AZ31B 합금판재 성형관련 기초물성 실험 및 해석 연구

김세호1, 박기동2, 장정호1,2, 김경태2,3, 이형욱4, 이근안2, 김기풍5, 이용신3

Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet

(Received May 8, 2008)

Abstract
In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

Key Words: AZ31B Mg Alloy, Tensile Test, Formability Test, Finite Element Analysis, Flow Softening

1. 서 론
마그네슘 합금은 철강재료에 비하여 초경량이 며 제작용이 용이하고 플라스틱에 비하여 전자파 차폐성이 우수하기 때문에 자동차, 전자, 정보통신기기 부품으로 널리 활용되고 있다. 마그네슘 합금은 가공조건에 따라 성형성이 민감하게 달라지므로 공정변수의 조절이 어려우며, 제품 성형을 위한 공정설계 및 금형 설계, D/B 구축이 시급하다. 최근 마그네슘 합금 판재의 언간성형 시 기계적 물성값을 구하기 위한 연구[1-4]가 활발히 수행되고 있으며, 양산 분야에서도 금형설계 및 성형품 품질 예측을 할 수 있는 수준으로 연구가 발전하고 있다. 그러나, 온도와 변형률 속도의 의존함수인 재료물성의 전산역학적 모사에는 한계가 있어, 성형해석 시의 하중예측, 변형률 분포, 파탄 및 주름 등 뚜렷한 예측은 난제로 남아있다. 본 논문에서는 AZ31B 마그네슘 합금 판재의 기계적 물성 및 성형성의 파악을 위하여 온도 및 변형률 속도의 변화를 고려한 인장시험을 수행하고, 온도성상태에서의 R 값 구하였다. 성형성의 정량적 평가를 위하여 다양한 온도에서 변형률 변화에 따른 성형시험을 수행하고 성형한계선을 구하였다. 본 논문에서 구한 물성의 효용성을 검증하기 위하여 동일상태에서의 변형률 변화와 성형성의 유한요소해석을 수행하였다. 이를 바탕으로 현재의 재료물성 모델이 가지고 있는 문제점은 검토하고 추후 연구 진행방향을 검토하였다.

1. 대구대학교 대학원 기계공학과
2. 한국산업기술연구원 디지털형성공정팀
3. 국립대학원 기계·자동차공학부
4. 충북대학교 에너지시스템공학과
5. 한국산업기술연구원 동력부품저감센터
교신저자: 대구대학교 자동차산업·기계공학부,
E-mail: mvksh@daegu.ac.kr

466/한국소성가공학회지/제17권 제7호, 2008년
2. 기계적 물성값 도출

2.1 인장시험 개요
AZ31B 마그네슘 합금 판재의 기법적인 기계적 물성값을 추출하기 위하여 다양한 온도와 변형률 속도 조건에서 인장시험을 수행하였다. 사용된 소재는 미국 MEL(Magnesium Elektron)사의 제품으로 초기 두께는 0.8mm 이다. 인장시험에 앞서 용체화 처리를 수행하고, 조직변화 및 바커스 정도의 변화를 파악하였으며, 시험결과 시험에 사용된 시편은 추가적인 열처리가 필요하지 않다고 결론지을 수 있었다[5].

인장시험은 상온, 100, 200, 250, 300, 400°C의 6 가지의 온도 조건에서 수행하였으며, 변형률 속도는 10^2, 10^3, 10^4, 10^5 s⁻¹로 부과하였다. 소재는 ASTM 8M-97 Subsize 시험형상으로, 이어져 접합하여 제조하였으며, 소재 생성공정에서의 압연에 의한 이방성의 영향을 파악하기 위하여 압연 방향에 대하여 각각 0°, 45°, 90°의 방향으로 제작하였다. 인장시험에 사용된 시험기는 MTS 647이었으며, 시험의 가열을 위한 노(Furnace)를 장착하여 시험하였다. 정확한 연속물을 측정을 위하여 Extensometer를 부착하여 측정하였다. Fig. 1과 Fig. 2에 각각 시편과 시험기의 형상 및 고온 인장시험용 지그의 형상을 도시하였다.

Fig. 1 Shape of the specimen for the tensile test

R 값은 변형률 속도 5×10^3 s⁻¹의 조건에서 시편을 연속률 10%까지 인장하고 총과 표면처리의 변화를 측정하여 계산하였다. 동상 R 값은 15% 정도의 인장 후 측정하나 마그네슘 합금의 경우 낮은 연속률로 인한 냉각의 위원에 10%의 연속률만을 부과하였다.

