the Korea government (MEST) (No. 2010-002505).

References

Received April 16, 2011
Revised July 20, 2011
Accepted July 24, 2011