Note

Ectopic Expression of Wild Rice OgGRP Gene Encoding a Glycine Rich Cell Wall Protein Confers Resistance to Botrytis cinerea Pathogen on Arabidopsis

Eun Hee Jeon1, Eun Sook Chung1, Hye Young Lee1, Jung Hun Pak1, Hye Jeong Kim1, Jai Heon Lee1, Byung Ju Moon2, Ji Ung Jeung3, Sang Hyun Shin3 and Young Soo Chung4

1Department of Genetic Engineering, Dong-A University, Busan 604-714, Korea
2Department of Applied Biology, Dong-A University, Busan 604-714, Korea
3National Crop Experiment Station, Rural Development Administration, Saseong 441-100, Korea
4Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA

(Received on December 12, 2008; Accepted on April 13, 2009)

A full-length cDNA of OgGRP gene encoding a glycine-rich cell wall protein was isolated from wild rice (Oryza grandiglumis). Deduced amino acid sequences of OgGRP are composed of 148 amino acids (16.3 kDa), and show 85.9% homology with Osgrp-2 (Oryza sativa). RT-PCR analysis showed that RNA expression of OgGRP was regulated by defense-related signaling chemicals, such as camptothacin, endothall, jasmonic acid, wounding, or yeast extract treatment. In relation to pathogen stress, the function of OgGRP was analyzed in OgGRP over-expressing Arabidopsis thaliana. Overexpression of OgGRP in Arabidopsis contributed to moderate resistance against fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. In the analysis of the transgenic Arabidopsis lines to check the change of gene expression profile, induction of PRI, PR5 and PDF1.2 was confirmed. The induction seemed to be caused by the interaction of ectopic expression of OgGRP with SA- and JA-dependent signaling pathways.

Keywords: Botrytis cinerea, glycine-rich cell wall protein, Oryza grandiglumis, resistance, wild rice

The plant cell wall composes the first defence structure against external invasion. It is consisted of structural proteins, cellulose, hemicellulose, lignin, peptic and polysaccharides (Keller et al., 1989). The major structural proteins of plant cell wall are glycine-rich proteins (GRP), hydroxypoline-rich glyco-proteins (HRGP) and proline-rich proteins (PRP) (Keller, 1993; Showalter, 1993). Plant GRPs contain numerous glycine residues and characteristic repetitive and regular structures such as the (Gly-X)n motif. In the (Gly-X)n motif, any amino acid including glycine can located in X position. A number of GRPs also contain hydrophobic domain in N-terminal region. In general, GRPs are assumed to be located in the cell wall or interface between cell wall and plasma membrane. Thus, the N-terminal region in GRPs may be responsible for the association of GRPs to the cell wall or plasma membrane (Cassab, 1998; Showalter, 1993) or be supposed to interact with extra- or inter-cellular proteins (Wyatt and Carpita, 1993). To date, a number of GRPs have been identified and characterized from various plants including petunia, bean, tobacco, Arabidopsis, tomato, carrot, rice, maize (Fang et al., 1991; Keller, 1993; Luo et al., 1991; Showalter, 1993). GRPs have been shown to be transcriptionally regulated by various stimuli, including wounding, cold, light (Kaldenhoff and Richter, 1989), water stress (de Oliveira et al., 1990), circadian clock hormone such as auxins (Reddy and Poovaiah, 1987), gibberellins (Nicolas et al., 1997), methyl jasmonate, ethylene (Molina et al., 1997), abscisic acid (Sachetto-M Martins et al., 2000), salicylic acid (Hooft et al., 1986), and pathogen infection (Fang et al., 1991; Molina et al., 1997; Pawlowski et al., 1997). In Arabidopsis thaliana, AtGRP3 plays a role in cell wall as a ligand, which interacts with the extracellular domain of cell wall-associated kinase, WAK1 and resulted in induction of PRI and WAK1 (Park et al., 2001).

Oryza grandiglumis (Döll) Prodoehl (CCDD) has been used as one of the materials for massive screening of disease resistance genes because of its potential for resistance to blast and bacterial blight (Vaughan, 1994). Suppression subtractive hybridization (SSH) and cDNA microarray technique have been employed for rapid screening of defense-related alleles from O. grandiglumis (Kim et al., 2005). Among defense-related genes, a glycine-rich cell wall protein, OgGRP, was isolated and characterized in this study. In addition to gene expression by various stimuli and antifungal activity, change of gene expression profile in transgenic plant was also investigated.

