엘리트 110m 허들선수의 세 번째 허들링 동작에 관한 운동학적 분석

The Kinematic analysis of the third Hurdling motions of The 110m Hurdles Elite

이정호, 박영진, 류계균(경희대학교), 김종인(공주대학교)
Lee, Jung-Ho, Park, Young-Jin, Ryu, Jae-Kyun(Kyung Hee University), Kim, Jong-In(Kong Ju University)

국문요약

이 연구는 국내에서 개최한 국제육상대회의 110m 허들 검증을 대상으로 대회 우승자(중국), 2위 입상자(미국), 3위 입상자(한국) 총 3명을 대상으로 선정하였다. 국외 우수선수와 국내 우수선수의 허들링 동작을 분석하기 위해 3 차원 영상분석을 이용하였으며, 기술적 특징을 분석한 결과 다음과 같은 결론을 얻었다.

허들을 넘기 전 접주통적인 준비구간에서 국내 우수선수는 도와 점자에서 도와히어 기체 선체 무게 중심의 수평거리가 1.06m로, 국외 우수선수보다 0.13m 긴게 점주하는 것으로 나타났다. 허들을 넘는 비행구간에서 국내 우수선수는 도와 전에 비행점까지 선체 무게 중심의 수평거리가 1.63m로 나타났으며, 국외 우수선수보다 0.33m 긴게 도약하는 것으로 나타났다. 비행점에서 착지까지는 국내 우수선수가 1.59m로, 국외 우수선수보다 0.37m 긴게 착지하는 것으로 나타났다. 또한 허들을 넘는 동안 선체 무게 중심의 수평속도는 도와점에서 착지까지 1.13m로 나타났으며, 도와점에서 착지에 이르기까지 선체 무게 중심의 수평속도가 878m/s로 나타났으며, 국외 우수선수보다 0.54m/s 느린 것으로 나타났다.

ABSTRACT

J. H. LEE, Y. J. PARK, J. K. RYU, and J. I. KIM, The Kinematic analysis of the third Hurdling motions of The 110m Hurdles Elite. Korean Journal of Sport Biomechanics, Vol. 18, No. 4, pp. 31-39, 2008. The purposes of this study were to compare and analyze the world elite hurdler and the domestic hurdler 3-D kinematic and kinetic techniques about hurdling motion in the 110m hurdles. After analyzing variables in the 110m hurdle run the following conclusions were obtained; In a preparation phase, the domestic hurdler came out running more 0.13m than world elite hurdler from ground to taking off in the height of center of gravity and the distance by 1.06m. In a flight phase, the domestic hurdler came out taking off 0.33m less than world elite hurdler from taking off to flight peak in the height of center of gravity and the distance by 1.63m. In a flight peak phase, domestic hurdler came out landing more 0.37m than world elite hurdler by 1.59m. More over, during the hurdling, the horizontal velocity of center of gravity came out decreasing from taking off to landing with domestic hurdler by 0.75m/s, the take off percentage and the landing percentage is 53: 47. In a acceleration phase, domestic hurdler came out going slower 0.54m/s than world elite hurdler from landing in the horizontal velocity of center of gravity by 878m/s.

KEYWORDS : HURDLES, 110M HURDLES, HURDLING, ELITE, KINEMATIC, VELOCITY

* yjpark@khu.ac.kr
I. 서론

110m 허들은 고난도의 허들링(hurdling) 동작이 요구되는 종목으로 허들링 동작은 허들을 넘기 전 동작에서 허들을 넘은 후 절주 동작까지 총체적인 신체동작을 의미한다. 효율적으로 높은 허들을 넘기 위해서는 빠르고 안정된 허들사태와 절주능력 그리고 유연성 등 복합적인 신체적 능력을 발휘해야 하며, 스타트에서 가속된 스피드는 10대의 허들을 넘는 동안 허들에 걸리지 않도록 허들임 기술을 발휘해야 한다.

Susanka, Miskos, Dostal, Barac(1998)의 연구에 의하면, 제2회 세계육상선수권대회에서 110m 허들 경주에 진출한 선수 8명을 대상으로 기록의 변화를 운동학적으로 분석한 결과 스타트 후 세 번째 허들에서 최고 가속되었으며, 절주적으로 감속된다고 보고하였다. 즉 스타트 후 최고 가속된 세 번째 허들은 경기의 승패를 좌우하는 중요한 구간으로써 마지막 허들까지 스피드가 지속될 수 있도록 허들림 동작의 기술적 특성을 운동학적으로 분석해야 한다.

