아크용사를 이용한 Spray-formed Tooling 기술

백경호¹ · 김진흥² · 성병근#

Spray-formed Tooling Process by Arc Spraying

K. H. Baik, J. H. Kim, B. G. Seong

1. 서 론

최근의 제품 생산기술의 특성은 다양한 소비자의 기호와 급격히 발전한 생산공정에 부응하기 위하여 제품의 다양화와 사이클의 단축에 있다. 이와 같은 생산기술의 추세는 제품을 생산하는 업체에 제품의 출시 기간 및 생산 기간의 단축과 함께 효과적이면서 투자비용을 절감할 수 있는 공정기술을 요구하고 있다. 제품의 생산에 직접 적용되고 있는 금형기술 분야에서도 보다 신속하고 경제적인 금형제조공정에 대한 필요성이 점점 커져 요구되고 있으며, 최근 캡슐조형기술(rapid prototyping: RP)과 함께 캡슐금형조형기술(rapid tooling: RT)에 대한 연구 및 개발이 국내외적으로 활발히 진행되고 있다.

현재까지 개발 완료 및 현장중인 RT 기술은 매우 다양하며, 그 방식과 특성에 따라서 Fig. 1에 나타낸 바와 같이 분류할 수도 있다[3]. 본 논문에서는 소개하고자 하는 '용사를 이용한 rapid spray tooling'은 spray-formed tooling 혹은 spray metal tooling이라고도 명칭되며, 분류상으로 indirect tooling 중에서 hard tooling의 범주에 속한다.

2. 아크용사 (Arc Spray) 공정

용사란 전계 또는 분말 형태의 소재를 다양한 방법에 의하여 생성된 고온의 열원에 노출하여 용융시간 후 기판으로 부식시켜 코팅층을 형성하는 기술이다. 용사공정은 소재를 용융시키는 열원에 따라서 가스연소 방식과 전기에너지 방식으로 구분할 수 있다. 가스연소방식에는 화염용사(flame spray), 고속화염용사(high velocity oxygen fuel spray), 폭발용사(detonation spray) 등이 있고, 전기에너지를 이용하는 방식으로는 아크 용사와 플라즈마 용사(plasma spray) 있다.

RT에 적용되고 있는 용사공정은 주로 아크 용사이며, 그 이유는 다른 용사방법과 비교하여 적층도가(즉, 코팅층의 형성 속도) 비교적 빠르고, 대면적 코팅이 가능하며, 운용비가 적게 소요되기 때문이다. 원료소재에 있어서도 고가의 금속 분말 보다는 상대적으로 저렴한 금속 분말을 사용하기 때문에 소재가격의 측면에서도 경제적인 장점이 있다. Fig. 2는 아크 용사 공정의 개략도를 나

1. 충남대학교 신소재공학부 유효소재공학과
2. 포항산업과학연구원
교신저자 : 포항산업과학연구원, seong@rist.re.kr
Fig. 1 Classification of rapid tooling technologies[3]

Fig. 2 Schematic diagram of arc spraying

Fig. 3 Schematic diagram of cross-section of spray-formed tool [6]
아크용사를 이용한 Spray-formed Tooling 기술

Fig. 4 Procedure of spray-formed tooling for steel alloys

공정은 차이가 있을 수 있지만, 기본적으로 용사 급형을 제조하는 단계는 크게 5단계로 구분된다.

1. Master 모델의 (또는 용사용 패턴) 준비단계
2. 아크용사에 의한 급속층의 형성(수 mm 까지)
3. 냉각판의 설치
4. 급속계 복합제를 이용한 후면 충전- backfilling
5. 용사용 패턴 분리

용사금형에 사용되는 소재는 개발 초기인 70 년대 말에는 아연 또는 알루미늄, Kirksite와 같은 저용량 급속을 사용하였고[7-8]. 저용량 급속을 사용하는 경우, 용사공정 동안의 적층온도가 비교적 낮은 50-60°C를 유지하기 때문에, 기판으로 사용할 용사용 패턴을 별도로 제작할 필요가 없다. 즉, 나무, 플라스틱, 틀, SLA용 소재 등으로 제조한 마스터 모델을 기판으로 하여 그 표면에 직접 용사하는 것이 가능하다. 또한 용사시 적층온도가 낮기 때문에 용사성형체의 전류응력 및 변형이 크게 발생하지 않으며, 이로 인하여 제작 가능한 급속의 크기에 큰 제약이 없다. 그러나 아연계 또는 알루미늄계 소재로 제조된 용사금형은 연질성기 때문에, 실제적으로 플라스틱 사출용 시약급형으로만 사용되는 적층분야에 제약이 있다. 아연계 용사급형이 적용된 사례는 RTM(resin transfer molding), RIM(reaction injection molding)과 SMC(sheet molding compound) 등이 있다[6]. 아연계 용사급형의 제품 생산능력은 고온, 고압의 플라스틱의 사출의 경우 (사출압력 15,000 psi) 25-1,0000개에 불과하지만, 압력과 온도조건이 낮은 경우에는 10,000-100,000개 정도의 제품 생산이 가능하다[7].

