Bayesian Inference for Switching Mean Models
with ARMA Errors

Young Sook Son, Seong W. Kim, Sinsup Cho

Abstract

Bayesian inference is considered for switching mean models with the ARMA errors. We use noninformative improper priors or uniform priors. The fractional Bayes factor of O'Hagan (1996) is used as the Bayesian tool for detecting the existence of a single change or multiple changes and the usual Bayes factor is used for identifying the orders of the ARMA error. Once the model is fully identified, the Gibbs sampler with the Metropolis–Hastings subchains is constructed to estimate parameters. Finally, we perform a simulation study to support theoretical results.

Key Words: switching mean model; multiple change points; ARMA error; noninformative improper prior; fractional Bayes factor; Gibbs sampler; Metropolis–Hastings algorithm.

1. INTRODUCTION

Change point problems originally arisen in quality control have received interests in many fields. The bulk of studies on change point problems in frequentist perspective are found in Csörgő and Horváth (1997). Our interest in this paper is in the change point analysis of time series models with switching means using the Bayesian approach.

Ohtani (1982) presented a Bayesian procedure for estimating parameters of the switching regression model under noninformative priors when the subset of regression coefficients shifts and the error terms are generated by the \textit{AR}(1) process. Albert and Chip (1993) discussed Bayesian inference via Gibbs sampling for autoregressive time series models with Markov jumps in mean and variance. Garisch and Groenewald (1999) dealt with Bayesian change point analysis in the linear model with correlated errors. They assumed the multivariate normal prior for a vector of regression parameters, the noninformative improper prior for the variance of white noises, and an uniform prior over \((-1,1)\) for the correlation of errors. Two well-known
criteria are used for identifying the number of change points along with their positions. They are the arithmetic intrinsic Bayes factor (AIBF) of Berger and Pericchi (1996) and the fractional Bayes factor (FBF) of O’Hagan (1995).

Consider a simple regression model,

\[Y_t = \mu + \varepsilon_t. \tag{1} \]

We often call this a constant mean model. If a set of time series data, \((y_t, t=1,2,\ldots,n) \), is generated from the model in (1), the error term \(\{\varepsilon_t\} \) will have the structure explaining autocorrelations of time series data. The model in (1) generally assumes that the mean is constant over all time periods. But a time series with a globally constant mean is practically very restrictive. There are rather many cases that the mean changes slowly or abruptly as the time passes.

In this paper, we consider the locally constant mean model, \(M_{k,d_1,d_2,q} \) with multiple mean changes at unknown time points \(d_k = (d_1, d_2, \ldots, d_k) \), assuming the ARMA\((p,q)\) error. The proposed model is as follows:

\[M_{k,d_1,d_2,q} : Y_t = \varepsilon_t + \begin{cases}
\mu_0, & t=1,2,\ldots,d_1, \\
\mu_1, & t=d_1+1, d_1+2, \ldots, d_2, \\
\vdots \\
\mu_{k-1}, & t=d_{k-1}+1, d_{k-1}+2, \ldots, d_k, \\
\mu_k, & t=d_k+1, d_k+2, \ldots, n,
\end{cases} \tag{2} \]

where \(\mu_{j-1} \neq \mu_j \) for \(j=1,2,\ldots,k \) and \(\{\varepsilon_t\} \) follows an ARMA\((p,q)\) process, that is,

\[\Phi_p(B)\varepsilon_t = \Theta_q(B)a_t. \]

Here, \(\Phi_p(B) = 1-\phi_1B-\phi_2B^2-\cdots-\phi_pB^p \) and \(\Theta_q(B) = 1-\theta_1B-\theta_2B^2-\cdots-\theta_qB^q \), where \(B \) is a backshift operator, and \(\{a_t\} \) is a sequence of \(N(0,\sigma^2) \) white noises. For this model, \(\mu_0, \mu_1, \ldots, \mu_k, \sigma^2, k, d_k, p, q \) and \(\Phi_p=(\phi_1, \phi_2, \ldots, \phi_p) \), and \(\Theta_q=(\theta_1, \theta_2, \ldots, \theta_q) \) are all unknown parameters. For the stationarity and invertibility of ARMA\((p,q)\) error, \((\Phi_p, \Theta_q) \) must be in the region \(C_p \times C_q \), where

\[C_p \times C_q = \{ (\Phi_p, \Theta_q) : \Phi_p(x)=0 \text{, } |x| > 1 \text{ and } \Theta_q(y)=0 \text{, } |y| > 1 \}. \]
We denote the model \(M_{0,p,q} \) with \(k=0 \) in the model \(M_{k,d_a,s,a} \) as the no-switching model with \(\mu_0 = \mu_1 = \cdots = \mu_k \) in (2), which is known as a stationary and invertible ARMA\((p,q)\) process. The model \(M_{k,d_a,s,a} \) is a nonstationary process in the sense that the mean of process is not a globally constant.