엘리트 110m 허들선수가 허들을 넘는 동작이 0.3-0.4초 이내에 이루어지기 때문에 기술적 특성을 시사적으로 구분할 수 있으며, 효율적인 기지와 기술을 갖춘 자료로 얻어내는 여러가지가 있다. 즉 효율적인 허들링 동작에 관한 기술적 특성을 분석하기 위해서는 세부적으로 허들림 동작을 구분하여 연구해야 할 것이다. 최근 110m 허들선수의 허들림 동작에 관한 선수연구를 살펴보면, Coh(2009)는 110m 허들선수의 전 세계기록 12.91초 보유자인 영국의 Colin Ray Jackson 선수를 대상으로 총 가속되는 세 번째 허들 동작을 도약(take off)과 비행(flight) 그리고 착륙(hanging) 구간으로 나누어 기술적 특성을 분석하였다. Coh와 Dolenc(1996)는 1996년 아테네 올림픽에서 우승한 Brigita Bukovec 선수를 대상으로 허들림 동작의 도약(take off), 비행(flight), 착륙(hanging) 및 점주(Stride pattern) 구간에 관련 선수의 구간별 기록 및 수평속도를 조사하여 제시하였다. 국내 선수연구에 의하면, 장성학과 안영희(2002)는 국내 대표급 110m 허들 선수 6점을 대상으로 하들링 동작을 분류구간, 허들간, 절주구간, 회복구간의 4구간으로 나뉘어 신체중심의 포물선 파크를 조사한 결과 최고점은 허들 앞에 위치하고 있으며 고집으며, 임규하, 정철수, 이만기(1994)는 1994년 국가 대표선수를 대상으로 하들링 동작을 준비구간, 허들간, 절주구간의 3구간으로 나누어 기술적 특성을 분석하였었다. 그러나 대부분의 선수연구들은 허들링 동작의 기술적 특성을 조사하기 위해 비공원 선수를 포함한 실전경량에서 반복된 운동학적 변화들의 평균을 제시하였으며, 경기력 향상을 위한 엘리트 선수의 기술적 특성을 분석한 자료는 매우 부족한 실정이다. 국내 엘리트 선수는 매우 새로운 한계선을 수립하고 있으며, 국경경기에서 성취에 입상하는 실적을 올리고 있다. 그러나 세계적인 선수에 비해 허들림 기술과 기록에서 상당한 차 이를 보이고 있으며, 세계적인 허들림 기술을 습득하지 못하고 있는 실정에 있다. 아시아 최초로 세계랭킹 1위에 오른 중국의 Xiang Liu 등(2024) 선수는 제28회 아테네 올림픽에서 우승을 차지하고, 세계기록 12.88초의 기록을 세계의 놀라게 했다. 즉 아시아 허들선수도 세계를 펼칠 수 있다는 가능성을 입증한 것이다.

국내 엘리트 선수들은 세계적인 선수의 허들림 동작을 습득할 수 있다면 국제대회에서 우승을 차지할 수 있는 잠재적 가능성을 가지고 있다고 사료된다. 따라서 세계적인 110m 허들선수들의 허들림 동작에 관한 기술적 특성을 운동학적으로 분석하고 연구하여야 한다.

이 연구는 110m 허들 선수의 세계적인 선수들 대상으로 하들림 동작을 분석하고 기술적 특성을 연구하고자 한다. 연구를 위해 국내에서 개최한 국제육상경기대회의 110m 허들 경기를 촬영하고 경기 시 맨에 난은 허들링 동작의 운동학적 변화를 총량적으로 제시하고자 한다. 대회에서 선수들의 사진을 제28회 아테네 올림픽 우승자인 세계기록 12.88초의 아메리카 올림픽 우승자인 미국 선수 그리고 한국국보유자 국가선수로 대표하는 스피드 후 스피드가 최고 가속되는 세 번째 허들림 동작을 분석하였다.