2.2 인장시험 결과
Fig. 3 에 압연방향의 온도, 변형률 속도 조건에 따른 응력-변형률 선도를 도시하였다. 온도가 증가함에 따라서 열적변화 현상 및 변형률 속도 등화 현상을 확인할 수 있었다. 상온과 100°C의 경우 변형경화 현상이 일어나며, 최대 인장응력 발생은 동시에 시편의 파단이 발생하는 현상을 확인할 수 있었다. 반면에 200°C 이상 온도가 증가한 경우에는 변형률이 일정수준 이상 증가하게 되면 동작 재결정에 의한 조직의 미세화로 인하여 내구 등의 불안정성이 발생하지 않으면서 유동응력이 낮아지는 연속현상이 발생되는 것을

Fig. 2 Schematic view of the testing apparatus

(a) room temperature (b) 100°C
(c) 200°C (d) 250°C
(e) 300°C (f) 400°C

Fig. 3 Stress-strain curves from tensile tests (RD)
Fig. 4 Effect of the strain rate on mechanical properties

Fig. 5 Variation of the strain rate sensitivity exponent with respect to temperature

가공정화지수(n), 연진율(e)을 도시하였다. 인장강도는 동일온도에서 변형률 속도에 따라 선형적으로 증가하고 있음을 확인할 수 있다. 가공정화지수는 200℃~300℃의 온도 구간에서 변형률 속도가 증가할수록 지수함수의 형태로 증가하며, 온도증가에 따라 비슷한 값으로 수렴하는 것을 볼 수 있다. 이는 가공속도 증가 시 성형성에 미치는 온도의 영향이 감소함을 의미한다. 온도가 상승함에 따라 변형저항이 감소하여 400℃에서는 변형경화가 거의 일어나지 않는다.

징이 일어나는 시점까지의 균일 연진율은 200℃~300℃의 온도 및 10^{-3}~10^{-1} s^{-1}의 변형률 속도 및 구간에서 변형률 속도가 증가하면 증가하며, 온도가 증가하면 감소하는 경향을 보인다. 징 발생 시점에서 파단시점까지의 균질 연진율은 변형률 속도 및 민감도와 관련되는 계수로 연진율 증가하면 m 값이 증가함에 따라 징 발생으로 균질 연진율이 증가하게 된다. 균질 연진율은 온도가 높을수록 변형률 속도가 낮을수록 증가한다. 그리고 길고 빠른 변화의 온간가공 구간으로 알려져 있는 200℃~300℃에서는 변형률 속도에 따른 연진율의 변화가 작은 것을 확인할 수 있으며, 이는 실제 제품을 생산하기 위하여 가공속도를 높일수도 경형성에는 큰 문제가 없음을 의미한다. 변형률 속도 민감도 m 을 구하기 위하여 각 온도에서 변형률 0.15 시점의 올록-변형률 속도 그래프의 로그-로그 기울기를 측정하였다. Fig. 5 에 온도에 따른 m 값을 도시하였다.

시험에서 구한 R 값은 Fig. 6에 도시하였다. 압연방향의 수직방향에서 가장 큰 이방성을 보였으며, 압연방향에서 가장 작은 이방성을 보였다. 평균 소성변형비는 상온에서 2.5 정도였으나 300℃에서는 1 정도로 작아졌다. 이는 온도상승
Fig. 6 R-values of the AZ31B Mg-alloy sheet

3. 성형한계도 구축

AZ31B 마그네슘 합금 판계의 성형한계도를 구축하기 위하여 성형한계 시험을 실시하였다. 본 논문에서 제작된 변형형 판지 급형의 형상 및 치수는 Fig. 7(a)에 나타내었으며, 급형은 Fig. 7(b)와 같이 Simadzu 사의 100 톤 만능제료시험기 (UTM)에 장착되었다. 일반적인 성형성 시험을 위한 공정에서는 블랭크를 파탄시키기 위하여 삼각비드 등으로 고정을 하여 성형성이 없어지는 마그네슘 판계의 실험 시 상온조건에서 비드 부 파탄이 발생하므로 비드를 제거하고 실험을 수행하였다. 편치에는 노(Furnace)를 장착하여 가열하고, 홀더와 다이에는 가열선을 삽입하여 직접 가열할 수 있도록 설계, 제작하였다. 다른 부위의 열로 인한 영향을 방지하기 위하여 블랭크 홀더와 하부 다이에 단열재를 삽입하였다.

초기 블랭크의 형상은 직사각형으로 크기는 압연방향과 얼치는 길이방향의 크기가 175 mm 이고, 폭이 25, 50, 75, 100, 120, 175mm 인 6가지 종류의 시편을 사용하였다. 변형률 측정을 위한 격자 인쇄는 전기화학적 예형법을 사용하여 2.5mm×2.5mm 크기의 사각격자로 인쇄하였다. 시험은 100, 200, 250, 300°C의 4 가지 온도조건으로 진행하였고, 편치속도는 20mm/min로 부과하였다. 병도의 운활을 하지 않았으며, 블랭크 온도의 변화는 상온과 100°C에서는 150kN 으로, 200°C 이상의 온도에서는 파탄지연이 발생하여 더 큰 값을 200kN 으로 부과하였다. 시험 후 FMTI systems 사의 격자 측정시스템으로 격자의 주, 부 변형률을 측정, 계산하였다.