4. 고용량 소재를 이용한 Spray-formed tooling 기술

아연계 소재를 사용한 spray-formed tooling 기술은 앞서 설명한 바와 같이 많은 장점을 가지고 있지만, 설계 또는 공구가 소재로 제작된 일반 급형에 비해 수명이 현저히 벌어지는 단점으로 인하여 양산용 급형으로 적용이 어렵다. 이러한 단점을 해소하기 위하여, 아연계 소재 보다 강도가 높고 내구성이 우수한 고용량 급속을 용사하여 RT에 적용하는 기술이 현재 연구 개발되고 있다. 고용량 급속소재의 spray-formed tooling 기술은 대부분 0.8%의 탄소함량을 갖는 고탄소강을 사용하고 있으며[9], 특수한 목적을 위하여 인바(Invar) 합금을 사용하기도 한다[10].

탄소강을 사용하여 용사하는 경우에는 고온의 액성의(1600-2000°C) 연속적인 적층으로 인하여 spray-form tooling 공정 동안에 기판표면의 온도는 300°C 이상으로 가열된다. 그러므로 기판으로 사용되는 용사용 패턴은 고온의 액성의 충돌에 견딜 수 있어야 하며, 동시에 용사공정 동안에 열변형이 없어야 한다. 탄소강을 용사하여 급형을 제조하는 spray-formed tooling 공정을 4단계로 구분하여 설명하면 다음과 같다(Fig. 4 참조).

(1) 마스터 모델 제조: 최종적으로 원하는 급형의 형상을 플라스틱, 나무 등을 소재로 하여 가공한다. 또한 SLA, 3D printing과 같은 RP기술을 용용하여 제조할 수도 있다.

(2) 세라믹 용사용 패턴(ceramic replica) 제조: 탄소강의 아크용사는 아연계의 용사소재와는 달리 용사층의 형성온도가 높기 때문에 나무 또는 플라스틱 등의 소재에 직접 용사하는 것은 불가능하므로, 고온에서 변형이 적은 세라믹 용사용 패턴이 이용된다.
턴을 사용한다. 금형 형상의 마스터 모델에 세라믹 슬러리를 주입하여 slurry casting 또는 freeze casting 등의 방법으로 세라믹 용사 패턴을 제조 한다. 이때, 마스터 모델의 형상과 차수를 정확히 복제해야 하고, 마스터 모델과 부리할 때 손상을 받지 않아야 한다. 복제된 세라믹 패턴은 고온 열 처리를 통하여 충분한 강도를 부여하게 되며, 이 때 차수 변형이 전혀 되어야 한다.

(3) 용사공정: 이 과정은 용사용 패턴에 금형으로 작동할 금속층을 형성하는 과정으로 금형의 강도, 차수정밀도 등의 특성이 결정되는 과정으로 spray-formed tooling 기술에서 가장 중요한 공정이 라고 할 수 있다. 금속층의 형성속도를 높이기 위하여 Fig. 5와 같이 다수의 압축공간을 레이아웃하여 사용한다. 금형은 다양한 형상 및 크기의 요철을 포함하고 있으므로 세라믹 패턴의 표면 형상을 정확히 복제하기 위하여서는 용사공정의 배열, 분사각도, 적층패턴 등의 공정변수들을 제어하여야 한다. 용사된 금속층은 수 mm어서 수 cm 까지 두께의 층이 없으며, 실제 300x300mm의 면적에 10mm 정도의 두께를 적층하는 데 소요되는 시간은 약 1시간 정도이다.

(4) 후반 충전 공정: 용사에 의하여 제조된 금속층은 최초로 제작하였던 마스터 모델과 동일한 형상을 가지며, 세라믹 패턴과 접촉하고 있는 면이 금형으로 사용하게 된다. 반면에 용사된 금속이 적층된 면은 마스터 모델의 요철로 인하여 매우 불규칙하다. 그러므로, 적층면을 평탄하게 가공하고, 금형으로서 적절한 두께를 부여하기 위하여 충전과 금속분말을 혼합한 소재 혹은 저점음의 아연계나 비스투스 함금을 사용하여 충전함으로써 금형을 완성하게 된다.

미국의 Ford 자동차는 철제 또는 합금강의 용사용용지를 이용한 RT기술의 개발에 가장 앞선 기술을 보유하고 있으며, 다양한 종류의 금형 제작에 대한 기술과 경험을 가지고 있다. Fig. 6은 아크용사에 의해 제조된 다양한 크기의 spray-formed tool의 예를 나타낸 것이다. Ford 자동차에서는 실제 양산 자동차의 일부 부품을 용사금형을 이용하여 생산하고 있는 것으로 알려져 있다[11].

5. 용사금형 제조를 위한 주요 공정 제어

철제 또는 합금강의 spray-formed tooling 공정에 의한 금형 제작은 다양한 요소기술들을 필요로 한다. 그 중에서 가장 중요한 요소기술은 마스터 모델과 동일한 형상을 얻기 위한 용사공정에서 발생하는 용사중의 변형을 최소화 하는 것과 용사금형의 기계적 특성을 결정하는 미세조 정을 제어 하는 기술이다. 용사중의 변형은 용사중을 혼성하는 과정에서 발생하는 잔류응력의 발 생과 부위별 온도분포의 불균일성에 기인한다.