We use the fractional Bayes factor (FBF) of O’Hagan (1995) as a Bayesian tool to determine the number of change points and the usual Bayes factor to identify the orders of ARMA\((p,q)\) error. We propose a “binary segmentation” procedure. At the first level, we compare the models between no change point and a single change point using the FBF. If the test is in favor of the change point model, we locate the change point. Then we compute two FBF’s similar to what we have done after dividing the data into two parts by the change point. We continue to conduct tests until no more change points are found in a subsegment. For the model being fully identified, we estimate parameters using the Gibbs sampler with the Metropolis–Hastings subchains.

When performing the Bayesian analysis for models including stationary and invertible ARMA structure, the most cumbersome problem is the specification of \(C_p \times C_q \) for every \(p \) and \(q \). We transform the region \(C_p \times C_q \) into the region \((-1,1)^{p+q} \) to overcome this difficulty. This transformation is often used when integrating on \((\phi_p, \theta_q) \) for computing Bayes factors or randomly drawing \((\phi_p, \theta_q) \) in the Gibbs sampler (cf. Marriot, et al. (1992); Varshavsky (1995); Son (1999, 2001)).

The contents of this paper are as follows. In Section 2, we build a matrix form of the model and prior assumptions. Also, the exact and explicit likelihood functions are presented. In Section 3, the posterior probabilities of competing models are computed using the FBF for the identification of models. In Section 4, we construct the Gibbs sampler with the Metropolis–Hastings subchains for the estimation of parameters. In Section 5, some simulation results are provided. Finally, we finish this article with short concluding remarks in Section 6.

2. PRIOR ASSUMPTIONS AND LIKELIHOOD FUNCTION

Suppose that \(Y_1, Y_2, \ldots, Y_n \) follow the process given in (2). Then, its matrix form is formulated as

\[
M_{k,d_a,s,a} : \quad Y = X_{k} \mu_{k} + \varepsilon,
\]

where \(Y = (Y_1, Y_2, \ldots, Y_n)' \), \(\mu_{k} = (\mu_0, \mu_1, \ldots, \mu_k)' \), \(\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n)' \), and
\[
X_k = \begin{bmatrix}
1_{d_1} & 0_{d_1} & 0_{d_1} & \cdots & 0_{d_1} \\
1_{d_2-d_1} & 1_{d_2-d_1} & 0_{d_2-d_1} & \cdots & 0_{d_2-d_1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1_{d_n-d_{n-1}} & 0_{d_n-d_{n-1}} & 0_{d_n-d_{n-1}} & \cdots & 1_{n-d_{n-1}} \\
sym & & & &
\end{bmatrix}
\]

is an \(n \times (k+1) \) matrix with \(1_a(0_a) \) representing a \(a \times 1 \) column vector with ones(zeros) as its all elements. Since \(\{\varepsilon_t\} \) follows a stationary and invertible ARMA\((p,q)\) process, \(E(Y) = X_k \mu_k \) and \(Cov(Y) = \sigma^2 V_{p,q} \), where \(V_{p,q} \) is an \(n \times n \) matrix composed of only \(\phi_p \) and \(\theta_q \). For the no-switching model, \(M_{0,p,q} \), its matrix form is

\[
M_{0,p,q} : Y = \mu_0 1_{n} + \xi
\]

We assume noninformative priors. Then the prior specifications are as follows:

\[
\pi_k^N(\mu_k, \sigma) \propto \sigma^{-s}, \quad \mu_k \in R^{k+1} = (-\infty, \infty)^{k+1}, \quad 0 < \sigma < \infty, \quad s > 0,
\]

\[
\pi_0^N(\mu_0, \sigma) \propto \sigma^{-s}, \quad \mu_0 \in R = (-\infty, \infty), \quad 0 < \sigma < \infty, \quad s > 0,
\]

\[
\pi(\phi_p, \theta_q|p,q) = I_{C_p \times C_q}(\phi_p, \theta_q) / \text{Volume}(C_p \times C_q),
\]

where

\[
I_{C_p \times C_q}(\phi_p, \theta_q) = \begin{cases}
1, & \text{if } (\phi_p, \theta_q) \in C_p \times C_q, \\
0, & \text{otherwise}.
\end{cases}
\]

Throughout this paper, the superscript \(N \) implies the use of noninformative improper prior or its result. The priors of discrete parameters, \(k, d_k, p, \) and \(q \), are assumed as uniform priors with each support, \(K = \{k_1, k_2, \ldots\} \), \(D_k = \{d_{k_1}, d_{k_2}, \ldots\} \), \(P = \{p_1, p_2, \ldots\} \), and \(Q = \{q_1, q_2, \ldots\} \), respectively. Here, all elements of \(D_k \) are restricted so that all the parameters of each model generated by change points can be estimated and all elements of \(K, P, \) and \(Q \) are nonnegative integers. Finally, under the assumption of independence among sets of parameters, the prior of the switching model, \(M_{k, d_1, p, q} \), for \(k = 1, 2, \ldots \) is

\[
\pi_k^N(d_k, \mu_k, \sigma, p, q, \phi_p, \theta_q) \propto \pi(d_k) \cdot \pi_k^N(\mu_k, \sigma) \cdot \pi(\phi_p, \theta_q|p, q)
\]

and that of the no-switching model, \(M_{0,p,q} \), is
Bayesian Inference for Switching Mean Models with ARMA Errors

\[\pi_0^N(\mu_0, \sigma, \phi, \theta_q) \propto \pi_0^N(\mu_0) \cdot \pi(\phi, \theta_q | \rho, q). \]