*Corresponding author.
Phone: +82-51-200-7510, FAX: +82-51-200-6536
E-mail: chungys@dau.ac.kr
Materials and Methods

Plant materials and treatments. O. grandiglumis (CCDD, 2n=4X=48) seeds were sown and grown in the National Crop Experiment Station (NCES), Rural Development Administration in Korea. Two-month-old leaf tissues were treated with 20% yeast extracts, wounding and chemicals, all which were prepared by dissolving appropriate solvent or water (Rakwal et al., 2001), and fresh water was used as control treatment. Tissues were incubated under 16 h of light and 8 h of darkness at 24°C. Samples were harvested at the indicated times, and used immediately or stored at -80°C.

Isolation of the OgGRP and sequence alignment. The full-length DNA of OgGRP was cloned using Genome-Walker™ Universal kit (Clontech, USA) according to manufacturer’s instruction. To obtain the full-length cDNA, RT-PCR was performed using SuperScript™ One-Step RT-PCR with Platinum™ Taq (Invitrogen, USA) by manufacturer’s guide. PCR reaction was as follows: cDNA synthesis and pre-denaturation at 48°C for 30 min and at 94°C for 2 min, followed by 28 cycles of denaturing at 94°C for 15 sec, annealing at 58°C for 30 sec, extension at 72°C for 1 min, and final extension at 72°C for 10 min. Gene-specific primers used for amplification were OgGRP-5 (5'-TTA GTG GTG GCC GTT CAC ATA-3') and OgGRP-3 (5'-ATG GCT ACT ACT AAG CAT TTG GCT CTT-3'). Multiple sequence alignment was conducted by CLUSTALX (Thompson et al., 1997), and annotated using GeneDoc. Hydropathy plot was analyzed using ProtScale program in ExPASy (Kyte and Doolittle., 1982) and transmembrane helices were analyzed using TMHMM program in ExPASy (http://www.cbs.dtu.dk/services/TMHMM).

RNA extraction and semi-quantitative RT-PCR analysis. Total RNA was extracted from treated leaves using Concert™ Plant RNA Reagent (Invitrogen, USA) according to manufacturer’s guide, and 30 ng of total RNA of O. grandiglumis was used for semi-quantitative RT-PCR. RT-PCR was performed using SuperScript™ One-Step RT-PCR with Platinum™ Taq (Invitrogen, USA) according to manufacturer’s instruction. PCR condition was as follows: cDNA synthesis and pre-denaturation at 48°C for 30 min and at 94°C for 2 min, followed by 28 cycles of denaturing at 94°C for 15 sec, annealing at 60°C for 30 sec, extension at 72°C for 1 min, and final extension at 72°C for 10 min. For RT-PCR, generic primers, OgGRP-F (5'-ACC CGG GCC ATA GCC AGA GCC TTG CCC AGA-3') and OgGRP-R (5'-ACA CTA CTC AGC TAA CTG AAG TAG CAA AGC-3'), were used. As a control, Rice 18S rRNA primers were used for wild rice 18S rRNA; 18S rRNA-F (5'-ATG ATA GTA CGA CCG ATC GC-3') and 18S rRNA-R (5'-CIT GGA TGT GGT AGC GGT TT-3') (Kim et al., 2003). PCR products were separated on 1% agarose gels, and stained with ethidium bromide. The numerical value intensity of the bands obtained from the RT-PCR product was estimated with a Scion Image Instrument (Scion Corp., MD) using the software LabWorks 4.6 and calculated according to control band assigned to a value of 100.