경기시 맨에 난은 허들림 동작은 선수 개인의 기술적 특성을 정확하게 분석할 수 있으며, 경기력 향상을 위한 효율적인 허들링 동작을 정립할 수 있다. 따라서 국의 우수선수와 국내 우수선수의 허들링 동작을 비교분석함으로써 효율적인 기술개선과 경기력 향상을 위한 기술습득 및 지도를 위한 정량적 자료를 제공하고자 한다.
II. 연구방법

1. 연구대상

이 연구는 국내에서 개최한 제3회 대구국제육신기대회에서 110m 허들 경주의 경기를 대상으로 국내 우수선수인 1위 입상자 A선수(중국)과 2위 입상자 B선수(미국) 그리고 국내 우수선수인 3위 입상자 C선수(한국) 등을 입상자 총 3명을 연구대상자로 선정하였으며, 이를 redistribute 특성을 표 1과 같다.

2. 실험데이터 및 방법

이 연구는 국제육신기대회에서 110m 허들 경주의 시각적 치마에 따라 운동성에 영향을 줄 수 있으며, 각 검사자의 위치는 스타일로 모델링 후 온장 경주 스타일 Cam1과 Cam2를 설치하였으며, 온장에 Cam3과 Cam4를 설치하였다. 그리고 피니지의 후방 경주 스타일 Cam5와 Cam6 그리고 온장에 Cam7과 Cam8을 설치하였다.

공간최적화는 베이지먼트의 한계에 따라 4개의 유수선수 A선수와 B선수 및 국내 선수 C선수의 레이블을 사용할 수 있었으며, 각 선수들의 레이블은 A선수가 4개, B선수가 5개, 그리고 C선수가 3개로 설정되었다. 공강최적화는 DLT (direct linear transformation) 방식의 3관인 분석법을 사용하여 3관인 5관인으로 설정하여 허들경주를 공강최적화를 설정하였다. 경기시간이 1m 간격의 경주결과 2m 쪽의 전체점(positive)을 허들경주간 9.14m 간격으로 허들경주를 나타내었다. 통계적 통계를 5단계로 분석하여 적절한 경기에 시간과 거리하였으며, 110m 허들 경주의 실제 경기를 완료하였다. 이때 각 캐메라는 하중센서(GL-V07SU OD, 플터리즈 55mm)를 설치하여 와이드 화면으로 촬영하였으며, 이때 평균 속도는 60fps/s, 노출 시간은 1/1000s로 조정하였다. 프로그래머에 구성된 DLT(Direct Linear Transformation)를 사용하였으며, 이것은 인터페이스(Interface)를 통한 정확도가 2배 많아 좀 더 신형의 화질을 구성한다.

3. 자료처리방법

비디오로부터 투영된 통계점들 틀과 허들경 주각의 영상은 View2에서 개발한 DV Express 1.0 프로그램을 사용하여 캡쳐(capture)하였으며, 캡쳐된 영상 자료는 Kwon3D(Kwon, 1991) Version 3.1 프로그램을 사용하였다.

자료처리를 위한 분석구간은 정지 후 설치된 캡쳐(entry), 설치(CT), 설치 후 설치된 캡쳐(CT)를 정정하였다. 캡쳐를 설치한 후 20%의혼동부인 TO2에서 LD3까지를 비행구간(Flight phase), 캡쳐 후 설치 된 LD1에서 TO2까지를 가속구간(Acceleration phase)으로 정하고, 그리고 각각 DLT를 LD1은 도약 전 100m, TO1은 도약 전 100m, LD2는 도약 참가자, TO2는 도약 후 100m, Peak는 비행점정, LD3은 착지 점정, TO3는 착지 이지, LD4는 착지 후 100m, TO4는 착지 후 100m, 이지로 정하였다.

인체관절 중심점의 좌표와 산출된 실제 입체적(stereo body system)을 가정 14개의 분석을 연합한 강체 시스템(connected rigid body system)으로 가정하였다. 이러한 분석의 매우 중심점과 신체 중심 위치의 산출은 Plagenhofer(1985)의 신체 분절순서(body segment parameter) 자료를 사용하였다.