Now, let an observed sequence of \(\mathbf{Y} \) be \(\mathbf{y}=(y_1, y_2, ..., y_n)' \), then from (3) and (4) the full likelihood functions under model \(M_{k, \mu, q} \) and model \(M_0, q \) can exactly and explicitly written as

\[l_k(\mathbf{d}_k, \mu_k, \sigma, p, q, \phi_p, \theta_q | \mathbf{y}) = \left(2\pi \sigma^2 \right)^{-\frac{n}{2}} |V_{p,q}^-|^{-\frac{1}{2}} \]

\[\cdot \exp \left\{ \frac{1}{2\sigma^2} (\mathbf{y} - X_k \mu_k)' V_{p,q}^{-1} (\mathbf{y} - X_k \mu_k) \right\}, \tag{8} \]

and

\[l_0(\mu_0, \sigma, p, q, \phi_p, \theta_q | \mathbf{y}) = \left(2\pi \sigma^2 \right)^{-\frac{n}{2}} |V_{p,q}^-|^{-\frac{1}{2}} \]

\[\cdot \exp \left\{ \frac{1}{2\sigma^2} (\mathbf{y} - \mu_0 1_n)' V_{p,q}^{-1} (\mathbf{y} - \mu_0 1_n) \right\}, \]

where the specifications of \(V_{p,q}^- \) and \(|V_{p,q}^-| \) are shown in Leeuw (1994).

3. MODEL SELECTION BY THE FRACTIONAL BAYES FACTOR AND THE BAYES FACTOR

Consider the problem of identifying a mean change model with multiple change points given a time series data, \(\mathbf{y}=(y_1, y_2, ..., y_n)' \). First, we are going to test the switching model \(M_1 \) with a single mean change against the no-switching model \(M_0 \). Now, We define the following function of data \(\mathbf{y} \), a change point \(\mathbf{d}_k \) and a constant \(b (0 < b < 1) \) for the model \(M_{k, \mu, q} \) and \(M_0, q \).

\[B_{k,b}^{N}(\mathbf{d}_k, \mathbf{y} | b) = \frac{\sum_{P \in \mathcal{P}} \sum_{\Phi \in \mathcal{Q}} m_{(k, \mu, q)}^N(\mathbf{y} | b)}{\sum_{P \in \mathcal{P}} \sum_{\Phi \in \mathcal{Q}} m_{(0, q)}^N(\mathbf{y} | b)}, \]

where

\[m_{(k, \mu, q)}^N(\mathbf{y} | b) = \int_{C_C} \int_{C_C} \int_{C_C} \pi_k^N(\mathbf{d}_k, \mu_k, \sigma, p, q, \phi_p, \theta_q) \]

\[\cdot \left(l_k(\mathbf{d}_k, \mu_k, \sigma, p, q, \phi_p, \theta_q | \mathbf{y}) \right)^b d \mu_k d \sigma d(\phi_p \times \theta_q) \tag{9} \]

and
$$m_{10,\beta,\alpha}^N(\mathbf{y} | b) = \int_{C_p} \int_{C_q} \int_0^\infty \int_R \pi_0^N(\mu_0, \sigma, \varphi, \theta_0)$$

$$\cdot \{L_0(\mu_0, \sigma, \varphi, \theta_0 | \mathbf{y})\}^b \, d\mu_0 \, d\sigma \, d(\varphi, \theta_0). \quad (10)$$

When computing the integrals in (9) and (10), the integrations for μ_k, μ_0, and σ are easily solved by using the kernels of the multivariate normal density for μ_k, the normal density for μ_0, and the inverse gamma density for σ. Specially, we use the following identity to integrate over μ_k.

$$(\mathbf{y} - X_k \mu_k)' V_{\beta,\varphi}^{-1}(\mathbf{y} - X_k \mu_k)$$

$$= \{(\mathbf{y} - X_k \widehat{\mu}_k) + X_k(\widehat{\mu}_k - \mu_k)\}' V_{\beta,\varphi}^{-1}\{\mathbf{y} - X_k \widehat{\mu}_k\} + X_k(\widehat{\mu}_k - \mu_k)$$

$$= S_{k,\beta,\varphi} + (\mu_k - \widehat{\mu}_k)(X_k' V_{\beta,\varphi}^{-1} X_k)(\mu_k - \widehat{\mu}_k),$$

where

$$S_{k,\beta,\varphi} = (\mathbf{y} - X_k \widehat{\mu}_k)' V_{\beta,\varphi}^{-1}(\mathbf{y} - X_k \widehat{\mu}_k),$$

$$\widehat{\mu}_k = (X_k' V_{\beta,\varphi}^{-1} X_k)^{-1} X_k' V_{\beta,\varphi}^{-1} \mathbf{y}.$$