Fig. 8에 200°C에서 시험한 시편의 형상을 도시하였으며, 각 온도별 성형한계도를 Fig. 9에 도시하였다. 평면변형 시 성형한계변형률 FLD는 온도가 증가함에 따라 크게 증가하는 경향을 보이며, 이는 200°C 이상의 온도에서 동적체결정 형상으로 인하여 성형성이 증가하는 것을 의미한다.

Fig. 8 Deformed shape of the blank after the formability test at 200°C

Fig. 9 FLD constructed at various temperatures

(a) die shape
(b) UTM

Fig. 7 Schematic shape of the testing machine and the die for the formability test
4. 성형공정해석

현재 수행되고 있는 마그네슘 합금 판체의 성형해석은 대부분 가공경화 이론에 근거울 둔 물성모델을 이용하여 이루어지고 있다. 마그네슘 합금의 경우 온간가공 조건에서 응력의 변화가 발생하므로 두께분포 등의 정확한 예측이 어렵다. 본 논문에서는 열전달 등 타조건을 모두 제외하고 가장 단순한 동온 온간성형 공정에서 재료물성의 정확한 고려가 불가능한 경우 어느정도 정확한 해석이 가능한 가를 파악하고자 하였다. 기존의 가공경화 모델을 사용한 전산예측 이론을 사용하여 마그네슘 판체 동온가공의 성형해석을 수행하고 기존의 이론이 성형공정 시의 변형예측에 어떤 문제점을 보이는가를 고찰하였다.

4.1 성형해석 조건

해석에서 고려한 공정은 제 3 장의 성형성 시험에 사용한 반구형 원통 성형공정이며, 열전달을 고려하지 않은 동온성형 조건으로 100°C 와 200°C의 온도에서 해석을 수행하였다. 해석은 상용 프로그램인 LS-DYNA3D [7]를 이용하였다. 성형해석을 위한 급형의 형상과 유한요소 시스템은 Fig. 10과 같이, 블랭크 재료의 물성값은 제 2 장의 입장시험으로부터 얻은 결과를 이용하였다. 재료는 평면이방성을 고려하여 모델링하였으며, 온간가공 조건에서의 가공영향은 고려하지 않고, 가공경화만 발생한다고 가정하였다. 클롱 마찰계수는 0.15로 부과하였으며, 이와 조건은 실험과 동일하게 부과하였다. 해석에서 파단이 예측되는 편차정향에서 시험결과와 비교하였으며, 파단시점은 제 3 장에서 구한 성형예측 곡선을 이용하여 예측하였다.

Fig.10 Schematic shape of the finite element model and the tools shape for the FE analysis

(b) 200°C

Fig.11 Variation of the punch strokes from the analysis when failure occurs

4.2 성형해석 결과

Fig. 11에 해석에서 성형한계곡선으로 예측한 파단이 발생되는 편차정향을 시험의 폭에 따라 도시하였다. 파단이 발생되는 편차정향은 온도 별로 각각 두개의 그룹으로 나누어 정하고, 시험을 지정된 편차정향까지 수행하여 시험과 해석결과를 비교하였다. Fig. 12와 Fig. 13에 각각 편차가주 곡선과 두께변형을 분포를 비교하였다. 재료가 가공경화 현상을 보이는 100°C의 경우는 편차가주상과 두께변형을 모두 시험과 해석이 잘 일치하고 있으나, 재료가 가공유연성을 보이는 200°C의 경우에는 해석이 변형을 크게 예측하고 있는 것을 확인할 수 있다. 오차의 주요원인으로는 정확한 동온조건의 구현이 어려운 점을 들 수 있으며, 해석의 재료 모델링 시 동적계정에서의 가공영향을 고려하지 못하였으므로 오차가 발생한 것으로 판단된다. 정확한 해석 위해서는 추후 가공유연성을 고려한 재료 물성 모델링 방법의 개발이 필요하다.

5. 결론

본 논문에서는 AZ31B 마그네슘 합금 판체의 온간성형을 위한 물성값을 구하기 위하여 시험
AZ31B 합금판체 성형관련 기초물성 실험 및 해석 연구

![Chart 1](chart1.png)

![Chart 2](chart2.png)

![Chart 3](chart3.png)

본 연구는 2010 생산기반혁신기술개발사업의 일환으로 수행되었으며, 관계자분들께 감사드립니다.

참고 문헌