간갑에 위치한 통계점과 허들경 추적기 기록된 영상자료를 이용하여 위치측정과 인체관절 중심점을 디지털화(digitization)하였으며, 동작량 2차원 좌표값으로부터 3차원 좌표값을 산출하기 위해 공간좌표에서 이미 산출된 통계점 좌표를 이용하는 DLT(Direct Linear Transformation)방법을 이용하였다. 3차원 좌표값을 산출하는 과정에서 디지털화 모형과 같은 여러 가지 원

<table>
<thead>
<tr>
<th>표 1. 대상자의 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>대상자</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Me/SD</td>
</tr>
</tbody>
</table>
인에 의한 노이즈가 발생되는데, 이러한 노이즈를 제거하기 위해 Butterworth 4차 저역통과필터(Low-pass filter)방법으로 스무딩(smoothing)하였으며, 이때 자단주파수(cut-off frequency)는 7.4Hz로 정하였다.

III. 결과 및 논의

1. 신체 무게중심의 수직높이

하들링 동작에 관한 신체 무게중심의 수직높이를 분석한 결과는 <표 2> 및 <그림 2>와 같다. 신체높이는 지면으로부터 신체 무게중심까지의 수직높이와 신장의 차를 비교한 값이다. 신체 무게중심의 수직높이와 신체높이에 대한 결과를 살펴보면, 준비구간에서 국외 우수 선수인 A선수는 도약 전 1초 전에서 도약 점지 순간까지 수직높이가 1.15m, 1.14m, 1.16m로 나타났으며, B선수는 1.10m, 1.09m, 1.10m 그리고 C선수는 1.08m, 1.08m, 1.11m로 나타났다. 도약 점지 순간 신장에 비해한 신체높이는 A선수가 61.38%로 가장 높은 것으로 나타났으나, 국내 우수선수인 C선수는 60.99%로 A선수보다 0.39% 낮은 신체 무게중심의 수직높이를 보였다.

비행구간의 도약 이지에서 착지 점지까지 A선수는 1.28m, 1.43m, 1.31m로 나타났으며, B선수는 1.20m, 1.36m, 1.26m 그리고 C선수는 1.22m, 1.42m, 1.26m로 나타났다. 신장에 비해한 신체높이는 도약 이지 순간 국외 우수선수와 국내 우수선수 모두 67% 이상 유효한 신체 무게중심의 수직높이를 유지하여 도약한 것으로 나타났다. 비행점지에서는 A선수가 75.66%, B선수가 74.73%, C선수가 78.02%로 나타났으며, 도약 이지에서 비행점지까지 신체높이의 증가율은 C선수가 10.99%로 가장 높이 증가할 것으로 나타났다.

착지 점지에는 A선수가 69.31%, B선수가 69.23%, C선수가 69.23%로 세 선수 모두 유사한 신체높이로 착지한 것으로 나타났으며, 비행점지에서 착지 점지까지의 감소율은 A선수가 6.35%, B선수가 5.50%, C선수가 8.79%로 착지에서 국내 우수선수가 신체 무게중심의 수직높이를 가장 많이 낮추는 것으로 나타났다.

<table>
<thead>
<tr>
<th></th>
<th>A선수</th>
<th>B선수</th>
<th>C선수</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>수직높이(m)</td>
<td>수직높이(%)</td>
<td>수직높이(m)</td>
</tr>
<tr>
<td>준비 구간</td>
<td>도약 전 1초 점지</td>
<td>1.15</td>
<td>60.85</td>
</tr>
<tr>
<td></td>
<td>도약 전 1초 이지</td>
<td>1.14</td>
<td>60.32</td>
</tr>
<tr>
<td></td>
<td>도약 이지</td>
<td>1.16</td>
<td>61.38</td>
</tr>
<tr>
<td>비행 구간</td>
<td>도약 이지</td>
<td>1.28</td>
<td>67.72</td>
</tr>
<tr>
<td></td>
<td>비행 점지</td>
<td>1.43</td>
<td>75.66</td>
</tr>
<tr>
<td></td>
<td>착지 점지</td>
<td>1.31</td>
<td>69.31</td>
</tr>
<tr>
<td>가속 구간</td>
<td>착지 이지</td>
<td>1.23</td>
<td>65.08</td>
</tr>
<tr>
<td></td>
<td>착지 후 1초 점지</td>
<td>1.16</td>
<td>61.38</td>
</tr>
<tr>
<td></td>
<td>착지 후 1초 이지</td>
<td>1.13</td>
<td>59.79</td>
</tr>
</tbody>
</table>
2. 신체 무게중심의 수평거리

하늘링 동작에 관한 신체 무게중심의 수평거리를 분석한 결과는 표 3 및 그림 3과 같다.