용사중의 잔류응력은 용융 압력이 세라믹 용사 패턴의 표면에서 흡수하는 과정에서 발생하는 부수작용으로 인한 잔류응력과 이후 고상으로 냉각되는 과정에서의 마르텐사이트 및 베이나이트로

Fig. 5 Four-gun arc spray system for manufacturing spray-formed tooling

Fig. 6 Examples of large-sized, spray-formed tools
의 상변태에 따른 부피팽창으로 인하여 압축응력으로 구성된다. 압축 및 압축응력이 서로 동일한 크기를 나타내면 전체적인 전류응력이 0이 되어 변형이 없게 된다. 이러한 변형을 제어하는 데 있어서 가장 중요한 인자는 용사과정에서의 적층표면의 운도이다. Fig. 7은 305x305mm 크기의 평판에 10mm 두께의 Fe-C계 용사층을 형성할 때, 적층표면운도에 따른 용사층의 변형량을 나타낸 것이다[12]. 매우 높은 운도범위에서 변형이 없는 용사온도 구간이 존재함을 알 수 있으며, 용사층의 전류응력을 또는 변형량을 최소화하기 위하여서는 용사과정에서 적층표면운도를 보다 정밀하게 제어할 수 있는 기술이 (on-line temperature control) 필요하다[12]. 이 외에도, 용사가 이루어지는 영역에 대한 운도구배와 다층 용사근을 사용시 용사층의 배열 등이 전류응력 또는 변형에 영향을 미치게 된다[13-14].

용사층의 기계적 특성을 결정하는 주요인자는 용사층의 미세조직이며, 특히 기공과 산화물의 양에 따라 금형의 특성은 크게 영향을 받는다[15]. 아크 용사과정에서 용융금속은 분사가스 그리고 대기중의 가스로 반응하게 된다. 분사가스로 압축공기를 사용하게 되면 분사된 액정은 매우 섭한 탈산 및 산화반응을 일으키며, 최종 용사 금속층은 상당량의 산화물을 포함하게 된다. 용사 금속층으로의 산화물의 혼입은 취성을 유발하고 적층역적간의 결함을 악화시킴으로써 금속층의 특성을 크게 저하시키게 된다. 그러므로 분사가스로서 질소가스를 사용하는 것이 일반적이다. 그럼에도 불구하고, 주변에서 혼입되는 공기중의 산소와의 반응을 완전히 억제하는 것은 불가능하다. Fig. 8(a)는 질소가스의 분사에 의하여 제조된 Fe-C

Fig. 7 Distortion of arc sprayed Fe-C shell as a function of deposit surface temperature

아크용사층의 미세조직을 나타낸 것이며, 소량의 기공과 함께 약 10v/o의 산화물이 생성되어 있음을 보여준다. 산화물의 생성을 완전히 억제하기 위하여서는 불활성 분위기를 유지할 수 있는 천공에서 용사가 이루어져야 하지만, 공정비용의 큰 상승을 초래한다. 최근 본 연구진은 아크용사층의 노출개량을 통하여 산화물의 생성을 현저하게 줄이는 성과를 거두었다. Fig. 8(b)는 개량노즐에 의해 제조된 아크용사층의 미세조직으로, 크게 감소된 산화물 분율을 나타내고 있다.

6. 맥았말

용사를 이용하여 금형을 제조하는 spray-formed tooling 기술은 미국, 영국, 프랑스, 호주를 비롯하여 최근 중국에서도 많은 연구가 진행되고 있으나, 국내에서는 이에 대한 연구 및 개발이 거의 이루어지지 않고 있는 실정이다. 아연용사를 이용
하여 시각금형을 제작하는 작업은 일부 소형업체에서 이루어지고 있으나, 고용적 소재인 합금강을 용사하여 대량생산용 금형을 제조한 사례는 전무하다. 국내에서는 2003년부터 포항산업과학연구원(RIST)과 충남대학교가 공동으로 spray-formed tooling 개발 연구를 시행하여, 기초연구 단계를 거쳐, 현재 제품생산이 가능한 금형을 제작하는 기술을 확보하였다. 용사공정을 통한 형상복제능력의 극대화하고, 잔류응력/변형 제어, 미세조직 제어 그리고 동질 자동화 기술을 이미 확보하였는데, 또한 전체 제작공정 중에서 가장 긴 시간이 소요되는 세라믹 재질의 용사용 패턴 제조과정을 생략할 수 있는 기술을 개발하여 완성단계에 와 있어 독자적인 연구영역을 구축하고 있다. 본 기술은 아직까지 국내에 잘 알려져 있지 않으나, 적응된 사례가 많지만, 지속적인 연구개발과 홍보를 통하여 국내 금형산업의 발전에 기여할 것으로 기대된다.

참고문헌