But the region $C_p \times C_q$ with higher order of p and q than 2 is not explicit, and the integration over (φ, θ_0) is very complicated. To circumvent the difficulty in identifying $C_p \times C_q$ with high order p and q, there is an useful reparameterization. Following Barnsorff-Nielsen and Schou (1973), Monahan (1984), and Jones (1987), there is one to one transformation between (φ, θ_0) and partial autocorrelations (γ_p, γ_q), where $\gamma_p = (\gamma_{p1}, \gamma_{p2}, ..., \gamma_{pp})$ and $\gamma_q = (\gamma_{q1}, \gamma_{q2}, ..., \gamma_{qq})$, that maps $C_p \times C_q$ onto $(-1,1)^{k+q}$.

Let $z_{(k)} = (z_{i1}^{(k)}, z_{i2}^{(k)}, ..., z_{ik}^{(k)}), i = 1, 2, ..., k$. Then $z_{i}^{(k)}$ is calculated from the recursive relation, $z_i^{(k)} = z_i^{(k-1)} - r_k z_{k-i}^{(k-1)}$, $i = 1, 2, ..., k-1$, with $z_1^{(1)} = r_1$ as the initial setting and $z_k^{(k)} = r_k$ as the final setting. Finally, set $\phi = z_{(p)}$. For example of $p = 3$, $\phi = r_1 - r_1 r_2 - r_2 r_3$, $\phi_2 = r_2 - r_1 r_3 + r_1 r_2 r_3$, and $\phi_3 = r_3$.

After integrating over μ_k and σ in (9), we can let

$$S_{k,\beta,\varphi} = |X_k' V_{\beta,\varphi}^{-1} X_k|^{-1} \cdot |(X_k, \mathbf{y})' V_{\beta,\varphi}^{-1}(X_k, \mathbf{y})|$$

using the fact given in Shilov (1961) that for some matrices, A and B.
Bayesian Inference for Switching Mean Models with ARMA Errors

\[|A' A|^{\frac{1}{2}} \cdot \| (I - P_A) B \| = \|(A, B)' (A, B)\|^{\frac{1}{2}} \] with \(P_A = A(A' A)^{-1} A' \) and \(\| x \| = (x' x)^{1/2} \) for some column vector \(x \). Finally, after transforming from \((\varphi, \xi) \) to \((\gamma_{\varphi}, \gamma_{\xi}) \), the final form of (9) is obtained by

\[
m^N_{0, k, a, \flat, \phi}(y | b) = \frac{\Gamma \left(\frac{1}{2} \left((bn + s - k - 2) \right) \right) \cdot \pi \left(d_k \right)}{b^{\frac{1}{2} (bn + s - 1)} \cdot 2^{\frac{1}{2} (3 - s)} \cdot \pi \left(\frac{1}{2} \right) (bn - k)} \cdot g(s, d_k, p, q, X_k, y | b),
\] (11)

where

\[
g(s, d_k, p, q, X_k, y | b) = \int_{(-1, 1)^{\mathbb{R}}} \frac{\left| V_{\varphi, \xi}^{-1} \right|^\frac{1}{2} \left| X_{\varphi} \cdot V_{\varphi, \xi}^{-1} X_{\xi} \right|^\frac{1}{2} (bn + s - k - 3)}{\left| (X_k, y)' V_{\varphi, \xi}^{-1} (X_k, y) \right|^\frac{1}{2} (bn + s - k - 2)} f(\gamma_{\varphi}, \gamma_{\xi}) d(\gamma_{\varphi} \times \gamma_{\xi}),
\] (12)

\(V_{\varphi, \xi} \) is an \(n \times n \) matrix with \((\varphi, \xi) \) in \(V_{\varphi, \xi} \) being replaced by \((\gamma_{\varphi}, \gamma_{\xi}) \), and

\[
f(\gamma_{\varphi}, \gamma_{\xi}) = \prod_{u=1}^{d_k} B_{r_u} \left(\left[\frac{1}{2} (u + 1) \right] \cdot \left[\frac{1}{2} u + 1 \right] \cdot \prod_{v=1}^{d_k} B_{r_v} \left(\left(\frac{1}{2} (v + 1) \right) \cdot \left[\frac{1}{2} v + 1 \right] \right) \right)
\]

with \(B_{r_u} (a_1, a_2) \) denoting a rescaled beta probability density of a random variable \(r_i \) defined on \((-1, 1) \) with two parameters, \(a_1 \) and \(a_2 \). Similarly, the final form, \(m^N_{0, k, a, \flat, \phi}(y | b) \), of (10) is obtained by replacing \(k = 0 \), \(X_k = \mathbb{1}_n \), and omitting the terms on the change point \(d_k \) in equation (11).