하늘링 동작의 신체 무게중심 수평거리에 대한 결과를 살펴보면, 준비구간에서 국외 우수선수인 A선수는 도약 전 1초 점지부터 도약 이지까지 0.93m, 0.98m, 0.91m로 신체 무게중심의 수평거리를 일정하게 유지하는 것으로 나타났다. 그러나 B선수는 1.05m, 1.03m, 0.87m로 도약 이지에서 0.16m 떨어지는 것으로 나타났으며, 국내 우수선수인 C선수는 0.88m, 0.76m, 1.01m로 도약 이지에서 0.28m 길어지는 것으로 나타났다.

비행구간의 도약 이지에서 비행 정점까지 A선수는 1.96m, B선수가 1.85m, C선수가 1.63m로 나타났으며, 국외 우수선수인 A선수가 국내 우수선수인 C선수보다 0.33m 길게 도약하여 비행정점에 이르는 것으로 나타났다. 비행정점에서 착지 점지까지 A선수는 1.23m, B선수는 1.30m, C선수는 1.53m로 나타났으며, 국외 우수선수인 A선수가 국내 우수선수인 C선수보다 0.37m 길게 착지하는 것으로 나타났다. 비행구간의 도약에서 착지까지 신체 무게중심의 총 수평거리로 A선수가 3.19m, B선수

가속구간의 착지 점지에서 착지 후 1초 이지까지 A선수는 0.57m, 0.59m, 1.08m로 나타났으며, B선수는 0.61m, 0.61m, 0.90m로 나타났다. 그리고 C선수는 0.69m, 0.61m, 0.84m로 나타났다. 착지 점지에서 착지 이후까지 국외 우수선수인 A선수가 국내 우수선수인 C선수보다 신체 무게중심의 수평거리를 0.12m 길게 착지하는 것으로 나타났으며, 착지 후 1초 이지에서 0.24m 길게 착지하는 것으로 나타났다.

3. 신체 무게중심의 수평속도 및 수직속도

하늘링 동작에 관한 신체 무게중심의 수평속도와 수직속도를 분석한 결과는 표 4 및 그림 4과 같다. 하늘링 동작의 신체 무게중심 수평속도와 수직속도

<table>
<thead>
<tr>
<th>표 3. 신체 무게중심의 수평거리</th>
<th>그림 4. 신체 무게중심의 수평속도 변화 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurdling</td>
<td>A선수</td>
</tr>
<tr>
<td>준비구간</td>
<td>도약 전 1초 점지 - 도약 전 1초 이지</td>
</tr>
<tr>
<td></td>
<td>도약 전 1초 이지 - 도약 점지</td>
</tr>
<tr>
<td></td>
<td>도약 점지 - 도약 이지</td>
</tr>
<tr>
<td>비행구간</td>
<td>도약 이지 - 비행 정점</td>
</tr>
<tr>
<td></td>
<td>비행 정점 - 착지 점지</td>
</tr>
<tr>
<td></td>
<td>착지 점지 - 착지 이지</td>
</tr>
<tr>
<td>가속구간</td>
<td>착지 이지 - 착지 후 1초 점지</td>
</tr>
<tr>
<td></td>
<td>착지 후 1초 점지 - 착지 후 1초 이지</td>
</tr>
</tbody>
</table>
표 4 신체 무게 중심의 속도 (m/s)

<table>
<thead>
<tr>
<th></th>
<th>A선수</th>
<th>B선수</th>
<th>C선수</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>수평속도</td>
<td>수직속도</td>
<td>수평속도</td>
</tr>
<tr>
<td>준비구간</td>
<td>도약 전 1 보 점지</td>
<td>8.94</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>도약 전 1 보 이지</td>
<td>9.32</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>도약 점지</td>
<td>9.01</td>
<td>0.19</td>
</tr>
<tr>
<td>비행구간</td>
<td>도약 이지</td>
<td>9.46</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>비행정점</td>
<td>9.07</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>착지 점지</td>
<td>8.96</td>
<td>0.11</td>
</tr>
<tr>
<td>가속구간</td>
<td>착지 이지</td>
<td>9.24</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>착지 후 1 보 점지</td>
<td>9.08</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>착지 후 1 보 이지</td>
<td>9.47</td>
<td>0.04</td>
</tr>
</tbody>
</table>