For RT-PCR of OgGRP overexpressing Arabidopsis transgenic plants, gene specific primers, OgGRP-F and OgGRP-R, AtPR1 (F-5'-ATG AAT TTG ACT GGC TAT TCT CGA-3' and R-5'-TTA GTC AAG TCG CTT CTC GTT CAC ATA-3'), AtPR5 (F-5'-ATG GCA AAT ATC TCC AGT ATT CAC-3' and R-5'-CGA CAT TGT TCT GAT CCA TGA AAT-3') and AtPDF1.2 (F-5'-ATG AGA AAG TTT GTG TCC ATC ATG-3' and R-5'-TTA ACA TGG GAC GTA ACA GAT ACA-3') were used. As a control, Arabidopsis 18S rRNA primers from Arabidopsis were used; 18S rRNA-F (5'-ACG CGG GCT ACA CTG ATG TA-3') and 18S rRNA-R (5'-TGA TGA CTC GCG CTT ACT AGG A-3'). The numerical value intensity of the bands obtained from the RT-PCR product was estimated with a Scion Image Instrument (Scion Corp., MD) using the software LabWorks 4.6 and calculated according to control band assigned to a value of 1.

Construction of OgGRP for Arabidopsis transformation. The OgGRP cDNA fragment was cloned into Smal and SacI enzyme sites of the pCAMBIA-IVS 1301 vector yielding pCAMBIA-OgGRP. The plasmid was introduced into Agrobacterium tumefaciens strain LBA4404. Transgenic Arabidopsis was generated by floral dipping method (Clough and Bent, 1998). Transgenic lines were selected on MS medium containing Hygromycin (50 µg/mL) and RT-PCR analysis was carried out as described above.

Pathogen Growth Assay. B. cinerea was grown on potato dextrose agar (Difco, France) at 25°C for 10 days. Four-week-old transgenic plants were inoculated with B. cinerea spore suspension (3×10⁶ conidia/mL) by 5 µL of spore solution drooping on the surface of leaf. The inoculated plants were incubated in high humidity chamber at 22°C. The susceptibility to B. cinerea was evaluated by necrosis size and disease index at 3 or 6 days after inoculation (DAI) (Zimmerli et al., 2001). Disease index was scored by the symptom of inoculated leaves as follows; 0, no necrosis; 1, mild necrosis; 2, half necrosis; 3, severe necrosis symptom.

Results and Discussion
Pathogenesis-related transcripts were isolated and screened
from wounding and elicitor-treated wild rice by combination of PCR-based subtraction and microarray analysis (Kim et al., 2005; Jeon et al., 2008). One of the induced genes by the stresses was OgGRP (Oryza grandiglumis Glycine-Rich cell wall Protein, Genbank accession No. EU360956). The full length cDNA of OgGRP obtained by 5' and 3' RACE was 663 bp long. OgGRP polypeptide is composed of 148 amino acids with a predicted molecular mass of 16.3 kDa and an isoelectric point (pl) of 6.89. Deduced amino acid sequences of OgGRP shows 85.9% homology with those of rice Osgrp-2 (Genbank accession No. U40708).

In N-terminal region of OgGRP, amino acids from 7 to 29 predict transmembrane helices domain and subsequent hydrophathy plot analysis shows several hydrophobic domains in N-terminal region that is assumed to be associated with the cell wall or cell membrane (Fig. 1). The remaining sequences are characteristic of highly hydrophilic signature. Southern blot analysis was performed to determine the copy number of OgGRP in the genome of O. grandiglumis. According to the Southern blot analysis using full-length gene fragment as a probe, multiple bands were observed from the wild rice genomic DNAs (data not shown). This indicates that OgGRP belongs to a large gene family like other GRPs from many plant species (Lin et al., 2005; Sachetto-Martins et al., 2000). RT-PCR was carried out to analyze gene expression pattern of OgGRP by pathogen-related stresses in O. grandiglumis (Fig. 2). RT-PCR analysis showed that OgGRP transcripts were induced by cantharidin (CN), endotball (EN), SA or JA, which have been known as plant defense-inducing chemicals (Fig. 2). Especially, enhanced OgGRP expression by EN and JA treatment was observed; the increase of 4-fold at 24 h and 5-fold at 72 h than non-treatment plants, respectively. Yeast extracts and wounding treatment also induced gene expression of OgGRP in O. grandiglumis. CN and EN are protein phosphatase inhibitor and previously reported to be involved in the induction of isoflavonoid phytoalexins on cut surface of soybean cotyledons (MacKintosh et al., 1994). SA and JA are the endogenous plant hormones well-known for their important roles in pathogen infection. Their induced level by pathogen infection triggers separate sets of genes encoding antimicrobial proteins (Thomma et al., 1998).