There is the fractional Bayes factor (FBF) of O'Hagan (1995) as a Bayes factor which can be used for Bayesian testing in spite of arbitrary constants in improper priors. The FBF is classified as a ‘default’ or an ‘automatic’ Bayes factor free from arbitrariness of noninformative improper priors. The default Bayes factors are simpler and more automatic to use since they don’t need setting hyperparameters under conjugate priors or considering the imaginary constant as in Spiegelhalter and Smith (1982).

The FBF for testing the switching model \(M_1 \) with a fixed change point \(d_1 \) against the no-switching model \(M_0 \) is defined as follows:

\[
B^{\text{FBF}}_{10} (d_1) = B^N_{10} (d_1, y | b = 1) \cdot B^N_{01} (d_1, y | b),
\]

where \(b = (\text{the size of a minimal training sample}) / n \) is the common use of \(b \) in O’Hagan (1995) when robustness is not major concern. The minimal training sample implies the part of full sample with the minimal sample size to guarantee the finiteness of both \(m^N_{1, d, a, \flat, \phi}(y | b = 1) \) and \(m^N_{0, d, a, \phi}(y | b = 1) \). It is sufficient to check how the minimal training sample size for the model \(m^N_{1, d, a, \flat, \phi}(y | b = 1) \) is, since the model
$m^N_{\{1, d, \beta, \sigma\}}(y \mid b = 1)$ is a model including the model $m^N_{(b, \beta, \sigma)}(y \mid b = 1)$. Four observations as a minimal training sample must be continuously sampled each two observations to estimate each μ_0, μ_1, and σ at both sides centering the change point, since all the priors except μ_0, μ_1, and σ have finite supports. For example, a minimal training sample of size 4 with a change point d_1 is $(y_{d_1-1}, y_{d_1}, y_{d_1+1}, y_{d_1+2})$.

Finally, the posterior probability of the change model M_1 is given by

$$P(M_1 \mid y) = \sum_{d_1 \in D_1} \left\{ \frac{p_1}{p_0} B^{FBE}_{10}(d_1) \right\}^{-1} + \left\{ \pi(d_1 \mid y) \right\}^{-1}^{-1},$$

(13)

where $p_1 (p_0)$ is the prior probability of the model $M_1 (M_0)$ being true, and

$$\pi(d_1 \mid y) = \frac{\sum_{p \in P, \sigma \in Q} m^N_{\{1, d, \beta, \sigma\}}(y \mid b = 1)}{\sum_{d_1 \in D_1, p \in P, \sigma \in Q} m^N_{\{1, d, \beta, \sigma\}}(y \mid b = 1)}$$

(14)

is the posterior probability of the change at each time point.

Theoretically, we can detect whether there is any change or not by the probability of (13), and find where the change occurs by the probability of (14). But the computation of the denominator in (14) for all $d_1 \in D_1$ takes a lot of times. Setting $p = 0$ and $q = 0$ in the computation of (14) much more reduces the computation time and gives a reasonable result in the practical simulation of Section 5. We think that the mean change and the change point can be roughly detected under the assumption of random errors, since the ARMA(p, q) error process is stationary.

For each group of data divided centering the change point with the maximum posterior probability of the change, the Bayesian procedure for detecting the existence of a single change is recursively repeated until any more changes are not detected. If the number of changes and the positions of change points are assumed to be determined as k and d_1, respectively, in order to identify the orders p and q of ARMA(p, q) errors, we use the usual Bayes factor,

$$B^N_{\{k, d_1, \beta, \sigma\}}(y \mid b = 1) = \frac{m^N_{\{k, d_1, \beta, \sigma\}}(y \mid b = 1)}{m^N_{\{k, d_1, \beta, \sigma\}}(y \mid b = 1)},$$

(15)

for testing the model $M_{k, d_1, \beta, \sigma}$ with ARMA(p, q) errors against the model $M_{k, d_1, \beta, \sigma}$ ($p \neq p'$ or $q \neq q'$) with ARMA(p', q') errors. Finally, the posterior probability of each model
with ARMA(\(p, q\)) errors is given by

\[
P(M_k, d_k, p, q \mid y) = \sum_{p', q'=1}^{P, Q} \left\{ \frac{P_{p', q'}(B(k, d_k, p', q'; \theta, \phi))}{p_{p', q'} (B(k, d_k, p, q; \theta, \phi))} \right\}^{-1},
\]

where \(p_{p', q'}(B)\) is the prior probability of the model \(M_k, d_k, p', q'\) being true.