로 분석한 결과를 살펴보면, 준비구간에서 과의 우수선수인 A선수는 도약 전 1 보 점지에서 도약 점지까지 수평속도가 8.94m/s, 9.01m/s로 나타났으며, B선수는 8.85m/s, 9.04m/s로 나타났다. 그리고 국대 우수선수인 C선수는 8.74m/s, 8.89m/s, 8.67m/s로 나타났다. A선수와 B선수의 도약 전 1 보 점지에서 도약 점지까지 9m/s 이상 수평속도를 발휘한 것으로 나타났으며, C선수는 A선수보다 0.34m/s 더 높은 것으로 나타났다. 도약 전 1 보 이지에서 신체 무게중심의 수직속도는 A선수가 0.02m/s, B선수가 0.01m/s, C선수가 0.35m/s로 나타났으며, 국대 우수선수인 A선수보다 수직속도가 0.33m/s 증가하는 것으로 나타났다.

비행구간의 도약 이지에서 착지 점지까지 신체 무게중심의 수평속도는 A선수가 9.46m/s, 9.07m/s, 8.97m/s로 나타났으며, B선수는 9.36m/s, 8.89m/s, 8.86m/s로 나타났다. C선수는 9.18m/s, 8.85m/s, 8.43m/s로 나타났다. 즉 국대 우수선수인 A선수는 국내 우수선수인 C선수보다 도약 이지에서 0.28m/s, 비행 정점에서 0.22m/s, 착지 점지에서 0.53m/s 더 높은 것으로 나타났다. 또한 비행구간의 도약 이지에서 착지 점지까지 허들을 둔 동안 감소된 신체 무게중심의 수평속도는 국대 우수선수인 A선수가 0.3m/s 감소하는 것으로 나타났으며, C선수는 0.75m/s 감소하는 것으로 나타났다.

Hommel(1995)은 경기력이 우수한 선수임수록 도약 손간 수평속도가 가장 많이 증가하였으며, 허를 둔 동안 수평속도의 유지가 경기력과 밀접한 관계가 있다고 했다. 도약 이지에서 신체 무게중심의 수직속도는 A선수가 1.67m/s, B선수가 1.60m/s, C선수가 1.57m/s로 나타났으며, 국대 우수선수인 A선수는 국내 우수선수인 C선수보다 신체 무게중심 수직속도가 0.10m/s 더 증가하는 것으로 나타났다.

가속구간의 착지 이후에서 착지 후 1 보 이지까지 신체 무게중심의 수평속도는 A선수가 9.24m/s, 9.08m/s, 9.47m/s로 나타났으며, B선수는 9.15m/s, 8.92m/s, 9.27m/s로 나타났다. 그리고 C선수는 8.78m/s, 8.72m/s, 8.95m/s로 나타났다. 국대 우수선수인 A선수와 B선수는 착지 이지에서 착지 후 1 보 이지까지 9m/s 이상 신체 무게중심의 수평속도를 증가시키는 것으로 나타났으며, 착지 후 1 보 이지에서 C선수는 A선수보다 0.5m/s 더 높은 것으로 나타났다. 가속구간의 착지 후 1 보 이지에서 신체 무게중심의 수직속도는 A선수가 0.23m/s 더 증가하는 것으로 나타났다. Coh(2003)는 도약과 착지 손간 수직속도의 증가는 수평속도의 감소와 상관이 높기 때문에 수직속도를 최소화함으로써 허들링 동작을 효율적으로 발휘할 수 있다고 했다. 따라서 국내 선수는 도약 손간 신체 무게중심의 수평속도를 증가시키고, 허들ляем을 넘은 후 착지에서 수평속도의 감소를 최소화해야 하는 것으로 나타났다.