This result implies that OgGRP expression is regulated by defense signaling. The basal expression of OgGRP detected from the control samples indicates that GRP may have the essential role as structural proteins in wild rice. There have been many reports on GRPs' involvement in
cell wall reinforcement or in signal transduction of defense-related response (Lin et al., 2005; Lu et al., 2007; Molina et al., 1997). Members of GRPs are more ubiquitous than expected in their temporal and spatial expression. RNA induction of OgGRP in response to defense signaling prompted us to test the role of OgGRP against fungal infection (Fig. 3). For the ectopic expression of OgGRP, pCAMBIA-OgGRP construct was made (data not shown). Subsequently, transgenic Arabidopsis plants overexpressing OgGRP driven by the 35S CaMV constitutive promoter were generated. Four transgenic lines (L2, L7, L8, L10) showing high ectopic expression of OgGRP were tested for B. cinerea resistance compared to wild type Arabidopsis plants (Fig. 3). B. cinerea was inoculated to the homozygous transgenic plants as previously described (Zimmerli et al., 2001). B. cinerea spore suspension (3 × 10⁵ conidia/mL) was drop-inoculated and the susceptibility of control and the transgenic lines were scored by disease index (0 to 3) (Fig. 3A). A third of control plants inoculated was scored as disease index 3 (highest susceptibility) and the rest of them as index 2 (Fig. 3B). In case of transgenic lines, 9–21% showed disease index 3, 68–77% for 2 and 5–23% for 1, respectively. The result demonstrated that transgenic lines showed moderate resistance against B. cinerea disease infection. In the test of necrosis size after fungal infection, OgGRP overexpressing transgenic lines displayed much smaller size of necrosis (4.2–4.5 mm²) in all 4 lines than in control plants (5.78 mm²) (Fig. 3C). Considering both results from disease index and necrosis size, ectopic expression of OgGRP confers moderate resistance against B. cinerea infection on Arabidopsis. Considering the fact that B. cinerea is known to attack more than 200 different plant species (Elad, 1997; Prins et al., 2000) and causes a problematic disease, probing of new gene resources like OgGRP from wild species is desirable and highly recommended effort.

In the test of OgGRP role against fungal infection using OgGRP overexpressing transgenic lines, we observed their mild resistance against B. cinerea. To further understand the basis of resistance in transgenic Arabidopsis, we carried out
Fig. 4. Expression of OgGRP, AtPR1, AtPR5 and AtPDF1.2 in wild type (C) and OgGRP overexpressing transgenic Arabidopsis seedlings. Total RNAs were isolated from 4-week-old plants. The relative expression of each gene was quantified using the software LabWorks 4.6 and calculated according to control band assigned to a value of 1. As a quantitative control, Arabidopsis 18S rRNA was amplified.

RT-PCR analysis of defense-related endogenous genes that might confer the resistance against pathogen infection in Arabidopsis. Gene expression profiles of AtPR1, AtPR5 and AtPDF1.2 involved in each SA and JA signal pathway were investigated (Fig. 4). As previously confirmed, no expression of OgGRP was detected in non-transgenic line but all the transgenic lines had different levels of OgGRP expression. In control plants, AtPR1 and AtPR5 RNA transcripts were induced slightly but not for AtPDF1.2. All 3 genes, however, strongly induced or expressed in 4 transgenic plants. Especially, in case of AtPR5 and AtPDF1.2, their expression pattern showed the increase of 75-fold at L8 and 9.1-fold at L7 than non-transgenic plants, respectively. It is well known that PR1 and PR5 are generally activated by SA signaling and plant defense genes PDF1.2, along with a PR3 and PR4 gene, is induced by pathogens via JA-dependent pathway (Thomma et al., 1998). Considering the induced expression of OgGRP by JA and SA treatment (Fig. 2), overexpression of OgGRP in Arabidopsis interacts with those components of SA- and JA- dependent signaling pathways.

In conclusion, we cloned a novel OgGRP encoding a glycine-rich cell wall protein, and observed its induced expression by defense-related signaling. And ectopic expression of OgGRP in Arabidopsis conferred moderate resistance against B. cinerea. According to the gene profile analysis, the resistance was resulted from a certain interaction of OgGRP with components of SA- and JA- dependent signaling pathways.

Acknowledgement

This research was supported by Dong-A University Research Fund, 2007.

References