4. ESTIMATION BY GIBBS SAMPLING

When only the number of changes, \(k\), and the orders of ARMA(\(p, q\)) errors are known, we are going to estimate parameters, \((d_k, \mu_k, \sigma, \phi_p, \phi_\beta)\). After combining (7) and (8), and transforming parameters \((\phi_p, \phi_\beta)\) into \((\chi_p, \chi_\beta)\), the joint posterior distribution of \((d_k, \mu_k, \sigma, \chi_p, \chi_\beta)\) for fixed \(k, p,\) and \(q\) is given by

\[
\pi(d_k, \mu_k, \sigma, \chi_p, \chi_\beta \mid y) \propto \sigma^{-(n+3)\frac{1}{2}} \left| \mathbf{V}_{p,q}^{-1} \right|^{-\frac{1}{2}} \cdot \exp\left\{ -\frac{1}{2\sigma^2} \left(\mathbf{y} - \mathbf{X}_k \mu_k \right)^\top \mathbf{V}_{p,q}^{-1} \left(\mathbf{y} - \mathbf{X}_k \mu_k \right) \right\}.
\]

The full conditional posterior densities for Gibbs sampling from equation (17) are as follows:

\[
[\sigma^2 | d_k, \mu_k, \chi_p, \chi_\beta] \sim IG\left(\frac{1}{2} (n + s - 1), \frac{1}{Q(d_k, \mu_k, \chi_p, \chi_\beta)}\right),
\]

where \(IG(a, \beta)\) denotes the inverse gamma distribution with parameters \((a, \beta)\) which of density is given by \(\pi(\sigma^2 | a, \beta) = \left(\frac{\beta^a \Gamma(a)}{\alpha^a} \right)^{-1}(\sigma^2)^{-(a+1)\frac{1}{2}} e^{-\frac{\beta}{2\sigma^2}}\), and \(Q(d_k, \mu_k, \chi_p, \chi_\beta) = (\mathbf{y} - \mathbf{X}_k \mu_k)^\top \mathbf{V}_{p,q}^{-1} (\mathbf{y} - \mathbf{X}_k \mu_k)\).

\[
[\mu_k | d_k, \sigma, \chi_p, \chi_\beta] \sim N_{k+1}\left(\frac{\mu_k}{\sigma^2} \chi_p, \sigma^2 \mathbf{V}_{p,q}^{-1} \chi_p \right),
\]

where

\[
\hat{\mu}_k = (\mathbf{X}_k^\top \mathbf{V}_{p,q}^{-1} \chi_p) \chi_p \mathbf{V}_{p,q}^{-1} \mathbf{y}.
\]

\[
[d_k | \mu_k, \sigma, \chi_p, \chi_\beta] \sim \mathcal{G}(d_k) = \exp\left\{ -Q(d_k, \mu_k, \chi_p, \chi_\beta) / (2\sigma^2) \right\}.
\]

Finally,

\[
[x_p, x_\beta | d_k, \mu_k, \sigma] \sim \mathcal{G}(x_p, x_\beta) = |\mathbf{V}_{p,q}^{-1}|^{1/2} \cdot \exp\left\{ -\frac{1}{2\sigma^2} Q(d_k, \mu_k, x_p, x_\beta) \right\} \cdot \mathcal{G}(x_p, x_\beta).
\]

Since the conditional posterior densities of \(d_k\) and \((\chi_p, \chi_\beta)\) are not the standard form, we have to run the Metropolis–Hastings (MH) algorithm of Hasting (1970).

The MH algorithm for generating \(d_k\) is performed as follows:
STEP 0: Set the initial value \(d_k^{(0)} \) as the value of \(d_k \) in the previous iteration of the Gibbs sampler and \(j = 0 \).

STEP 1: Generate \(d_k^* = (d_1, d_2, ..., d_k) \) from the discrete uniform distribution with a support \(D_k \).

STEP 2: Compute \(c = \min \{ 1, g(d_k^*)/g(d_k^{(j)}) \} \).

STEP 3: Generate \(U \) from Uniform(0,1) density.

STEP 4: Set \(d_k^{(j+1)} = \begin{cases} d_k^*, & \text{if } U \leq c, \\ d_k^{(j)}, & \text{if } U > c. \end{cases} \)

STEP 5: Set \(j = j + 1 \), and go to STEP 1.

The MH algorithm for generating \((\mathbf{x}_p, \mathbf{x}_q) \) is performed as follows:

STEP 0: Set the initial values, \(x_p^{(0)} = (\gamma_1, \gamma_2, ..., \gamma_p) \) and \(x_q^{(0)} = (\gamma'_1, \gamma'_2, ..., \gamma'_q) \), as the values of \(\mathbf{x}_p \) and \(\mathbf{x}_q \) in the previous iteration step of the Gibbs sampler and \(j = 0 \).

STEP 1: Generate \(\gamma_i (i = 1, 2, ..., p) \) and \(\gamma'_i (i = 1, 2, ..., q) \) independently from the uniform distribution with a space \((-1,1)\). Then, set \(x_p^* = (\gamma_1, \gamma_2, ..., \gamma_p) \) and \(x_q^* = (\gamma'_1, \gamma'_2, ..., \gamma'_q) \).

STEP 2: Compute \(d = \min \{ 1, h(x_p^*, x_q^*)/h(x_p^{(j)}, x_q^{(j)}) \} \).

STEP 3: Generate \(U \) from Uniform(0,1) density.