4. 보주 (stride pattern)

허들링 동작에 관한 보주는 발바닥이 지면에 닿는 발(start)과 발끝(toe) 사이의 거리로 분석 결과는 <표 5> 및 <그림 5>의와 같다.

허들링 동작의 보주에 대한 결과를 살펴보면 준비구간의 도약 전 1 보 이지에서 도약 점지까지 국대 우
표 5. 헛덤 맹적의 보폭

<table>
<thead>
<tr>
<th></th>
<th>A선수</th>
<th>B선수</th>
<th>C선수</th>
</tr>
</thead>
<tbody>
<tr>
<td>준비구간</td>
<td>도약 전 1보 toe - 도약 toe</td>
<td>2.01</td>
<td>2.04</td>
</tr>
<tr>
<td></td>
<td>도약 toe - 헛덤</td>
<td>2.36</td>
<td>2.16</td>
</tr>
<tr>
<td>비행구간</td>
<td>(도약비율 %)</td>
<td>(59.9%)</td>
<td>(55.4%)</td>
</tr>
<tr>
<td></td>
<td>(착지비율 %)</td>
<td>1.58</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>(착지방울)</td>
<td>(40.1%)</td>
<td>(44.6%)</td>
</tr>
<tr>
<td>가속구간</td>
<td>착지 toe - 착지 후 1보 toe</td>
<td>1.60</td>
<td>1.58</td>
</tr>
</tbody>
</table>

도약방울: 도약 이지에서 착지까지의 비행거리를 뿐만 아니라 도약 이지에서 헛덤까지 비행 거리와 도약 이지에서 착지까지의 비행 거리를 뿐만 아니라 헛덤까지 비행 거리와 착지방울: 도약 이지에서 착지까지의 비행 거리와 도약 이지에서 헛덤까지 비행 거리의 뿐만 아니라 헛덤까지 비행 거리와 착지방울: 도약 이지에서 착지까지의 비행 거리와 도약 이지에서 착지까지의 비행 거리

그림 5. 헛덤 동작의 보폭 변화

수전수인 A선수는 2.01m, B선수는 2.04m로 나타났으며, 국내 우수선수인 C선수는 1.78m로 국내 우수선수보다 0.23m 보폭이 줄은 것으로 나타났다. 비행구간의 도약 이지에서 헛덤까지의 도약거리는 A선수가 2.36m, B선수가 2.16m, C선수가 2.13m로 나타났으며, 국내 우수선수인 C선수는 국내 우수선수인 A선수보다 0.13m 점게 도약하는 것으로 나타났다. 헛덤에서 착지까지의 착지거리는 A선수가 1.58m, B선수가 1.74m, C선수가 1.89m로 나타났으며, 국내 우수선수인 C선수는 국내 우수선수인 A선수보다 0.31m 점게 착지하는 것으로 나타났다. 그리고 도약 이지에서 착지까지의 도약방울은 A선수가 59.9%, B선수가 55.4%, C선수가 53%로 나타났다. 헛덤에서 착지까지의 착지방울은 A선수가 40.1%, B선수가 44.6%, C선수가 47%로 나타났다. 또한 도약 이지에서 착지까지의 비행거리는 A선수가 3.94m, B선수가 3.90m로 나타났으며, 국내 우수선수인 C선수는 4.02m로 국내 우수선수인 A선수보다 0.06m 점게 비행하는 것으로 나타났다. Daperen(1991)는 비행구간에서 헛덤을 넣는 이상적인 도약방울과 착지방울은 60°로 가장 적당하다고 강조하였다. 즉, 국외 우수선수인 A선수는 도약에서 수전등록을 최소화하여 헛덤을 저지르는 후 착지를 통해 스피드를 증가시키는 것으로 나타났으며, 국내 우수선수인 C선수는 도약에서 헛덤까지 비행 거리가 크고 착지는 점게 하여 점프동작을 유발하는 것으로 나타났다. 가속구간의 착지이지에서 착지 후 1보 점지까지의 보폭은 A선수가 1.60m, B선수가 1.58m, C선수가 1.19m로 나타났으며, 국내 우수선수인 A선수는 국내 우수선수인 C선수보다 0.41m 긴 보폭을 발휘하여 점프하는 것으로 나타났다.