STEP 4: Set \((x_p^{(j+1)}, x_q^{(j+1)}) = \begin{cases} (x_p^*, x_q^*), & \text{if } U \leq d, \\ (x_p^{(j)}, x_q^{(j)}), & \text{if } U > d. \end{cases} \)

STEP 5: Set \(j = j + 1 \), and go to STEP 1.

At each iteration of Gibbs sampler, \((\mathbf{x}_p, \mathbf{x}_q) \) is retransformed to \((\Phi_p, \Phi_q) \).

5. Simulation Study

We carry out a simulation study to check the Bayesian inference procedure for multiple switching mean models with ARMA errors discussed in the previous sections. All the computations are completed using the MATLAB (The MATH WORKS Inc., 1999).

Three time series data sets with each two change points are generated from the following
models where $\sigma^2 = 1$, and shown in Figure 1.

![Simulated Time Series Plots](image)

Figure 1. Plots of three simulated time series.

(i) A switching mean model with a sample size $n = 300$, two change points, $d_1 = (100, 200)$, $\mu_2 = (16, 18, 15)$, and the $AR(2)$ error with $\phi_1 = 0.3$ and $\phi_2 = -0.5$.

(ii) A switching mean model with a sample size $n = 150$, two change points, $d_2 = (50, 100)$, $\mu_2 = (30, 32, 35)$, and the $ARMA(1, 1)$ error with $\phi_1 = -0.7$ and $\theta_1 = 0.6$.

(iii) A switching mean model with a sample size $n = 300$, two change points, $d_2 = (100, 200)$, $\mu_2 = (44, 42, 40)$, and the $MA(2)$ error with $\theta_1 = -0.2$ and $\theta_2 = -0.8$.

We set $s = 1$ as the reference prior in the priors of (5) and (6). Also, we assume equal prior probabilities for each model, that is, $p_0 = p_1$ in (13) and $p_{g,q} = p_{g,q}$ in (16).

Table 1 shows the posterior probabilities of switching mean models computed using the FBF. Concerning the switching mean model with $AR(2)$ errors, at step 1 the posterior probability of the switching mean model for the data with a total of 300 observations is one and the change point (cp) is 200 with the maximum posterior probability (mpp), 0.4540.

At the next step the posterior probability of the switching mean model for the first 200 observations is also one and the change point (cp) is 99 with the maximum posterior probability (mpp), 0.4450. At the last step, each posterior probability of the switching mean models is 0.1408, 0.1388, and 0.1251, respectively, for three data groups with observation numbers, 1–99, 100–200, and 201–300, which implies that there is not any more change in
each data group. Thus, two change points and their temporary positions are assumed as
(99, 200). Similarly, the positions of two change points for the rest of the model are roughly put
as (49, 100) and (101, 200).

Now, the posterior probabilities of $ARMA(p, q)$ errors computed using the usual Bayes
factor (15) for each switching mean model with two temporary change points are shown in
Table 2. But the computation of integral in (12) must be before solved. We estimate it by
the Monte Carlo method through 200 importance sampling with a joint density of $p + q$
independent uniform variates distributed over $(-1, 1)$ as an importance density.

Table 3, 4, and 5 present the results of posterior distribution for parameters included in
each model. When operating the Gibbs sampler, the initial values of d_k, μ_k, γ_p, and γ_q
are required. Two temporary change points shown in Table 1 are used as initial values of
d_k, and the sample means of data groups divided centering each temporary change point are
used as initial elements of μ_k. Initial elements of γ_p and γ_q are randomly generated from
the uniform distribution over $(-1, 1)$. At step 1 of the MH algorithm for generating d_k,
each element of the support D_k of the discrete uniform distribution used as a transition
probability distribution is put as $(c_\pi \pm 10)$, where c_π is obtained in Table 1.

In our simulation study, we estimate parameters from one sequence simulated for only one
Gibbs sampler, and burn the first 30% after totally 130% iterations. The iterations of Gibbs
sampler and the Metropolis-Hastings subchains are 100 and 50, respectively.

6. Concluding Remarks

We do not present all the simulation results due to space limit. However, we see that our
methodologies presented in this article yield reasonable results in accordance with theoretical
outcomes. In particular, they work out well for the data sets with larger sample sizes, larger
differences in means, and more strictly stationary conditions. We also point out that larger
sample sizes should be required as the first autocorrelation gets positively higher. When the
positive first order autocorrelation is employed, the resulting data stay above or below means
as time goes by. Meanwhile, the negative first order autocorrelation is employed, the resulting
data fluctuate quite frequently between the mean. Hence, more data in case of the model with
positive first order autocorrelation are required to capture overall pattern of time series than
the case of negative first order autocorrelation. For example, in our simulation study, the first
autocorrelations of the $AR(2)$, the $ARMA(1, 1)$, and the $MA(2)$ error model are
0.2, -0.839, and 0.214, respectively. Also, different $ARMA(p, q)$ errors can have similar
values of the likelihood function, and the order (p, q) different from the true value of (p, q)
is can be selected. But, this is the problem similarly applied to the selection by the AIC (Akaike Information Criterion).

Table 1. The posterior probabilities of switching mean models computed using the FBF.