5. 지역 접촉시간과 채택시간

그림 6. 지역접촉시간과 채택시간의 변화
우수선수보다 0.016sec 빠른 것으로 나타났다. 그러나 도약 점착시간은 A선수와 C선수가 0.1sec의 소요시간을 보였으며, C선수는 0.11sec로 국외 우수선수보다 0.016sec 느린 것으로 나타났다.

비행구간의 도약에서 허들까지의 제공시간은 A선수가 0.234sec, B선수가 0.217sec, C선수가 0.214sec로 나타났으며, 허들에서 착지까지의 제공시간은 A선수가 0.116sec, B선수가 0.133sec, C선수가 0.158sec로 나타났다. 허들을 넘는 도약에서 착지까지의 총 제공시간은 A선수가 0.336sec로 나타났으며, C선수는 0.375sec로 나타났다. 즉 도약에서 허들까지의 제공시간은 국내 우수선수인 C선수가 국외 우수선수보다 0.2sec 빠른 것으로 나타났으나 허들에서 착지까지의 제공시간은 0.4sec 느린 것으로 나타났다.

Muller와 Hommel(1997)의 연구에 의하면, 제6회 세계육상선수권 대회에서 우승한 허들선수의 도약에서 착지까지 허들을 넘는 제공시간은 0.32초로 보고하였으며, 제공시간을 최소화하기에 스피드를 증가 시킬 수 있다고 하였다. 가속구간에서 착지의 점착 점착시간은 국외 우수선수인 A선수가 B선수가 0.067sec로 나타났으며, 국내 우수선수이 C선수는 0.083sec로 국외 선수보다 0.016sec 느린 것으로 나타났다.

IV. 결론

이 연구는 국내에서 개최한 국제육상경기의 100m 허들 경승에서 상위에 입상한 선수들 대상으로 국외 우수선수인 1위 임상재(중국)와 2위 임상재(미국) 그리고 국내 우수선수인 3위 임상재(한국)의 허들등 동작을 3차원 영상분석에 의해 기술적 특성을 분석한 결과 다음과 같은 결론을 얻었다.

첫째, 허들을 넘기 전 점착동작의 준비구간에서 국외 우수선수는 도약 점착에서 첫째 무게중심의 수평거리가 국외 우수선수보다 0.2m 점차 접촉하는 것으로 나타났으며, 도약 이지에서는 0.13m 접촉하는 것으로 나타났다.

둘째, 준비구간의 첫째 무게중심 수평속도는 국내 우수선수가 국외 우수선수보다 도약 전 1.0 이미지에서 0.13m/s 느린 것으로 나타났다.

셋째, 허들을 넘는 비행구간에서 국내 우수선수는 도약에서 비행점착까지 첫째 무게중심의 수평거리가 국외 우수선수보다 0.3m 접촉하는 것으로 나타났으며, 비행점착에서 착지까지는 0.37m 접촉하는 것으로 나타났다.

넷째, 비행구간에서 국내 우수선수는 도약에서 착지까지 허들을 넘는 동안 첫째 무게중심의 수평속도가 0.75m/s 감소하는 것으로 나타났으며, 국외 우수선수는 0.50m/s 감소하는 것으로 나타났다.

다섯째, 비행구간의 도약에서 허들까지 도약비율과 허들에서 착지까지 착지비율은 국내 우수선수가 53%, 47%로 나타났으며, 국외 우수선수는 59%, 40%로 나타났다.

여섯째, 비행구간에서 국내 우수선수는 도약에서 하들까지의 제공시간이 0.214sec로 국외 우수선수보다 0.02sec 빠른 것으로 나타났으며, 허들에서 착지까지 0.15sec로 국외 우수선수보다 0.04sec 느린 것으로 나타났다.

일곱째, 허들을 넘는 후 점착하는 가속구간은 국내
우수선수가 국외 우수선수보다 신체 무게중심의 수평 속도가 0.54m/s 느림 것으로 나타났으며, 착지 후 1보의 보폭은 0.41m 짧은 것으로 나타났다.

참고문헌

임규현, 정철수, 이영기 (1994). 110m 봉돌의 구간별 운동적 변인 분석. 서울대학교 체육연구소 논문집, 19, 2, pp. 57-74.