<table>
<thead>
<tr>
<th>STEP 1</th>
<th>Switching mean model with AR(2) error</th>
<th>1~300 200(0.4540)</th>
<th>Posterior probability</th>
<th>1~150 100(0.3090)</th>
<th>1</th>
<th>Switching mean model with ARMA(1,1) error</th>
<th>Obs. no. cp(mpp)</th>
<th>Posterior probability</th>
<th>1~300 200(0.6533)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 2</td>
<td>1~200 99(0.4450)</td>
<td>1</td>
<td>1~100 49(0.1879)</td>
<td>0.9969</td>
<td></td>
<td>1~200 101(0.5157)</td>
<td>1</td>
<td></td>
<td>1</td>
<td>4344</td>
</tr>
<tr>
<td>STEP 3</td>
<td>199 100200 201~300</td>
<td>0.1408</td>
<td>149 50100 101~150</td>
<td>0.1564</td>
<td>0.1772</td>
<td>1101 102200 201~300</td>
<td>0.4344</td>
<td></td>
<td>0.2177</td>
<td>0.1881</td>
</tr>
</tbody>
</table>

Table 2. The posterior probabilities of $ARMA(p,q)$ errors in switching mean models.

<table>
<thead>
<tr>
<th>$ARMA(p,q)$</th>
<th>$AR(2)$ error</th>
<th>$ARMA(1,1)$ error</th>
<th>$MA(2)$ error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(0, 2)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>0.0000</td>
<td>0.0002</td>
<td>0.0000</td>
</tr>
<tr>
<td>(1, 1)</td>
<td>0.0000</td>
<td>0.5035</td>
<td>0.0000</td>
</tr>
<tr>
<td>(1, 2)</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.0000</td>
</tr>
<tr>
<td>(2, 0)</td>
<td>0.7258</td>
<td>0.0008</td>
<td>0.0000</td>
</tr>
<tr>
<td>(2, 1)</td>
<td>0.2730</td>
<td>0.3004</td>
<td>0.0000</td>
</tr>
<tr>
<td>(2, 2)</td>
<td>0.0012</td>
<td>0.1942</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Table 3. A switching mean model with AR(2) error.

<table>
<thead>
<tr>
<th>True Parameter</th>
<th>Posterior Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>$d_1 = 100$</td>
<td>100.0100</td>
</tr>
<tr>
<td>$d_2 = 200$</td>
<td>200.0000</td>
</tr>
<tr>
<td>$\mu_0 = 16$</td>
<td>15.9657</td>
</tr>
<tr>
<td>$\mu_1 = 18$</td>
<td>17.9057</td>
</tr>
<tr>
<td>$\mu_2 = 15$</td>
<td>15.1879</td>
</tr>
<tr>
<td>$\sigma^2 = 1$</td>
<td>0.9442</td>
</tr>
<tr>
<td>$\phi_1 = 0.3$</td>
<td>0.4136</td>
</tr>
<tr>
<td>$\phi_2 = -0.5$</td>
<td>-0.5023</td>
</tr>
</tbody>
</table>

Table 4. A switching mean model with ARMA(1,1) error.

<table>
<thead>
<tr>
<th>True Parameter</th>
<th>Posterior Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>$d_1 = 50$</td>
<td>50.0000</td>
</tr>
<tr>
<td>$d_2 = 100$</td>
<td>100.0000</td>
</tr>
<tr>
<td>$\mu_0 = 30$</td>
<td>29.9534</td>
</tr>
<tr>
<td>$\mu_1 = 32$</td>
<td>32.0613</td>
</tr>
<tr>
<td>$\mu_2 = 35$</td>
<td>35.0571</td>
</tr>
<tr>
<td>$\sigma^2 = 1$</td>
<td>1.1412</td>
</tr>
<tr>
<td>$\phi_1 = -0.7$</td>
<td>-0.7220</td>
</tr>
<tr>
<td>$\theta_1 = 0.6$</td>
<td>0.5531</td>
</tr>
</tbody>
</table>

Table 5. A switching mean model with MA(2) error.

<table>
<thead>
<tr>
<th>True Parameter</th>
<th>Posterior Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>$d_1 = 100$</td>
<td>100.77</td>
</tr>
<tr>
<td>$d_2 = 200$</td>
<td>200.00</td>
</tr>
<tr>
<td>$\mu_0 = 44$</td>
<td>43.6719</td>
</tr>
<tr>
<td>$\mu_1 = 42$</td>
<td>42.0689</td>
</tr>
<tr>
<td>$\mu_2 = 40$</td>
<td>39.7592</td>
</tr>
<tr>
<td>$\sigma^2 = 1$</td>
<td>0.9649</td>
</tr>
<tr>
<td>$\theta_1 = -0.2$</td>
<td>-0.1938</td>
</tr>
<tr>
<td>$\theta_2 = -0.8$</td>
<td>-0.8888</td>
</tr>
</tbody>
</table>
REFERENCES

[Received April 2003, Accepted September 2003]